
1

XML Compression Technologies

2

Traditional Compression
Technology

3

Data Compression

� Pros

� Disk space reduction

� Network bandwidth saving

� Better system performance

� Cons

� Processing overhead

� Loss of some subtle information

4

Traditional Compression
Schemes

� Lossy Compression

� DCT, Wavelet

� Lossless Compression

� Static compression

� Uses fixed statistics or no statistics is used

� Semi-adaptive compression (2 scans of data)

� Statistics gathering and compression

� Adaptive compression (1 scan of data)

� Dynamic statistics gathering

5

Lossless Compression(static)

� Dictionary Encoding

� Assigns an ID to each new word

input: ABC ABC BC DDD

Compressed Data: 1 1 2 3

Dictionary: ABC =1, BC = 2, DDD=3

� Binary Encoding

� Binary representation of numeric data

input: “100” “20” “50”

Encoding: 100 20 50

6

Lossless Compression(static)

� Differential Encoding (or Delta Encoding)

� Replaces a data item with a code value that
defines its relationship to a specific data item

ex)
input: 100 120 130

Compressed Data: 100 20 30

input: Johnson Jonah Jones Jorgenson

Compressed Data: (0) Johnson (2)nah (3)es (2)rgenson

7

Lossless Compression(semi-
adaptive)

� Huffman Encoding

� Assigns shorter codes to more frequently
appearing symbols and longer codes to
less frequently appearing symbols

� ex)

input: ACE

Encoding:01001101
D

.10

.20

.12

.25

.15

.08.10
E

A

C

GF

B

.42

.22

.58

.33

.18

1.0

Huffman tree

0

1

1

1 0

00

0

0

1

1

1

8

Lossless
Compression(adaptive)

� LZ(Lempel-Ziv) Coding
� Adaptive dictionary encoding

� Converts variable-length strings into fixed-length
codes

Input: {A B AB AA ABA}

Compressed Data: {(0,A)(0,B)(1,B)(1,A)(3,A)}

� new table entry is coded as (i,c)
� i : the codeword for the existing table entry(12 bit)

� c : the appended character(8bit)

9

Lossless
Compression(adaptive)
� Adaptive Huffman Coding
input : abbaaa Compressed Data : a 0b 01 01 01 1

10

XML Compression Technology

11

Introduction

� Currently, large portions of XML data are in
native file format

� Disk space and network bandwidth are
expensive

� Efficient management of file based XML is
needed

� XML compression can be useful
� Applications:

� XML Search Engines
� PDA

12

XML Compression

� XMILL: Hartmut Liefke, Dan Suciu, An
Efficient Compressor for XML Data. SIGMOD
2000

� XGrind: Pankaj Tolani, Jayant R. Haritsa, A
Query-friendly XML Compressor. ICDE 2002

� XPRESS: Jun-ki Min, Myung-Jae Park, Chin-
Wan Chung, A Queriable Compression for
XML Data. SIGMOD 2003

13

XMILL

� Not intended to support direct querying the
compressed document.

� Physically separates structure(e.g., tag) and
content(e.g. value)
� Tags: dictionary encoding

� Values: no encoding or user specified encoding
� Need human’s interference

� Groups semantically related data values into
containers

� Finally, recompressed by a built-in compression
library zlib(adaptive compression)

14

15

Drawback of XMILL

� No XML Schema-aware

� Even though there is information on XML data,
XMILL ignores

� Direct query evaluation is not possible

� When a document is compressed by XMILL, the
entire document needs to be decompressed for
query evaluation.

� No existing XML indexes can be used for
efficient query processing

16

XGrind

� Homomorphic Compression
� Preserves the structure of the original XML data in

compressed XML data
� Thus, Supports direct querying the compressed XML data

� XML indexes can still be used on compressed XML
document

<A>
 v1

v2

T1
T2 encode(v1) /
T2 /
T2 encode(v2) /

/

(a) Original XML (b) Homomorphic

17

XGrind

� XML Schema-aware: DTD

� Tag : Dictionary Encoding

� Values : Two kinds of data

� General Value : Huffman Encoding

� Enumeration Typed Value : Dictionary Encoding

� Use existing methods

18

A Compression Example of
Xgrind
<!- student.xml -->
<STUDENT rollno = "604100418">

<NAME>Pankaj Tolani</NAME>
<YEAR>2000</YEAR>
<PROG>Master of Engineering</PROG>
<DEPT name = "Computer Science">

</STUDENT>

Fragment of the Student DB

<!- DTD for the Student database -->
<!ELEMENT STUDENT (NAME, YEAR, PROG, DEPT)>
<!ATTLIST STUDENT rollno CDATA #REQUIRED>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT YEAR (#PCDATA)>
<!ELEMENT PROG (#PCDATA)>
<!ELEMENT DEPT EMPTY>
<!ATTLIST DEPT name (Computer Science
| Electrical Engineering
...
| Physics | Chemistry)
>

DTD for the Student DB

T0 A0 nahuff(604100418)
T1 nahuff(Pankaj Tolani)
T2 nahuff(2000)
T3 nahuff(Master of Engineering)
T4 A1 enum(Computer Science)

Abstract view of XGrind document

19

XGrind

20

XGrind

� Requires 2 scans of XML data
� Get statistics first: frequency and symbol tables
� Encode the XML document

� Some queries such as range queries still
require the partial decompression of
compressed XML data
� Huffman and dictionary encodings lose the

relationships among values (loss of semantic)
v1>v2 ⇒ c1>c2

21

XPRESS

� Goal

� Save disk space and network bandwidth

� Support efficient and direct processing of queries to
the compressed XML Data

� Homomorphic Compression

� Preserves the structure of the original XML data in
compressed XML data

22

XPRESS

� Semi-Adaptive : 2 scan
� Statistics, required in the compression phase, are

collected and fixed during the preliminary scan.

� Adaptive
� Preliminary scan is not required

� The encoded value of a symbol is changed according to
statistics => depending on the location

� To evaluate queries, complete decompression is not
required

� 2 scan overhead is compensated by the frequent
query evaluation

23

Architecture of XPRESS

� Semi-adaptive
� First Scan � XML Analyzer : statistics gathering
� Second Scan � XML Encoder : compression

XML
File XML

Parser

tag

value

Statistics collector

Type inference engine

XML Analyzer

XML Encoder
tag

value

Reverse arithmetic encoder

Type dependent encoders

Queriable
Compressed

XML
File

XPRESS

24

XPRESS

� Reverse Arithmetic Encoding

� Inspired by arithmetic encoding [Witten el. al,
1987]

� XML query is based on path expressions

� Existing XML Compressors transform a tag to an
identifier

� Query processor keeps the trace (i.e., path) of each
element.

� Encodes a label path of element e as an interval in
[0,1)

25

Reverse Arithmetic Encoding
1. Partitions the entire interval

2. Encodes the simple path P = p1. … .pn of e into an interval
[mine, maxe)

[0.9, 1.0)0.1subtitle

[0.6, 0.9)0.3subsection

[0.3, 0.6)0.3section

[0.2, 0.3)0.1title

[0.1, 0.2)0.1author

[0.0, 0.1)0.1book

IntervalTFrqElement

[0.6, 0.9)

[0.3, 0.6)

[0.0, 0.1)

IntervalT

[0.69, 0.699)book.section.subsectionsubsection

[0.3, 0.33)book.sectionsection

[0.0, 0.1)bookbook

intervalPathElement

Reduce the IntervalPn in proportion to the interval of P’ = p1. … .pn-1

For P = book.section.subsection, IntervalPn=[0.6,0.9), P’ = book.section

[0.6+0.3*0.3 = 0.69, 0.6+0.3*0.33=0.699)

go Example

26

Reverse Arithmetic Encoding

� The interval generated by reverse arithmetic
encoding satisfies the following property:

Property1

If path P is represented as interval I, then all

intervals for suffixes of P contain I.
EX)
The interval for book.section.subsection is [0.69,0.699)
The interval for section.subsection is [0.69, 0.78)
The interval for subsection is [0.6,0.9)
Therefore, [0.6,0.9) ⊇[0.69,0.78) ⊇ [0.69,0.699)

� Based on Property1, the label path expression is
efficiently evaluated.

� A Tag is replaced by the minimum value of the
interval

27

XPRESS

� Automatic Type Inference Engine

� Infers the types of data values of element e by
simple inductive rules during preliminary scan
phase

Rules)

Digits � Integer

Digits with a dot � Float

Strings whose number of distinct values is less than
128 � Enumerated

General strings � String

28

Implementation of XPRESS

� Encoders for Data Values
� Numeric data (integer, float): Binary + Differential encoding

� Enumerated String :Dictionary encoding

� General String: Huffman encoding
� (length[1byte], subsequence)+, where length of subsequence

is less than 27=128 byte

� MSB is always 0

integer where 27 <= max-min < 215u16

integer where 215<= max-min < 231u32

floatf32

huffman encoder for general stringhuff

dictionary encoder for enumerated
string

dict8

integer where max-min < 27u8

DescriptionEncoder

29

Implementation of XPRESS

� Approximated Reverse Arithmetic Encoder for Tags

� Represents the interval of path p in [1.0, 2.0)
� S = 0, E= 0111 1111

� By cutting of the 1st byte, MSB is always 1
� Thus, the query processor can distinguish tag and data values

� End tags are replaced by 0x80

� To reduce the size, truncates the last byte

S biased exponent(8bit) mantissa(23bit)

32bit floating point representation

1

30

Drawback of XPRESS

� The XML data is flattened, even though
it keeps the structure information.

� Thus, output of queries need to be
generated from scratch

� Consider a query

31

Experiments

� Machine

� Sun Ultra Sparc II 168Mhz, 384Mbyte

� Data Set

� Baseball : statistics of 1998 Major League

� Course : courses held in U. of Washington

� Shakespeare : plays of Shakespeare

21

18

46

Tag

0

5

19

Numeric

5

6

6

Depth

015.3Shakespeare

412.28Course

517.06Baseball

EnumSize(Mbyte)Dataset

32

Experiments

� Compression Ratio

1-Comp/Orig

0

20

40

60

80

100

Baseball Course Shakespeare

C
om

pr
es

si
on

 R
at

io
 (

%
)

XMill gzip XGrind XPRESS

33

Experiments

� Effect of zlib

0

20

40

60

80

100

Baseball Course Shakespeare

C
om

pr
es

si
on

 R
at

io
(%

)

XMill XGrind XPRESS

34

Experiments
� Queries

� First character indicates the data set
� Second digit denotes the query type

� 1: simple path expression
� 2: partial matching path expression
� 3: complicated path expression
� 4: path expression with range predicate

35

Experiments

On the average, the query performance of XPRESS is 2.83
times better than that of XGrind.

0

5

10

15

20

B1 B2 B3 B4 C1 C2 C3 C4 S1 S2 S3 S4

Baseball Course Shakespeare

T
im

e(
se

co
nd

s)

XGrind XPRESS

36

Path Queries on Compressed
XML

[Buneman, Grohe, Koch: VLDB’03]

37

Motivation

� XML tree can be directly compressed using
techniques from symbolic model checking

� Compression with sharing subtrees can be highly eff
ective

� Compressed tree can be queried directly through a
process of manipulating selections of nodes and
partial decompression

� Storing compressed text separately from remaining tr
ee skeleton in memory is not efficient for query
processing on large documents

� Goal: Compress skeleton so that path queries are pos
sible on this compressed skeleton.

38

Motivation

� Compression of XML tree skeletons by sub-
tree sharing can be seen as a direct
generalization of compression of Boolean
functions into Ordered Binary Decision Diagra
ms(OBDDs).

� Thus, the efficient algorithms for OBDDs can
be used for evaluating path queries directly
on compressed skeletons.

39

40

Original Skeleton
can be recovered by

the appropriate
depth-first traversal of the

compresses skeleton

Tree Skeleton (a)

Compressed Trees
(b) (c)

41

� Compressed skeletons are easy to compute
and allow us to query the data in a natural
way.

� Each node in the compressed skeleton
represents a set of nodes in the
uncompressed tree.

� The purpose of a path query is to select a set
of nodes in the uncompressed tree.

� However this set can be represented by a
subset of the nodes in a partially
decompressed skeleton

Property of Compressed

Representation by sub-tree sharing

42

XML Storage

� Infeasible approaches
� Subtree-based indexing/caching mechanisms
� Relational DBMS use to keep node information in t

uples

� Better: Separate string data and document st
ructure
� String data stored and indexed using conventional

approaches
� Document structure stored as a tree (“skeleton”)

with nodes keeping element and attribute names
� Used in XMILL as a compression scheme

43

XML Storage (cont’d)

� String data needed for localized processing
� Easily compressed by conventional methods

� Skeleton is needed for navigational aspect of
queries
� Usually small, can fit wholly in main memory

� Can we compress for large skeletons?

� How to avoid compression/decompression overhea
d (time and space) during query evaluation?

44

Proposed Compression Scheme

� Based on sharing of common nodes
� Independent of DTD
� Generic structure, capable of expressing othe

r information than just elements and attribute
s (eg. string match, query result)

� Original document structure is preserved
� Bisimulation: Each node in compressed tree corres

ponds to a number of nodes in uncompressed tree
� Partial decompression is possible
� Naturally extends to query processing on compres

sed skeletons

45

Example

� Common subtrees are shared

� Edges are ordered

� In (c) consecutive multiple edges
are joined and marked their multi
plicity

46

Query Processing

� How to evaluate a XPath query on a
compressed instance?

� A subset of XPath Query is defined and
discussed how to process a Core Xpath
Query?

47

Node Test PredicateAxis

Selects the chapter children of the context node that have one or more title children with string-value equal to Introduction.

Child :: chapter [child::title='Introduction']

Location Path is composed of
Location Steps:

� A location step has three parts:
� An axis, which specifies the tree relationship between

the nodes selected by the location step and the
context node.

� A node test, which specifies the node type.
� Zero or more predicates, which use arbitrary

expressions to further refine the set of nodes
selected by the location step.

48

/ descendant::a / child::b[child::c / child::d or not(following::*)]

The intuition in Core XPath, which

reduces the query evaluation

problem to manipulating sets rather
than binary relations, is to reverse

paths in conditions to direct the

computation of node sets in the query

towards the root of the query

tree.

An Example Core XPATH
Query

49

� Goal is to avoid full de-compression when it is
not necessary.

� The idea is to traverse the DAG of the input
instance starting from the root, visiting each
node v only once.

� We choose a new selection of v on the basis
of the selection of its ancestors, and split v if
different predecessors of v require different
selections. We remember which node we
have copied to avoid doing it repeatedly.

Operations On Compressed
Instances

50

Operations On Compressed
Instances

Original Skeleton
can be recovered by

the appropriate
depth-first traversal of the

compresses skeleton

Tree Skeleton (a)

Compressed Trees
(b) (c)

51

EXAMPLE :

52

Complexity of Decomposition

� Unfortunately, compressed trees may
be decompressed exponentially in the
worst case even on very simple queries.

� However, the decompression is only
exponential in the size of the queries
(but not the data), which tend to be
small.

53

Questions & Comments

