

### **Introduction to Materials Science and Engineering**

11. 07. 2019 Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment

### **Contents for previous class**

### Chapter 11 Phase Diagrams

- Equilibrium dG = 0

**Lowest possible value of G** *No desire to change ad infinitum* 

- Phase Transformation

 $\Delta G = G_2 - G_1 < 0$ 

- \* Single component system One element (Al, Fe), One type of molecule (H<sub>2</sub>O)
  - : Equilibrium depends on pressure and temperature.
- \* Binary system (two components)  $\rightarrow$  A, B
  - : Equilibrium depends on not only pressure and temperature but also composition.
  - Binary System mixture/ solution / compound

# - Solubility

- Unlimited Solubility
  - Hume Rothery' Conditions
    - Similar Size
    - Same Crystal Structure
    - Same Valance
    - Similar Electronegativity
  - Implies single phase
- Limited Solubility

   Implies <u>multiple phases</u>
- No Solubility
  - oil and water region



#### **Cu-Ni Alloys**

**Cu-Ag Alloys** 



complete solid solution

limited solid solution

# - Cooling of a Cu-Ni Alloy

- Phase diagram: Cu-Ni system.
- Consider microstuctural changes that accompany the cooling of a  $C_0 = 35$  wt% Ni alloy

### - Cored vs Equilibrium Phases





## Chapter 11: Phase Diagrams What we will learn about

- I. Component, Phase, Equilibrium
  - $\rightarrow$  Phase diagram (Gibb's phase rule)
- II. one component phase diagram
  - two component phase diagram
  - : solubility limit (Hume-Rothery Rule)
- III. Isomorphous Binary Phase Diagram
  - : tie line, lever rule
- **IV. Binary-Eutectic Systems**
- V. Binary invariant reaction
  - : Eutectic, Eutectoid, & Peritectic
- Ternary, Quarternary phase diagram
- Phase transformation

## **IV. Binary-Eutectic Systems**

2 components

has a special composition with a min. melting *T*.



### The Gibbs Phase Rule

#### For Constant Pressure, P + F = C + 1





# EX 1: Cu-Ag Eutectic System

- 3 single phase regions
   (L, α, β)
- Limited solubility:
   α: mostly Cu
  - $\beta$ : mostly Ag
- $T_E$ : No liquid below  $T_E$
- C<sub>E</sub>: Composition at temperature T<sub>E</sub>



Eutectic reaction

Fig. 11.6, *Callister & Rethwisch 9e* [Adapted from *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.].

 $L(C_{E}) \implies \alpha(C_{\alpha E}) + \beta(C_{\beta E}) \xrightarrow{\text{Vol. 1, I. B. Massalski (Editor-in-Chief)}}_{\text{by permission of ASM International, Massalski (Editor-in-Chief)}} L(71.9 \text{ wt% Ag}) \xrightarrow{\text{cooling}}_{\text{heating}} \alpha(8.0 \text{ wt% Ag}) + \beta(91.2 \text{ wt% Ag})$ 

9

## **EX 2: Pb-Sn Eutectic System**

 For a 40 wt% Sn-60 wt% Pb alloy at 150° C, determine: -- the phases present Pb-Sn C) Answer:  $\alpha + \beta$ system -- the phase compositions 300 **Answer:**  $C_{\alpha} = 11$  wt% Sn L (liquid)  $C_{\beta} = 99 \text{ wt\% Sn}$ \_+α -- the relative amount α 200 183° +/ of each phase 18.3 61.9 97.8 150 Answer:  $W_{\alpha} = \frac{S}{R+S} = \frac{C_{\beta} - C_{0}}{C_{\beta} - C_{\alpha}}$ 100  $\alpha + \beta$  $=\frac{99-40}{99-11}=\frac{59}{88}=0.67$ **99**100 80 20 60 0 40  $W_{\beta} = \frac{R}{R+S} = \frac{C_0 - C_{\alpha}}{C_{\alpha} - C_{\alpha}}$  $C_{\alpha}$  $C_{\beta}$ C, wt% Sn Fig. 11.7, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams,  $=\frac{40-11}{99-11}=\frac{29}{88}$ 2nd edition, Vol. 3, T. B. Massalski (Editor-in-= 0.33Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.] 10

# **EX 2: Pb-Sn Eutectic System**

For a 40 wt% Sn-60 wt% Pb alloy at 220° C, determine:
 -- the phases present:

Answer:  $\alpha + L$ 

-- the phase compositions

Answer:  $C_{\alpha} = 17 \text{ wt\% Sn}$  $C_{I} = 46 \text{ wt\% Sn}$ 

-- the relative amount of each phase

Answer:

$$W_{\alpha} = \frac{C_L - C_0}{C_L - C_{\alpha}} = \frac{46 - 40}{46 - 17}$$
$$= \frac{6}{29} = 0.21$$

$$W_L = \frac{C_0 - C_\alpha}{C_L - C_\alpha} = \frac{23}{29} = 0.79$$



International, Materials Park, OH.]

## Microstructural Developments in Eutectic Systems I



## Microstructural Developments in Eutectic Systems II



## **Microstructural Developments** in Eutectic Systems III

160 µm

14

- For alloy of composition  $C_0 = C_F$
- Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of  $\alpha$  and  $\beta$  phases.



## Lamellar Eutectic Structure



Figs. 11.13 & 11.14, *Callister & Rethwisch 9e.* (Fig. 11.13 from *Metals Handbook*, 9th edition, Vol. 9, *Metallography and Microstructures*, 1985. Reproduced by permission of ASM International, Materials Park, OH.)



## Microstructural Developments in Eutectic Systems IV

- For alloys for which 18.3 wt% Sn <  $C_0$  < 61.9 wt% Sn
- Result:  $\alpha$  phase particles and a eutectic microconstituent



16

# Hypoeutectic & Hypereutectic



#### Review of Invariant Binary Reactions *Eutectic* Type Eutectic Al-Si, Fe-C ß $| = \alpha + \beta$ Eutectoid $\checkmark$ Fe-C **ζ**β $\gamma \overrightarrow{\phantom{\alpha}} \alpha + \beta$ Monotectic Cu-Pb را 🗸 $|_1 \overrightarrow{\alpha} \alpha + |_2$ Monotectoid Al-Zn, Ti-V ζβ $\alpha_1$ $\alpha_2 \overrightarrow{\phantom{\alpha}} \alpha_1 + \beta$

On cooling one phase going to two phases Metatectic reaction:  $\beta \leftrightarrow L + \alpha$  Ex. Co-Os, Co-Re, Co-Ru<sup>18</sup>

## **Review of Invariant Binary Reactions**

Peritectic Type



On cooling two phases going to one phase



## V. Eutectic, Eutectoid, & Peritectic

• Eutectic - liquid transforms to two solid phases

$$L \xrightarrow[heat]{\text{cool}} \alpha + \beta$$
 (For Pb-Sn, 183° C, 61.9 wt% Sn)

 Eutectoid – one solid phase transforms to two other solid phases

$$S_{2} \implies S_{1} + S_{3} \qquad \text{-cementite}$$

$$\gamma \quad \frac{\text{cool}}{\text{heat}} \quad \alpha + \text{Fe}_{3}\text{C} \quad (\text{For Fe-C}, 727^{\circ} \text{ C}, 0.76 \text{ wt\% C})$$

• Peritectic - liquid and one solid phase transform to a second solid phase

$$S_1 + L \implies S_2$$
  
$$\delta + L \xrightarrow[heat]{cool} \gamma \qquad (For Fe-C, 1493^{\circ} C, 0.16 wt\% C)$$

## a. Eutectoid & Peritectic



ASM International, Materials Park, OH.]

# **b. Congruent vs Incongruent**

#### Congruent phase transformations: <u>no compositional change associated</u> <u>with transformation</u>

**Examples:** Composition (at% Ti) 50 30 40 60 70 1500 Allotropic phase transformations • Melting points of pure metals 2600 1400 Congruent Melting Point \_\_\_\_ 1310°C 44.9 wt% Ti 2400 1300 Temperature (°C) femperature (°F)  $\beta + L$ 2200 1200 **Incongruent phase transformation:**  $\gamma + L$ at least one phase will experience 1100 2000 Y change in composition  $\beta + \gamma$ 1000 1800 **Examples:**  $\gamma + \delta$ 900 Melting in isomorphous alloys ۲ 30 40 50 60 70 Composition (wt% Ti) **Eutectic reactions** 🔶 Ni Ti •

- Pertectic Reactions
- Eutectoid reactions

## c. Fe-C phase diagram



## Iron-Carbon (Fe-C) Phase Diagram

- 2 important points
  - Eutectic (A):  $L \Rightarrow \gamma + Fe_3C$
  - Eutectoid (*B*):





Result: Pearlite = alternating layers of  $\alpha$  and Fe<sub>3</sub>C phases

Fig. 11.26, *Callister & Rethwisch 9e.* (From *Metals Handbook*, Vol. 9, 9th ed., *Metallography and Microstructures*, 1985. Reproduced by permission of ASM International, Materials Park, OH.)



[Adapted from *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

## **Pearlite microstructure**







<sup>(</sup>Photomicrograph courtesy of Republic Steel Corporation.)





<sup>(</sup>Copyright 1971 by United States Steel Corporation.)



Adapted from Fig. 11.32, *Callister & Rethwisch 9e*. (Copyright 1971 by United States Steel Corporation.)





# Evolution of microstructure of hypoeutectoid and hypereutectoid steels during cooling



## **Example Problem**

- For a 99.6 wt% Fe-0.40 wt% C steel at a temperature just below the eutectoid, determine the following:
- a) The compositions of  $Fe_3C$  and ferrite ( $\alpha$ ).
- b) The amount of cementite (in grams) that forms in 100 g of steel.
- c) The amounts of pearlite and proeutectoid ferrite ( $\alpha$ ) in the 100 g.

### **Solution to Example Problem**

a) Using the RS tie line just below the eutectoid

 $C_{\alpha} = 0.022 \text{ wt\% C}$  $C_{\text{Fe}_{3}\text{C}} = 6.70 \text{ wt\% C}$ 

b) Using the lever rule with 1600 the tie line shown 140  $W_{\text{Fe}_{3}\text{C}} = \frac{R}{R+S} = \frac{C_0 - C_\alpha}{C_{\text{Fe}_{2}\text{C}} - C_\alpha}$ T(° C)  $\gamma + L$ <u>L+Fe<sub>3</sub>C</u> 1200 Fe<sub>3</sub>C (cementite) <u>1148°</u> (austenite)  $\frac{0.40 - 0.022}{6.70 - 0.022}$ 1000 = 0.057 $\gamma + Fe_3C$ 800 727°C S Amount of Fe<sub>3</sub>C in 100 g 600  $\alpha$  + Fe<sub>3</sub>C  $= (100 \text{ g}) W_{\text{Fe}_{3}\text{C}}$ 2 3 5 6 6.7  $C_{\alpha}$   $C_{0}$ C, wt% C = (100 g)(0.057) = 5.7 g35

Fig. 11.23, *Callister & Rethwisch 9e.* [From *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

## Solution to Example Problem (cont.)

c) Using the VX tie line just above the eutectoid and realizing that

 $C_0 = 0.40 \text{ wt\% C}$   $C_{\alpha} = 0.022 \text{ wt\% C}$  $C_{\text{pearlite}} = C_{\gamma} = 0.76 \text{ wt\% C}$ 

$$W_{\text{pearlite}} = \frac{V}{V + X} = \frac{C_0 - C_\alpha}{C_\gamma - C_\alpha}$$
$$= \frac{0.40 - 0.022}{0.76 - 0.022} = 0.512$$

Amount of pearlite in 100 g

 $= (100 \text{ g}) W_{\text{pearlite}}$  = (100 g)(0.512) = 51.2 g

Fig. 11.23, *Callister & Rethwisch 9e.* [From *Binary Alloy Phase Diagrams*, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]



### **Alloying with Other Elements**

• *T*<sub>eutectoid</sub> changes:



Fig. 11.33, *Callister & Rethwisch 9e*. (From Edgar C. Bain, *Functions of the Alloying Elements in Steel*, 1939. Reproduced by permission of ASM International, Materials Park, OH.) • C<sub>eutectoid</sub> changes:



Fig. 11.34, *Callister & Rethwisch 9e*. (From Edgar C. Bain, *Functions of the Alloying Elements in Steel*, 1939. Reproduced by permission of ASM International, Materials Park, OH.)



TA: Melting Point Of Material A

T<sub>B</sub>: Melting Point Of Material B

T<sub>C</sub>: Melting Point Of Material C

TEI: Eutectic Temperature Of A-B

T<sub>E2</sub>: Eutectic Temperature Of B-C

TE3: Eutectic Temperature Of C-A





Main outline of Ternary Phase Diagram with Ternary Eutectic (Te) and Solid Single Phase Regions Shown











**T**= ternary eutectic temp.





#### http://www.youtube.com/watch?v=yzhVomAdetM

• **Isothermal section**  $(T_A > T > T_B)$ 





Vertical section

Location of vertical section



Fig. 179. Construction of vertical section 1-2.



Vertical section Location of vertical section







## < Quaternary phase Diagrams >



## **Microstructure-Properties Relationships**



### **Contents\_**Phase transformation course

Background to understand phase transformation (Ch1) Thermodynamics and Phase Diagrams (Ch2) Diffusion: Kinetics

(Ch3) Crystal Interface and Microstructure

Representative Phase transformation (Ch4) Solidification: Liquid  $\rightarrow$  Solid

(Ch5) Diffusional Transformations in Solid: Solid  $\rightarrow$  Solid

(Ch6) Diffusionless Transformations: Solid  $\rightarrow$  Solid

# Summary

- Phase diagrams are useful tools to determine:
  - -- the number and types of phases present,
  - -- the composition of each phase,
  - -- and the weight fraction of each phase given the temperature and composition of the system.
- The microstructure of an alloy depends on
  - -- its composition, and
  - -- whether or not cooling rate allows for maintenance of equilibrium.
- Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.