2019 Spring

"Phase Equilibria in Materials"

05.01.2019

Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Isothermal section

cf) Movie

• Vertical section

З

Projection of the solidification sequence for alloy Y on the concentration triangle

• A peritectic solubility gap in one binary system

• A peritectic solubility gap in one binary system

PP₁: monovariant curve for liquid

Points P_1 and c lie at the same temperature and the line P_1c is a degenerate tie triangle.

isothermal section

• Binary Monotectic, syntectic and metatectic reactions in combination with each other as well as with binary eutectic and peritectic reactions.

Chapter 10. Ternary phase Diagrams Four-Phase Equilibrium

a. THE TERNARY EUTECTIC EQUILIBRIUM ($l = \alpha + \beta + \gamma$)

b. THE QUASI-PERITECTIC EQUILIBRIUM $(l + \alpha = \beta + \gamma)$

c. THE TERNARY PERIECTIC EQUILIBRIUM $(l + \alpha + \beta = \gamma)$

Three phase equil. (*f* = 1) - eutectic, peritectic

Now we consider of four-phase equilibrium

- max N of phase
- f = 0 : composition of four phases at temp. \rightarrow fixed
- isothermal four phase regions

The eutectic four-phase plane as the junction of four tie triangles

Ternary eutectic • Projection : solid solubility limit surface : monovariant liquidus curve

Tabular representation of ternary equilibria: interlinks the binary and ternary reactions in tabular form

- TA: Melting Point Of Material A
- T_B: Melting Point Of Material B
- T_c: Melting Point Of Material C
- TE1: Eutectic Temperature Of A-B
- T_{E2}: Eutectic Temperature Of B-C
- TE3: Eutectic Temperature Of C-A

All Liquidus surfaces (a+L-Red, B+L-Purple, y+L-Green)

T = ternary eutectic temp.

Ternary Eutectic System

(with Solid Solubility)

http://www.youtube.com/watch?v=yzhVomAdetM

• **Isothermal section** $(T_A > T > T_B)$

Fig. 179. Construction of vertical section 1-2.

Transformation during cooling

Ternary Eutectic microstructure

Microstructure of the ternary eutectic in the Al-Cu-Si system. $_{32}$ α light, Θ dark, Si grey, (x 900)

Transformation during cooling

Transformation during cooling

Ternary Eutectic System

Solidification Sequence

Transformation during cooling

