
Note 8

Object-Oriented

Programming Methodology

Yunheung Paek
Associate Professor

Software Optimizations and Restructuring Lab.

Seoul National University

Programming Methodologies2

Topics

� Fundamental concepts of object-oriented programming

– block (already discussed earlier)

– module: an extension of a block

– data abstraction

– object abstraction

– parametric polymorphism

� Language features employed in existing object-oriented

languages

– construction/destruction of abstract objects

– type inheritance

– virtual functions

– memory managements and other miscellaneous features

� Object-oriented problem solving

Programming Methodologies3

Modules

� A module is similar to a block in that both are a collection

of declarations and statements.

� A module is different from (or we may say, more

sophisticated than) a block because a module can export a

subset of the declarations to outside the module.

Cf: all the declarations of a block are visible only inside the block.

� The exported declarations in a module is called the

interface of the module.
block

int n;
int m;
char c;
float x;

module

int m;
char c;

interface

int n;
float x;

Programming Methodologies4

Modules

� The declarations specified in an interface can be accessed

by other modules or objects.

� The remaining declarations are hidden from others.

� In this sense, a module serves as a black box.

� A module interacts with the rest of the program through an high-

level interface while hiding low-level implementation details.

C++ class demo {

public:

... //the interface open to the outside

private:

... //the rest of the module hidden from the outside

};

Programming Methodologies5

Naming control in modules

� Many newer languages (esp. object-oriented) provide modules.
� modules (Modula), classes (C++, SmallTalk), packages (Ada), clusters (CLU)

� In some languages, import list is not explicitly specified since it is deducible.

module m1
export x, y, z
import m2::x
integer x
procedure y (integer j)
integer constant z – 5
integer i
real w (10)
procedure p(real v)

begin
...i...x...
...m2::x

end
procedure y (integer j)

begin
...w(z)...m2::x...

end

module m2
export x, w, z
import m1::y, m1::z
char x
integer w
real z
real y
integer i (10)
procedure p(char c)

begin
...x...m1::z

end
procedure q

begin
...w(z)...m2::x...
...z...m1::y

end

interface
(public, exposed)

communication

body
(private, hidden)

Programming Methodologies6

Advantages of modules over blocks

� Globals (or non-locals) are necessary for communication

between blocks.

� In modules, globals are discouraged because modules can

communicate through parameters specified in the interface.

� Thus, data sharing is explicit in modules, which solves the problems

of side effects, indiscriminate access and screening

int many;

f() {
.. many ..

}
g() {

.. many ..
}
h() {

int mary;

.. g() .. many

... f() ..
}

module p
export f, g, many;
procedure f()
procedure g()
int many;

f() {
.. many ..

}
g() {

.. many ..
}

module q
import p.f, p.g;

h() {
int mary;
..p.g()..many

... p.f() ...
}

no error detected,
but any semantic
error?

blocks modules

naming error detected

Programming Methodologies7

Advantages of modules over blocks

� Modules provide natural unit for separate compilation.

– Only the change in the interface of a module affect other modules.

– A module with objects imported from other modules can be

compiled without knowing the detailed implementation of the

imported objects.

� What’s the advantage of separate compilation in terms of

efficiency?

� Modules can be data objects or variables.

(ex: class objects in C++)

Programming Methodologies8

Modules in the Modula language

� Modula has a similar syntax to that of Pascal.

� No explicit export statement. All declarations

in a definition module are exported.

� A reference to an imported object is qualified

with the name of the imported module in a

importing module.
definition module m1;

var x : integer;
procedure f(var j :character);
const z = 5;

end m1.
implementation module m1;

from m2 import x;
var i : integer;
var w : array [1..10] of integer;
procedure p(var v :real);

begin
... i ... x ...
... m2.x …

end p;
procedure f(var j: character);

begin
.. w[z] .. m2.x ..

end f;
end m1.

definition module m2;
var x : character;
var w : integer;
var z : real;

end m2.
implementation module m2;

from m1 import y, z;
var y : real;
var a : array [1..10] of integer;
procedure p(var c :character);

begin
... x ... m1.z ...

end p;
procedure q;

begin
.. a[w] .. y ..
.. z ... m1.y ..

end q;
end m2.

module main;
from m1 import x, f;
from m2 import x, w;
var x : real;
begin

m1.f(m2.x);
x = m1.x * 3.5 + m2.w;
...

end main.

Programming Methodologies9

Primitive form of modules in C

� Files in C language can be thought of as modules because

they provide a facility to export and import declarations.

� The default is to put all global declarations in a file into

the interface of the file.

– All global declarations are exported by default.

– Names exported by files have to be unique since file names are not

part of exported names unlike ordinary modules.

file1.c
char* c = “exportable”;
static char *d = “hidden”;
int f() {

char* e = “also hidden”;
...

}

file2.c extern char* c;
extern int f();
int m;
void g(){

...m = f();..

.. c ...d...
}

import

all global non-

static declarations

are exportable

must have been
declared locally

Programming Methodologies10

Primitive form of modules in C

� To hide a declaration within a file, it must be declared

static.

� Declarations from other files can be imported by extern

declarations.

� Similarly to modules, files in C can also be compiled

separately with ease.

file1.c file1.o

file2.c file2.o

a.out

compile

compile

link

Programming Methodologies11

Modules in C++

� The class type can be used to implement modules.
class Complex {

public: Complex(float rl, float im) { r = rl; i = i m; } // contructor

float real_part() { return r; }
float imaginary_part() { return i; }
Complex &operator+(const& Complex);
Complex &operator-(const& Complex);

...
private: float r, i;

}; ...
Complex object1(7.6,3); // object1 is 7.6+3.0i

Complex object2(5,1.1); // object2 is 5.0+1.1i

float r = object1.real_part(); // 7.6 is returned

object1 = object1 + object2; // object1  object1.operator+(object2) = 12.6+4.1i

– The public part is the interface of a class module, and the

private part is the body. Therefore, the declarations in the public

section are exported, and the variables r and i are not exported.

– Crucial differences between classes and files in C++?

• Different data objects can be created for each class.

• Class names are part of the exported names.
e.g.) object1.real_part() , object1.r

Programming Methodologies12

Modules in CLU

� A module in CLU is called a cluster
Complex = cluster is construct, real_part, imaginar y_part, plus, minus,...

representation = record [r, i : real]
construct = proc(rl, im : real) return(Complex)

return(representation${r : rl,i : im})
end construct
real_part = proc(num : Complex) returns(real)

return(num.r)
end real_part
imaginary_part = proc(num : Complex) returns(real)

return(num.i)
end imaginary_part
plus = proc(num1, num2 : Complex) returns(Complex)

return (representation${r : num1.r+num2+r, i : num1. i+num2+i})
end plus

...
end Complex

...
object1 : Complex := Complex$construct(7.6,3.0)
object2 : Complex := Complex$construct(5.0,1.1)
x : real := Complex$real_part(object1)
object1 := Complex$plus(object1,object2)

– The interface of a cluster is defined as “cluster is ”.

– The declarations in the interface are exported.

– representation is a built-in cluster defined by the language.

Programming Methodologies13

Implementation of modules

� Modules can be implemented in a language that

does not provide them.

� Module/object = code + data

� Function/procedure = code

� A function itself is a passive entity

� It has no life when it is not invoked. (no activation

record or any other data structures maintaining its

status)

� A module is an active entity maintaining its data

structures until it is explicitly destructed whether

it is currently invoked or not.

Programming Methodologies14

Implementation of modules

� In Scheme, a module can be implemented with HOFs.
> (define complex (lambda (r i)

(define + (lambda (a)
(complex (+ r (a ’real_part)) (+ i (a ’imaginary_pa rt)))))

(define - (lambda (a) ...))
...

(define this_object (lambda (func)
(cond ((eq? func ’real_part) r)

((eq? func ’imaginary_part) i)

((eq? func ’+ +)) // returns a thunk + � not global addition +

...)))))
this_object))

> (define object1 (complex 7.6 3)) // object1 is 7.6+3.0i

> (define object2 (complex 5 1.1)) // object2 is 5.0+1.1i

> (object1 ’real_part)

7.6 // return 7.6

> (define object1 ((object1 ’+) object2)) // procedure as results

// object1 is now 12.6+4.1i

Programming Methodologies15

Implementation of modules

r=7.6
i=3
+
-
…
this_object

code

code

code

…

r=5
i=1.1
+
-
…
this_object

code

code

code

…

object1

object2

r=12.6
i=4.1
+
-
…
this_object

code

code

code

…

Programming Methodologies16

Monitor

� A monitor is a module that is used to perform parallel

programming by implementing critical sections (Modula,

Concurrent Pascal)

� But, it is different from ordinary modules since it allows

only one process to call one of its public procedures (e.g.:
updates and read in monitor sync).

� Monitors have the same advantage of modules.

– abstraction

– information hiding

– encapsulation.

� With low level synchronization primitives such as test-and-set, semaphores

and barriers, the protocols for implementing critical sections are exposed.

This leads to error-prone and less programmable coding.

Programming Methodologies17

Example of a monitor
type sync = monitor // for multiple readers and writers
var C, N : integer;

Waiting : queue;
procedure update(D : integer) // call-by-value

begin
C := D; // Now, one of the writers updates a new data
N := R; // assuming R is the number of readers
wakeup(Waiting); // Wake up all readers in the queue

end;
procedure read(var M : integer) // call-by-reference

begin
if (N = 0) sleep(Waiting); // no new data is updated
M := C; // each reader reads the new data
N := N-1; // Mark that I have read this new data

end;
begin // initialize private variables

N := 0; Waiting := φ φ φ φ;
end;
...
var S: sync;
parbegin

begin // for a writer 1
... /* compute some results */ ...
S.update(result);

...
end;
... /* code for other writers */
begin // for a reader 1

...
S.read(X); // X is private variable to each reader
... /* use X for its computation */ ...

end;
... /* code for other readers */

parend.

number of readers that
have read new value of C

regularly updated with
new value by the writers

Definition of a monitor

Programming Methodologies18

Abstraction

� Abstraction of a process or object consists of

1. its high-level and essential properties that are exposed

2. the remaining low-level details that are hidden.

� The forms of abstraction in programming languages

1. procedural abstraction

2. data abstraction (type abstraction)

3. object abstraction

Programming Methodologies19

Procedural abstraction

� Procedure blocks are procedural abstractions.

� Task: "Prints the names of all employees living in L.A. in alphabetical order"
struct ER { char* name; char* addr; ... ER* next; }

main() {

ER* full_record = read_record_file("employ records");

ER* nw_record = get_employees_living("L.A.", full_re cord);

ER* sorted_record = sort_names(nw_record);

print_records(sorted_record);
}

– Local variables and algorithms used in a block are hidden within the

block, and only parameters and name of the procedure are exposed.

� For example, the procedure sort names can use any sorting algorithm

(ex: quick/merge/radix sorting) and data structures or the algorithm

without affecting the caller main.

� Advantages of procedural abstractions are that they
provide program partitioning and information hiding.

� Why are they advantageous?

Programming Methodologies20

Program partitioning

� allows the programmer to focus on one section of a

program at a time without the overall detailed program

continually intruding.

� abstracts away many of the details of each program

section, facilitating the construction of comprehension of

a large program.

� usually makes programs smaller.

– ex) calls to the same subroutine

– Advantages of smaller programs?

� easier to manage since difficulty of program writing and

debugging increases more than linearly with the program size.

Programming Methodologies21

Information hiding

� can be achieved by allowing a program to specify the high-

level description of a task without providing low-level

design decisions for how it is to be done.

procedure name/type, parameters, module interface, …

algorithms, local variables, control/data structures, …

� can reduce program complexity.

� With information hiding, when a design decision is changed, only

the block is affected, facilitating testing and refinement of the

program.

Programming Methodologies22

� A data abstraction is a user-defined abstract data type
which encompasses the representation of a data type and a
set of operations for objects of that type.
� Like procedural abstractions, data abstractions provide program

partitioning and information hiding.

� A crucial ingredient of an abstract data type is separation
between the interface and the body.

– An interface is like a contract between the users and the designers.

– An interface is a high-level and short specification of the data type
and description of the operations provided.

– The body implements the specification defined by the interface.

Data abstraction

Concept

acquisition

specification

implementation

Body
In
te
rf
ac
e

type

operationsUse

data objects + operations on the objects

Programming Methodologies23

Data abstraction

integer

interface

representation: …,-3,-2,-1,0,1,2,3,…

operations: +,-,*,/,&,|,<,>,==,…

implementation

representation: 16-bit binary

operations: binary add/subtract/multiply/…

…
1111111111111111
0000000000000000
0000000000000001
0000000000000010

…

0000001000100111
+ 0000101010010101

0000110010111100

Programming Methodologies24

Examples of abstract data types

� Binary Tree
abstract view: an object which can be queried for its label and for its left and

right children associated with operations: insert, delete, root, left, right ...

concrete view: a record containing a data field and pointers to its children

records with operations: allocation, deallocation, pointer assignments

� Stack
abstract view: an ordered list in which all insertions and deletions are made

at one end, called the top (the opposite end is called the bottom),

associated with operations: push, pop, empty?, top_elem, clear ...

concrete view 1: an array with an additional integer that holds the index of

the top. associated with operations: array assignments

concrete view 2: a linked list with a pointer that points to the top element

associated. with operations: allocation, deallocation, pointer assignments

5 3 7

top

5

3 7

Programming Methodologies25

Modules for data abstraction

� To provide program partitioning and information hiding,
data abstractions are typically implemented with modules.

Why? … �

(Example: stack)
• A data abstraction for a stack can be implemented with an

abstract data type Stack with a module (a class in C++).

• Since Stack is a data type, it can have objects of that type by

declarations. e.g.) Stack stack1, stack2 ;

• Programs use the public operations pop , push and is_empty ,

without being aware of the underlying design decisions such as
whether a linked list or an array is used to implement Stack .

� Procedural abstractions are provided by languages with
block structure. � languages mostly before 80’s(Fortran, C, Pascal)

� Data abstractions are provided by languages that supports
modules. � languages in 80’s or later(Ada, Modula-2, CLU, C++)

a module provides facilities (e.g., interface) to

hide the details of data structure representations.

Programming Methodologies26

check if it is empty

initialize

push

pop

Moving toward data abstraction

struct Element {
ElemType data;
Element* next;

};
struct Stack {

Element* top;
int num_of_elems;

};

main() {
Element* d, e;
Stack s;
s.top = 0;
s.num_of_elems = 0;

. . .
e = new Element;
e->data = data;
e->next = 0;
s.top = e;

. . .
d = s.top;
s.top = s.top->next;
data = d->data;

. . .
if (s.num_of_elems > 0)

. . .
}

Original code for

stack operations

Element* pop(Stack* stack) {
Element* t = stack->top;
stack->top = t->next;
return t;

}
void push(Stack* stack,

Element* elem) {
elem->next = stack->top;
stack->top = elem;

}
main() {

Element* d, e;
Stack s;
s.top = 0;
s.num_of_elems = 0;

. . .
e = new Element;
e->data = . . .;

. . .
push(&s, e);

. . .
d = pop(&s);
data = d->data;

. . .
if (s.num_of_elems > 0)

. . .
}

Procedural abstraction

for stack operations

Class Stack {
public:

Stack() // constructor
{ initialize }

void push(ElemType* data)
{ . . . }

ElemType* pop()
{ . . . }

Boolean is_empty()
{ . . . }

private:
Element* top;
int num_of_elems;

}; because these are private

need those public functions
main() {

Stack s; // automatically

// initialized
. . . // by the constructor

s.push(data);
. . .

data = s.pop();
. . .

if (s.is_empty())
. . .

}

Data abstraction

for stack operations

Programming Methodologies27

Type security with data abstraction

� Subtypes: improve type security by constraining the set of legal

operations on a piece of data. � But the facilities have limitations.

subtype day_type is integer range 1..31;
var d1, d2, d3 : day_type;

i : integer;
. . .

d1 := -11; // Error detected

d2 := i; // Possible error, but maybe undetectable at run-time.
d3 := d2 + 20; // Possible error, but maybe undetectable at run-time.

� Data abstraction: offer better security by providing facilities that

define a set of legal operations according to semantics of the data type.

class Day_Type {
public: int operator=(int c) { 0<c<32 ? d = c : error; return *this; }

int operator+(int c) { 0<c+d<32 ? return c+d : error; }
. . .

private: int d; // private variable for storing the value
}

. . .
int i;

. . .
Day_type day1 = i; // Error detectable at run-time
Day_type day = day1 + 20; // Error detectable at run-time

Programming Methodologies28

Limitations of data abstraction

� In data abstraction, all objects of the same abstract data
type use the same representation (= data structure + code).

� In the development of large software, reuse of existing
representations is essential to increase the productivity.

� However, there may not be a single representation that is
the most efficient under all situations.

� Thus, an existing abstract data type usually requires some
modification in its representation.

e.g.) Data type: Stack
�data structure � an array

�code � array assignments
to implement push, pop,
and top operations

An Abstract

Data Type

object1 object2 object3

data

structure

code for
operations

The code that implements
the operations on the type

Programming Methodologies29

Object abstraction as a solution

� Different situations may prefer the autonomy to choose
their own versions of representation derived from the same
base representation that is common to them.
Ex) Someone may want the Stack type to be implemented with
arrays while others want it to be implemented with linked lists.

� In object abstraction, each object can have a
representation different from what other objects of the
same type have. → multiple representations

Stack code for
stack

Array extra code for
array operations

Linked-list extra code for
list operations

A Stack Type reuse of

representation

object2object1 object3

Programming Methodologies30

Incomplete object abstraction

� Ada83 supports data abstraction w/ modules, called package .
max: constant integer = 9999; // maximum possible stack size

. . .
generic package Stack is

procedure push(x: in real); // call-by-value
procedure pop(x: out real); // call-by-result
function top return real; // the top element
function is_empty return boolean;

end Stack
package body Stack is

stack: array (1..max) of real;
top_ptr: integer range 0..max := 0;
procedure push(x: in real) is

begin
if top = max then error(“ overflow ”); // exception!
else top := top+1; stack(top) := x;
endif;

end push;
procedure pop(x: out real) is

. . .
end Stack

. . .
package stack1 is new Stack; // Both stacks are implemented with
package stack2 is new Stack; // arrays of the same size max.The
stack1.push(3.4); // size won’t be changed at run-time.
if stack2.is_empty() then . . .

� But, all objects of an abstract data type in Ada83 like CLU
has a single representation determined at compile-time.

An abstract data type does
not allow dynamically
configurable data size or
multiple representations
for the type.

An abstract data type does
not allow dynamically
configurable data size or
multiple representations
for the type.

Programming Methodologies31

Object-oriented programming

� The language that supports object abstraction is called a

object-oriented programming language.

� OO programming languages

– Simula 67 : Class concept was first introduced

– Smalltalk : programming using window system

– Objective C, C++ : start from C language

– Flavor, CLOs (Common List Objective System) : start from Lisp

language

– Turbo Pascal : start from Pascal language

– Actor

– Ada 95 : OO extension of the modular language Ada 83

Programming Methodologies32

Object-oriented programming

� OO programming treats an overall system as a collection of

interacting objects.

� Objects are instances of a data type (= a class in C++ or

SmallTalk term).

� The objects interact by sending messages to each other.

� Each message is associated with a method (or member

function) in C++ or SmallTalk term.

� Methods are defined by the code in the data type.

� To support object abstraction, a language should provide

data abstraction + type inheritance.
for multiple representations

Programming Methodologies33

Type inheritance

� One data type D inherits the data and operations of other

data types B1 ~ Bn. Then, Bi’s are called base types and D is

their derived type.
� Example of derived types: Subtypes in Pascal and Ada

� In object abstraction, abstract data types (= classes in

C++ terms) can be placed in a hierarchy.

� This hierarchy establishes a base-derived class relationship

between the parent class and the child class.

class 1

class 2

class 4

class 3

class 5

base-derive

base-derive

base-derive

base-derive

base-derive

Programming Methodologies34

Type inheritance

� Type inheritance in object abstraction

� Objects in a child (derived) class can use the representation defined

in its parent (base) class.

� Through the inheritance, a class can contain code that can

be refined in different ways in different derived classes.

� This provides an effective way to reuse code.

� Ex: a hierarchy for graphic objects

shape

ellipse

circle

rectangle

square

line text

straight curve

Programming Methodologies35

An example of type inheritance

� We have two classes, each of which represents a record of

an employee and that of a manager in a corporate.

� If they are represented in C++, then

class Employee {

char* name;

int salary;

int position; // secretary, president, janitor. . .
. . .

Employee* next; // points to the next coworker
};

class Manager {

char* name;

int salary;
. . .

char* department; // managed by this manager

Employee* men; // under this manager

Employee* next;
};

Programming Methodologies36

An example of type inheritance

� To the language, Employee objects and Manager objects

are completely different.

� But, they have many fields in common.

� In fact, a manager is also an employee in real life.

� So, it would be ideal if a manager object is treated like an

employee object with extra fields.

� This can be represented more efficiently in C++ as follows:

class Manager: public Employee {

char* department; // extra field

Employee* men; // extra field

}; // The representation is greatly

// simplified with code reuse

Programming Methodologies37

A hierarchy of employees

� Using the base-derived class relationship, the language knows
a manager object is derived from the base class Employee .
� So, the data and code defined in Employee is reused in Manager.

� We can build a hierarchy of employees in a corporate.
Employee

Manager Staff Temporary

President Executive Secretary Consultant Janitor

� The hierarchy can be

represented in the

language in terms of

base-derived class

relationships.

class Staff: public Employee { . . . };
class Temporary: public Employee { . . . };
class President: public Manager { . . . };
class Executive: public Manager { . . . };

class Secretary: public Staff { . . . };
class Consultant: public Temporary { . . . };
class Janitor: public Temporary { . . . };

Programming Methodologies38

Inheritance types

� Single inheritance � convenient to manage because of its level of

tree formation, but it doesn’t often reflect real world as it is

� Multiple inheritance � more flexible in terms of reflection of real

world, but it needs very much cautions because of occurrence of

problems like collision between inherited forms

bread

Wheat bread Corn bread

Wheat bread and corn bread are kind of
bread so they inherits and uses class of
“bread”

Mammal Carnivorous animal

Tiger

Because a tiger is not only mammal and but also
Carnivorous animal, it inherits and uses classes
of “mammal” & “carnivorous animal”

Programming Methodologies39

Dynamic binding in OO programming

� A derived object can be assigned to its base object.

� That is, a reference variable of a class can point to objects of any

class derived from that class.

� By doing so, a reference variable of a type (base class) is used for

different types (derived class) at run-time. → dynamic binding
void insert_employees() {

Employee e1, e2, e3, e4, *eptr;
Manager m1, m2, m3, *mptr;
Employee* employee_list = 0; // The list is initially empty

. . .
eptr = &m1; // dynamic binding - simply copy the reference of m1
mptr = &e1; // illegal - due to e1’s lack of the extra field in m1
mptr = (Manager*) &e2; // forced to be legal, but dangerous
e2 = m1; // both are illegal because member-wise copy
m3 = e4; // is impossible due to their different sizes

. . .
e3.next = employee_list; // insert the employee e3 to the list
employee_list = &e3;
m1.next = employee_list; // insert the manager m1 to the list
employee_list = &m1; // dynamic binding!

. . .
}

� Note that all other variables in C++ are statically bound.

Programming Methodologies40

Why dynamic binding?

� Using dynamic binding, managers and all other people in a

corporate can be treated as employees in the language.
void list_names(Employee* employee_list) {

for (Employee* e = employee_list; e != 0; e = e->ne xt)

cout << e->name; // e is dynamically bound to

} // all derived classes of Employee

employee

object

employee_list

name

position

. . .

next

president

object

. . .

manager

object

men

. . .

employee

object

name

position

. . .

next

secretary

object

. . .

staff

object

boss

. . .employee

object

name

position

. . .

next

employee

object

name

position

. . .

next

next

employee

manager

object

men

. . .

Programming Methodologies41

Need more for dynamic binding

� Suppose all objects have the print function to print the
specific information for each object.

class Employee {
. . .

void print() { /* print name, salary, position, . . . */ }
. . .};

class Manager: public Employee {
. . .

void print() { /* print name, salary, . . . , department, men */ }
. . .};

class Staff: public Employee {
. . .

void print() { /* print name, salary, . . . , boss */ }
. . .}; . . .

void print_employees (Employee* employee_list) {
Employee* e = employee_list;
for (; e != 0; e = e->next)

e->print(); // ambiguous! � Which print will be invoked for each object?

} // also tedious to define the code for all base print s if the secretary print is only needed

employee
object

. . .

print

. . .

next

secretary

object

print

staff

object

print

. . .

code
code

code

Programming Methodologies42

Dynamic binding of methods

� To choose the right member function (or called method)
print for each object, print_employee s should check the

type of the object before it is printed. ���� This is awkward!
for (; e != 0; e = e->next)

switch (e->position) {
case MANAGER: ((Manager*) e)->print(); break;

case STAFF: ((Staff*) e)->print(); break;
. . .

}

� To solve the problem of dynamically choosing the specialized
methods of each object, C++ provides virtual functions.

class Employee {
. . .

virtual void print() = 0 ;
};
class Staff: public Employee {

. . .
virtual void print() = 0 ;

};
class Secretary: public Staff {

. . .
virtual void print() { . . . }

};
. . .

Employee* p = new Secretary;
p->print(); // Which print is to be used is determined at run-time

employee

object

. ..

print

. . .

next

secretary

object

print

staff

object

print

. . .

codep

no need to define if no objects of
these types will be actually printed!

Programming Methodologies43

Multiple representations

� Type inheritance and dynamic binding enable an abstract

data type to have multiple representations.
class List_Stack: public Stack {

public:
List_Stack();
void push(Element* data);
Element* pop();

private: . . .
};

.

.

.

main() {
Element* x, y, z;
// cf: Stack in Ada
Stack* st1 = new Array_Stack(99);
Stack* st2 = new List_Stack;

. . .
st1->push(x); // insert x to the array

st2->push(y); // insert y to the linked list
z = st1->pop();

class Stack {
public:

Stack();
virtual void push(Element* data);
virtual Element* pop();

private: . . .
};

class Array_Stack: public Stack {
public:

Array_Stack(int size);
void push(Element* data);
Element* pop();

private: . . .
};

Programming Methodologies44

Polymorphic objects in OO languages

� Ad-hoc polymorphism

– Although Object-Oriented programs are different to each other,

they send the same messages to the related objects so as to

provide the functionality (called polymorphism  read the type

system) of performing the same operation.

– Overloaded operators

+

integer

Real number

Complex number

object

Addition of integer

Addition of real number

Addition of complex number

Programming Methodologies45

Polymorphic objects in OO languages

� Universal polymorphism

– inclusion polymorphism � type inheritance (subtypes, derived classes)

Ex) Manager class objects in C++ � derived (sub) type objects

� Type expression for Manager objects = Manager
Employee

Ex) Employee::print() work on objects of all its derived classes

– parametric polymorphism � template

� Recall …

– unlike ad hoc polymorphic functions, universal polymorphic functions

typically allow the same code to be used regardless of the types of

the parameters, and

– they exploit a common structure among different types.

Ex) Employee::print() assumes all objects have Employee structure

Programming Methodologies46

Parametric polymorphism in C++
template<class T> class List { // T is a type variable

T* list;
int size;

public:
List() { list = 0; } // 0 is polymorphic that can be applied to the unknown type T
~List() { delete [] list; } // delete is polymorphic

create(int new_size) { list = new T[new_size]; size = new_size; }
int size() { return size; }
T& operator[](int i) { return list[i]; }
void insert(T elem, int pos) { list[pos] = elem; }

. . .
}; . . .
main() {

List<float> flist; flist.create(100);
List<Complex> clist; clist.create(9);
List<int> ilist1; ilist.create(200);
List<int> ilist2; ilist.create(130);
List<List<int>> list_ilist; // a list of lists of integers

. . .
flist[29] = 3.43e+20;
clist1[0] = Complex(3.1, 4.2); // create a complex object and copy it to the list of complex type

clist1.insert(1, Complex(2.1,9.0)+clist1[0]);
for (int j = 0; j < 200; j++)

ilist1[j] = j * 10;
list ilist[0] = ilist1;
list ilist[1] = ilist2;

}

Programming Methodologies47

Parametric polymorphism in C++

template<class S> List<S>& merge(List<S>& l1, List< S>& l2) {

// merge the two lists of type S(type variable), and return the merged list

List<S>* Slist = new Slist;

Slist->create(l1.size()+l2.size());

int i;

for (i = 0; i < l1.size(); i++)

(*Slist)[i] = l1[i];

for (int j = i; j < Slist ����size(); j++)

(*Slist)[j] = l2.[j-i];

return *Slist;
} . . .
main() {

List<char> charlist1; charlist1.create(50);

List<char> charlist2; charlist2.create(70);

List<Employee> elist1; elist1.create(33);

List<Employee> elist2; elist2.create(26);
. . .

List<char> clist3 = merge(clist1, clist2);

List<Employee> elist3 = merge(elist1, elist2); // merge two employee records

. . .
}

Programming Methodologies48

Implementing parametric polymorphism

� In many languages (C++, Ada), different instantiations of

code are to be generated.

elem

pos

code

. . .

size of T?

List<T>::insert

4 or 8 bytes if T = int

8 bytes if T = float

. . . if T = Complex

. . . if T = Employee

“How much storage

should be allocated for

polymorphic objects?”

Programming Methodologies49

In short…

� Object-oriented programming associates the object-

oriented design concept in software engineering with the

programming language.

� It is used in software system design and implementation.

� Its primary goal is to improve programmers’ productivity

and reduce software complexity and management cost as

increasing software extensibility and reusability.

� Key concepts of OO programming

– Module (class, package, cluster)

• Abstract data types and operations

• Information hiding

– Inheritance

– Polymorphism

Programming Methodologies50

Imperative vs. Object-Oriented

� a procedure

– a collection of imperative orders/instructions with data

– not first-class valued

– operations are performed by procedures in imperative programs

– data is merely the storage where the result of computation is stored

� an object

– a variable with its own data and methods

– data represents the current state of the object

– methods are the operations on the data defined for the object

– objects in object-oriented programs interact with other objects by
exchanging messages

� mapping problem space to program space

– imperative/procedural programming: bottom-up

– object-oriented programming: generally top-down

Programming Methodologies51

Imperative vs. Object-Oriented

proc 1

start

do this

do that

call proc2

now do it

do this

do that

blah…blah…

stop

proc 2

do that

do this

do that

blah…blah…

return

Imperative programming

object 1

data+methods

object 3

data+methods

object 2

data+methods

object 4

data+methods
ack

askask

ask

ask

stop

start

ask

ack

ask

Object-oriented programming

control flow

control flow

OO programming regards all in problem area as individual

object, and regards system operation for problem area as

object operation by message transmission among the objects

Programming Methodologies52

Problem solving

� Mapping problem space to program space

� imperative programming: bottom-up problem solving

1. design and implement low-level structures: small blocks, loops,

data structures, …

2. weave together the low-level structures into high-level structures:

large blocks, subroutines, …

� O-O programming: generally top-down problem solving

1. partition a component in the problem space into several

subcomponents

2. each subcomponent is implemented with a object or a set of

objects

Programming Methodologies53

Object-oriented problem solving

� Top level: partition a component in the problem space into

several components

SetList

StackQueue

Collection

TuplePair

Set

List Stack
Queue

Collection

TuplePair

Depending on the user’s approach

to the problem, the way to

partition a component may vary.

random access

ordered access

Programming Methodologies54

Object-oriented problem solving

� Lower level: associate a component with characteristics

that are common to all of its subcomponents, and define

methods for it

– collection - a collection of elements, # of elements, empty?, print

– list - insert, delete, list-print

– stack - top, push, pop, print-top

– queue - front, rear, insert, delete, print-front

– set - insert, delete, union, difference, intersection

– tuple - order, element-of-nth

– pair - left-insert, right-insert, left-delete, right-delete, print-pair

� The original partitioning of a component determined at the

top level will guide the relationship between data and

methods and their implementation at lower (bottom) level.

Programming Methodologies55

Imperative programming example

� Fortran

integer ages(n), salaries(n), …
character names(n), addresses(n),

…

do I = 1, n , 1
names(i) = …
ages(i) = …
…

enddo
…
get the index idx of “David”

from names
print *, ages(idx)

� C
struct {

int age, salary, …;
char* name, address, …;

}database[n];
for (i = 0; I < n; i++) {

database[i].name = …
database[i].age = …
…

}
// Print the age of an employee “Peter”
idx = 1;
while (!strcmp(“Peter”,

database[idx].name)
idx++;

printf(“%d”, database[idx].age);
// easier and less error-prone than Fortran

// due to the composite data type struct

// but basically the approach is still the

// same: imperative programming

Problem: “Design a database that maintains

the information of employees!”

Programming Methodologies56

O-O programming example

� C++
class{

private:  information hiding

int ages[n], salaries[n], …;

char* names[n], addresses[n], …;

public:

void insert(char* name, char* address, …);

int age_of(char* name);

…

}database;

for(i = 0; I < n; i++)

database.insert(…);

…

cout << database.age_of(“David”);

Programming Methodologies57

Conclusions about OO programming

� In OO programming paradigm, each object has some state.

For computation, objects exchange messages.

� The state of an object is mutated in response to incoming messages.

� OO programming provides programmers with a paradigm to

build their programs in a modular pattern.

� A good modulation mechanism facilitates …

– work partitioning that helps avoid too much interaction bet’n users.

– maintenance/debugging/refinement of existing programs.

� OO programming is an appropriate programming tool to

model many real-world systems because

– OO programming provides a natural mechanism to break down a

program into separate objects.

– A system in the real world usually comprises a set of physical objects.

Programming Methodologies58

OO is everywhere!

� It comes into the spotlight in a various field as computer

science and business science.

� Object oriented programming language, that represents the

object oriented concept well, is used.

� Object oriented operating systems regard resource and

process as independent objects.

� Objected oriented database systems regard data as an

independent object and process.

� Object oriented user interface simulation, etc

