
Chapter 6: Binary Heaps

Data Structures and Algorithms

Kyuseok Shim

SoEECS, SNU.

Priority Queue ADT

Priority Queue Q supports the following
operations
Q.Insert(x)
y = Q.DeleteMin()
Simpler than Dictionary but important
application areas
Discrete Event Simulations (Ex: Airport)

Process Scheduling

Binary Heaps

Binary Heap: A Complete, Partially Ordered
Binary Tree
Complete Tree: every level of the tree is
completely filled, except for the bottom level,
which is filled from left to right. (With height h,
there are between 2h and 2h+1-1 nodes)

Partially Ordered Tree: the key of each internal
node is less than or equal to the keys of its
children

Binary Heap can be stored in arrays since it
is complete!

Array Implementation of a
Heap
Consider an indexing of nodes in heap from 1 to n

(so the root is numbered 1 and the last leaf is
numbered n)

There is a simple math. relationship bet’n index of a
node and that of its children

left_child
right_child
parent

():)
():)

():)

i i i n
i i i n

i i ni

(if
 (if

 (if

2 2
2 1 2 1

2

≤
+ + ≤

≥

13

1421

3124 6819

2665 65

array 13 21 14 24 31 19 68 65 26 32

index 0 1 2 3 4 5 6 7 8 9 10 11

Insertion into a Heap

Put into the next available leaf node

(this is simple since it is array)

Look at the parent of this element and
swap if the parent is larger (note that the
partial ordering is preserved)

Repeat with the parent (sifting up)

Insertion into a Heap

13

1421

24

2665

31

1532

6819

13

1415

24

2665

21

3132

6819

insert(15)

DeleteMin

Remove the root from the tree and
return its value

Remove their rightmost leaf and place
it at the root

Perform sifting down operations (if
the key is larger than the smaller of
its two children, then swap these two.
Repeat this)

DeleteMin

13DeleteMin()

15 14

2124

65 26

6819

32 31

31
15 14

2124

65 26

6819

32

14
15 31

2124

65 26

6819

32

14
15 19

2124

65 26

6831

32

Analysis of Insertion and Deletion : ()O nlog

Building a heap

Build a Heap containing n keys

 tree theof nodeeach on
down -shift perform root, dsback towar workingnode, leaf-nonlowest

 with theStarting array.an in already are they if)(can takeit But,
insertions econsecutiv with)log(n takes

n
nO
Ο

21
65 68

1331

14 32

1924

26

21
65 68

1314

31 32

1924

26

21
13 19

2614

31 32

6824

65

13
14 19

2621

31 32

6824

65

MAX-HEAP

MAX-HEAPIFY(A, i)

1 L <- Left(i)

2 R <- Right(i)

3 If l <= heap-size[A] and A[l] > A[i]

4 then largest <- l

5 else largest <- i

6 If r <= heap-size[A] and A[r] > A[largest]

7 then largest <- r

8 If largest != i

9 then exchange A[i] <-> A[largest]

10 MAX-HEAPIFY(A, largest)

Build-Max-Heap(A)

1. Heap-size[A] <- length[A]

2. For i <- floor(length[A]/2) downto 1

3. Do Max-Heapify(A, i)

Loop Invariant:
At the start of each iteration of the for-loop of
lines 2-3, each node i+1, I+i,…,n is the root of
a max-heap

Proof: Look at the book!

Analysis of Building a Heap

.....
levels 2down shift might which 2, level at thekey four is There

levels 1down shift might which 1, level at thekey twois There
levels down shift might which 0, level at thekey one is There

12 :complete is tree theassume sLet' 1

−
−

−= +

h
h
h

n h

S h h h
S h h h
S S S

S h
h

h h
n n

h

h h

h h

h h

h h h

n

= + − + − + +
= + − + − + + +
− =
= − + + + + +
= − − + + + + + +
= + − + = ⋅ − −
= ⋅ − − ≤

−

−

−

−

2 1 4 2 2 1
2 2 4 1 8 2 2 2 2 1
2

2 4 2 2
1 1 2 4 2 2

2 2 1 2 2 1
2 2 1 2

1

1

1

1

() () ... ()
() () ... () ()

(...)
(...)
()
loglog

Application of Heaps

Heap Sorting: Storing n keys in O(n), and
then repetitively applying DeleteMin()
operations in O(nlogn). The most basic
algorithm.

Graph algorithms
Shortest path finding algorithm

Minimum spanning tree finding algorithm

Scheduling algorithms

Heap Sort (Step 1)

Heap Sort (Step 2)

Heapsort(A)

Build-Max-Heap(A)

For I <- length[A] downto 2

Do exchange A[1] <-> A[I]

Heapsize[A] <- heapsize[A]-1

MAX-HEAPIFY(A,1)

	Chapter 6: Binary Heaps
	Priority Queue ADT
	Binary Heaps
	Array Implementation of a Heap
	
	Insertion into a Heap
	Insertion into a Heap
	DeleteMin
	DeleteMin
	Building a heap
	MAX-HEAP
	Build-Max-Heap(A)
	Analysis of Building a Heap
	Application of Heaps
	Heap Sort (Step 1)
	Heap Sort (Step 2)
	Heapsort(A)

