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Priority Queue ADT

Priority Queue Q supports the following 
operations
Q.Insert(x)
y = Q.DeleteMin()
Simpler than Dictionary but important 
application areas
Discrete Event Simulations (Ex: Airport)

Process Scheduling



Binary Heaps

Binary Heap: A Complete, Partially Ordered 
Binary Tree
Complete Tree: every level of the tree is 
completely filled, except for the bottom level, 
which is filled from left to right. (With height h, 
there are between 2h and 2h+1-1 nodes)

Partially Ordered Tree: the key of each internal 
node is less than or equal to the keys of its 
children

Binary Heap can be stored in arrays since it 
is complete!



Array Implementation of a 
Heap
Consider an indexing of nodes in heap from 1 to n

(so the root is numbered 1 and the last leaf is 
numbered n)

There is a simple math. relationship bet’n index of a 
node and that of its children
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array 13  21  14  24  31  19  68  65  26  32 

index 0    1    2    3    4    5    6    7    8    9   10   11 



Insertion into a Heap

Put into the next available leaf node

(this is simple since it is array)

Look at the parent of this element and 
swap if the parent is larger (note that the 
partial ordering is preserved)

Repeat with the parent (sifting up)



Insertion into a Heap
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DeleteMin

Remove the root from the tree and 
return its value

Remove their rightmost leaf and place 
it at the root

Perform sifting down operations (if 
the key is larger than the smaller of 
its two children, then swap these two. 
Repeat this)
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Building a heap

Build a Heap containing n keys
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MAX-HEAP

MAX-HEAPIFY(A, i)

1 L <- Left(i)

2 R <- Right(i)

3 If l <= heap-size[A] and A[l] > A[i]

4 then largest <- l

5 else largest <- i

6 If r <= heap-size[A] and A[r] > A[largest]

7 then largest <- r

8 If largest != i

9 then exchange A[i] <-> A[largest]

10 MAX-HEAPIFY(A, largest)



Build-Max-Heap(A)

1. Heap-size[A] <- length[A]

2. For i <- floor(length[A]/2) downto 1

3. Do Max-Heapify(A, i)

Loop Invariant:
At the start of each iteration of the for-loop of 
lines 2-3, each node i+1, I+i,…,n is the root of 
a max-heap

Proof: Look at the book!



Analysis of Building a Heap
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Application of Heaps

Heap Sorting: Storing n keys in O(n), and 
then repetitively applying DeleteMin() 
operations in O(nlogn).  The most basic 
algorithm.

Graph algorithms
Shortest path finding algorithm

Minimum spanning tree finding algorithm

Scheduling algorithms



Heap Sort (Step 1)



Heap Sort (Step 2)



Heapsort(A)

Build-Max-Heap(A)

For I <- length[A] downto 2

Do exchange A[1] <-> A[I]

Heapsize[A] <- heapsize[A]-1

MAX-HEAPIFY(A,1)
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