i Chapter 6: Binary Heaps

= Data Structures and Algorithms
= Kyuseok Shim
= SOEECS, SNU.

i Priority Queue ADT

Priority Queue Q supports the following
operations
= Q. Insert(x)

Yy = Q.DeleteMiIn()

Simpler than Dictionary but important
application areas

= Discrete Event Simulations (Ex: Airport)
= Process Scheduling

i Binary Heaps

Binary Heap:. A Complete, Partially Ordered
Binary Tree
= Complete Tree: every level of the tree is
completely filled, except for the bottom level,

which is filled from left to right. (With height A,
there are between 2/ and 2771-1 nodes)

« Partially Ordered Tree: the key of each internal
node is less than or equal to the keys of its
children

Binary Heap can be stored in arrays since it
IS complete!

Array Implementation of a
Heap

Consider an indexing of nodes in heap from 1 to »

(so the root is numbered 1 and the last leaf is
numbered 1)

There is a simple math. relationship bet’'n index of a
node and that of its children

left _childi): 2i (if 2i <n)
right childi): 2i+1 (if 2i +1<n)

parenti): LZJ (if i > n)

) @ @

aray 13| 21| 14| 24| 31|19|68| 65| 26 |32
index 0 1 2 3 45 6 7 8 910 11

i Insertion into a Heap

Put into the next available leaf node

(this Is simple since it Is array)

= Look at the parent of this element and
swap If the parent is larger (note that the
partial ordering is preserved)

= Repeat with the parent (s/fting up)

i Insertion into a Heap

insert(15) 13 13
7 ¥ — - (5 (14
29 @) ©@ @ 24 é@%@ €8
€ 032 © €5 6

i DeleteMin

= Remove the root from the tree and
return Its value

= Remove their rightmost leaf and place
It at the root

= Perform s/fting down operations (if
the key Is larger than the smaller of
Its two children, then swap these two.
Repeat this)

DeleteMin

DeleteMin() 13

Q @)
T
24 19 @9 24 9 @8
@@ @ ‘
@ @
3D @8 @ 19 &8
€520 @2 €520 @2

Analysisof Insertion and Deletion : O(log n)

i Building a heap

Build a Heap containing 77 keys

takes O(nlog n) with consecutiveinsertions

But, it can take O(n) if they arealready in an array. Starting with the
lowest non - leaf node, working back towards root, perform shift - down
on each node of the tree

@@5
5557‘ @%;’*

MAX-HEAP

MAX-HEAPIFY(A, 1)

L <- Left(i)

2 R <- Right(i)

3 If | <= heap-size[A] and A[l] > A[i]

|

4 then largest <- |

5 else largest <- |

6 If r <= heap-size[A] and A[r] > A[largest]
7 then largest <-r

8 If largest =i

9 then exchange A[i] <-> A[largest]

10 MAX-HEAPIFY (A, largest)

i Build-Max-Heap(A)

1. Heap-size[A] <- length[A]
2. For 1 <- floor(length[A]/2) downto 1
3. Do Max-Heapify(A, 1)

= Loop Invariant:

= At the start of each iteration of the for-loop of
lines 2-3, each node i+1, I+i,...,n Is the root of

a max-heap
= Proof: Look at the book!

Analysis of Building a Heap

Let' sassume the tree iscomplete :n=2""-1

There isone key at the level 0, which might shift down hlevels
There istwo key at the level 1, which might shift down h-1levels
There isfour key at the level 2, which might shift down h-2levels

..... S=h+2h-1)+4(h-2)+...+2"(2)
2S=2h+4(h-1)+8h-2+..+27(+2 (D
25-S=S
S=-h+(2+4+.42")+2

=—h-1+(1+2+4+..42)+ 2
=2+2-(h+1)=22"-h-1
=2-2" -logn—1<2n

i Application of Heaps

= Heap Sorting: Storing n keys in O(n), and
then repetitively applying DeleteMin()
operations in O(nlogn). The most basic
algorithm.

= Graph algorithms
= Shortest path finding algorithm
« Minimum spanning tree finding algorithm

= Scheduling algorithms

‘_L Heap Sort (Step 1)

@{ @1 ;;;

‘ ‘_n‘ 50 |26 141 5%‘_-31

6 1 2 3 4 5 6 7 &8 9

‘_L Heap Sort (Step 2)

}53& 58)
(26) (41) (3 1) o7
|5'9 53 | 58 26‘4[’31 9?\ ‘ ‘ |
O | 2 3 4

5 6 7 8 9 10

i Heapsort(A)

Build-Max-Heap(A)
For | <- length[A] downto 2
Do exchange A[1] <-> A[l]
Heapsize[A] <- heapsize[A]-1
MAX-HEAPIFY(A,1)

	Chapter 6: Binary Heaps
	Priority Queue ADT
	Binary Heaps
	Array Implementation of a Heap
	
	Insertion into a Heap
	Insertion into a Heap
	DeleteMin
	DeleteMin
	Building a heap
	MAX-HEAP
	Build-Max-Heap(A)
	Analysis of Building a Heap
	Application of Heaps
	Heap Sort (Step 1)
	Heap Sort (Step 2)
	Heapsort(A)

