

Phase Encrypted Image Processor

Femtosecond Optics for Optical Data Storage and Detection

Delay-Line Signal Processor (I)

Delay-Line Signal Processor (II)

Delay-Line Signal Processor (III)

Delay-Line Signal Processor (IV)

Delay-Line Signal Processor (V)

Delay-Line Signal Processor (VI)

Optical 3R Regeneration

- 1R Amplification
- 2R Amplification and reshaping
- 3R Amplification, reshaping and re-timing

WDM-based OXC Technologies

OXC System Venders Compared

회사	Switch Type	대표제품	Spec	connectioin/ protection time	bandwidth	비고
ASTARTE	PZT(현재) Optical MEMS(향후)	STAR switch 7250	72*72(max) 576*576(향후)	150ms		단순한 all optic switch 시스템
Tellium	Electical switch(현재) + MEMS optic (향후)	AUROA optical switch	512*512	50ms	2.5Gbps OC-192ready	SONET performanc monitoring IP, SONE, ATM을 직접 연결
Lucent	Optical MEMS (Microstar)	WAveStar LambdaRouter	256*256	50ms	" Rock - Series	Bit rate and protocol transparency
Nortel	Electrical switch	OPTera Connect HDX	1000*1000	~ms	120Gbps~40Tbs	packet/optical integration
Xros	Optical MEMS switch	X-1000 OXC system	1152*1152	50ms		Noetel M & A
Cisco	Electrical switch	ONS 15900 Wav length Router	256*256	50ms	2.5Gbps	IP, SONET, ATM direct attaching Swoftware-based provisioning (WaRP)
Sycamore	Electrical switch	SN 16000	512*512	Server 1	2.5Gbps	Modular Chasssis design VCSEL interconnetion
Ciena	Electrical switch	Multiwave CoreDirector	256*256		256*2.5Gbps or 64*10Gbps	Optical signaling and Routing protocol
Sirroco		Typhoon Optical edge switch			10Gbps	Sub-lambda multiplexing/switching
BrightLink	Electrical switch	Cleapath	1024*1024		1024*2.5Gbp 256*10Gbps	hypertorous switching fabric
Calient	Optical MEMS(SCREAM)	DiamondWav photonics switching system	4096*4096 (7 rack)		40Tbs(7rack)	MPLambdaS supporting
Marconis		Photon Interconnect System	32 *32	Sec.	2.5Gbps	生化 化化学 生化
Htachi	Optical(mechanical) Polymer switch(향후)	AMN 7000 OXC systme	16*16	150ms		家へ上立て

Fiber Bragg Gratings (FBGs)

- FBG: a periodic perturbation of the refractive index along the fiber length
- Advantages: all-fiber geometry, good filtering shape, low insertion loss, low cost

Basic Configuration of WADM using Optical Circulators and FBGs

- Simple structure
- Low crosstalk (not interferometric mechanism)
- Commercially available

Conventional OXC (C-OXC)

Reflection-Type OXC (R-OXC)

- Compared with the C-OXC, it halves the number of a WDM MUX/DEMUX pair.
- J. Kim *et al.*, *Electron. Lett.*, vol. 36, no. 1, pp. 67-68, 2000.

Configuration of B-WADM (I)

- Reduction of two 3-port optical circulators low cost
- Compared with MUX/DMUX, good filtering shape of FBGs

Configuration of B-WADM (II)

It is the fittest for B-WADM node that switches only one optical channel.

Single Fiber Bidirectional Transmission

- The number of fiber links is halved.
- When the wavelength allocation of each direction is interleaved, fiber nonlinear effects such as four wave mixing can be reduced.

IS-BOXC in a Single-fiber Bidirectional Ring Networks

Independently switchable bidirectional OXC (IS-BOXC) switches each bidirectional signal, both independently and simultaneously.

IS-BOXC based on the C-OXC

- Interleaved wavelength allocation of DEMUX
- Light absorber

IS-BOXC based on the R-OXC

Self-Routed Optical Network

Self-Routed Optical Switching System

Reconfigurable Free-Space Optical Interconnection

(b)

Fundamental Logic Gates

All-optical Logic Gates World-Wide

Logic	Optical Gate Implementation	Remarks
	FWM in SOA Nonlinear Optical Loop Mirror in fiber (NOLM)	10Gbps [95] 10Gbps [98]
AND	Nonlinear transmission in EAM	10Gbps [01]
	SOA based UNI	100Gbps [98]
OB	SOA based UNI	10Gbps [00]
On	Monolithically integrated IWC [MI]	10Gbps [96]
	SOA fiber Sagnac gate	10Gbps [99]
XOR	SOA-assisted fiber Sagnac gate	5Gbps [99]
	SOA-based UNI	20Gbps [00]
	SOA-based cross-polarization modulation	5Gbps [01]
	Integrated SOA-based IWC [MZ]	20Gbps [00]
	Integrated SOA-based IWC [MI]	10Gbps [01]
NAND	Negative nonlinear absorption effect in Er-doped aluminosilicate glass	1 Gbps [99]
NOR	SOA (XGM)	0.1Gbps [97]
NON	two-section SOA (0.5 +1.5mm)	5Gbps [99]
NXOR	Integrated SOA-based IWC [MZ]	10 Gbps [01]

Seoul Nat'l Univ.

Fundamental Principles of All-optical Logic

Input signal λ_s sweeps the carrier when input signal with high power is asserted.

Input signal λ_{s} with high power \rightarrow CW λ_{c} with low power Input signal λ_{s} with low power \rightarrow CW λ_{c} with high power

Output signal λ_c is inverted signal of input signal λ_s .

- Carrier density of SOA (3) and SOA (4) is changed due to probe signal and pump signal.
- Change of carrier density causes the variation in refractive index.
- Due to the reason above, change in phase occurs.
- Interferometric effects at the summation point of SOA (3) and SOA (4) causes the variation of output power.

☑Phase difference of $\pi \rightarrow$ minimum output power. **☑**Phase difference of $0 \rightarrow$ maximum output power.

All-optical AND gate (KIST)

<u>XPM wavelength converter</u> with definable binary point of Pump and Probe signals

Static Characteristics

Probe signal	Pump signal	Output	Position
LOW (0)	LOW (0)	LOW (0)	А
LOW (0)	HIGH (1)	LOW (0)	В
HIGH (1)	LOW (0)	LOW (0)	А
HIGH (1)	HIGH (1)	HIGH (1)	С

Logic AND : Experimental Set-up

NRL HoloTech

이석

Logic AND : Results (20 Gb/s)

"All-Optical AND Gate Using Probe and Pump Signals as the Multiple Binary Points in Cross Phase Modulation," Japan Journal of Applied Physics, Vol. 41, No. 5A, May, 2002.

- WDM multiplexer, MZI, WDM demultiplexer
- Using wavelength conversion based on MZI

NRL HoloTech

이석

Time [200ps/Div]

Spherical Aberration

Astigmatism

Coma

