2007 Fall: Electronic Circuits 2

CHAPTER 11

Memory and Advanced Digital Circuit

Deog-Kyoon Jeong

dkjeong@snu.ac.kr

School of Electrical Engineering Seoul National University

Introduction

- In this chapter, we will be covering...
 - Latches and Flip-Flops
 - Multivibrator Circuits
- Sequential circuits
 - Memory included
 - Timing generator(clock) required

11.1.3 CMOS Implementation of SR Filp-Flops

Figure 11.3 CMOS implementation of a clocked SR flip-flop. The clock signal is denoted by ϕ .

Clock signal(Φ) is high

 \rightarrow set or reset action performed.

11/28/2007

(c) 2007 DK Jeong

5/22

11.1.3 CMOS Implementation of SR Filp-Flops

Example 11.1(Cont'd)

Assume v_Q =0, the circuit is in effect a pseudo-NMOS gate

 V_{OL} of inverter is lower than $V_{DD}/2 \Rightarrow$ select W/L ratios for Q5 and Q6

 $I_{Q2} = I_{Q5} = I_{Q6} (at v_{\overline{Q}} = V_{DD} / 2)$

Q5,Q6 is approximately equivalent to a single transistor

Whose W/L is half the W/L of each of Q5 and Q6

 $v_{\overline{O}} = V_{DD} / 2 \implies$ equivalent transistor & Q2 : triode region

$$50 \times \frac{1}{2} \times (\frac{W}{L})_5 [(5-1) \times \frac{5}{2} - \frac{1}{2} \times (\frac{5}{2})^2] = 20 \times \frac{10}{2} [(5-1) \times \frac{5}{2} - \frac{1}{2} \times (\frac{5}{2})^2]$$

Figure 11.4 The relevant portion of the fli p-flop circuit of Fig. 11.3 for determining th e minimum W/L ratios of Q_5 and Q_6 needed to ensure that the flip-flop will switch.

 V_{DD}

 $v_{\phi} = V_{DD} \circ \square \square Q_6$

 $v_S = V_{DD} \bullet Q_5$

 Q_2 | $v_{\bar{Q}} = 0$

11/28/2007

 $\therefore \quad \left(\frac{W}{L}\right)_5 = \left(\frac{W}{L}\right)_6 = 4$

11.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop

Figure 11.5 A simpler CMOS implementation of the clocked SR flip-flop.

Pass-transistor logic is employed

 Very popular in the design of static random-access memory (SRAM)

11/28/2007

11.2.1 A CMOS Monostable Circuit

- Commercially available CMOS gates have a special arrangement of diodes connected at their input terminals
- Prevent the input voltage signal from rising above the supply voltage V_{DD} and from falling below ground voltage.
- Effect on the operation of the inverter-connected gate G_2 .
 - The diodes provide a low-resistance path to the power supply for voltages exceeding the power supply limits, the input current for intermediate voltages is essentially zero.

1	1/	28	/2	0	07
· · ·		/	_	- x	

- Stable state of the monostable circuit (the state of the circuit before the trigger pulse is applied): The output of G_1 is high at V_{DD} , the capacitor is discharged, and the input voltage to G_2 is high at V_{DD} .
 - The output of G_2 is low, at ground voltage.
 - Low voltage is fed back to G_1 ; since v_1 also is low, the output of G_1 is high, as initially assumed.

11/28/2007

- 2. Trigger pulse is applied: The output of G_1 will go low (but its output will not go all the way to 0V). The output of G_1 drops by a value ΔV_1 .
 - Returning to G₂, the drop of voltage at its input causes its output to go high (to V_{DD}).
 - Keeps the output of G₁ low even after the triggering pulse has disappe ared.
 - The Circuit is now in the quasi-stable state.

 V_{DD}

 V_{DD}

(c) 2007 DK Jeong

V02

VDD

VII

 V_{DD}

 $V_{\rm th}$

0

Time constant = CR

(b)

To VDD

21/22

- Assume that NOR gates are of the CMOS family
- Neglect the finite output resistance of the CMOS gate
- Assume that the clamping diodes
 - are ideal : The wave form of Fig.
 - 11.15(b) are obtained

11/28/2007

