

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

Water & Wastewater Treatment-2 - Chemical Oxidation

(from MWH's Water Treatment Principles and Design by Crittenden et al.)

Changha Lee

School of Chemical and Biological Engineering Seoul National University

Definition of Reduction and Oxidation

 $\sqrt{10}$ Definition of reduction & oxidation reactions (i.e., redox reactions)

- Oxidation: loss of e⁻ or H, gain of O, increase of oxidation number
- Reduction: gain of e⁻ or H, loss of O, decrease of oxidation number

e.g.,
$$C + H_2 \rightarrow CH_4$$

 $C + O_2 \rightarrow CO_2$
 $Fe^0 \rightarrow Fe^{2+} + 2e^{-}$

e.g.,
$$O_2 + H_2 \rightarrow H_2O_2$$

 $O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$

e.g.,
$$O_2 + 2H_2 \rightarrow 2H_2O$$

 $O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$

Oxidation number

CI

Oxidant and Reductant

Oxidation Processes for Water Treatment

Commonly Used Oxidants

- 1. Chlorine
- 2. Ozone
- 3. Chlorine dioxide
- 4. Permanganate
- 5. Hydrogen peroxide

Application of Conventional Oxidants in Water Treatment The principal applications of chemical oxidation are for

- 1. Taste and odor control
- 2. Hydrogen sulfide removal
- 3. Color removal
- 4. Iron and manganese removal
- 5. Disinfection
- 6. Organic contaminants

Table

Oxidants and their applications in water treatment

Purpose	Oxidants	Applications
Oxidation of reduced inorganic species	Chlorine, hydrogen peroxide, permanganate, chlorine dioxide	Convert soluble metals such as Fe(II) and Mn(II) to insoluble forms; oxidize odorous sulfide; destroy metal organic complexes
Oxidation of organics	Ozone, AOPs, ultraviolet light, permanganate, chlorine dioxide	Destroy taste- and odor-causing compounds; destroy toxic organics [e.g., pesticides, benzene, trichloroethene, methyl tertiary-butyl ether (MTBE)]; eliminate color; reduce natural organic matter and disinfection by-product precursors
Coagulation aids	Ozone	Reduce amount of coagulant and/or improve coagulation process
Biocidal agents	Ozone, chlorine, iodine, ultraviolet light	Control nuisance growths such as algae in pretreatment basins or reservoirs; as primary disinfectants to meet Ct ^a regulations

 $^{a}Ct =$ product of oxidant residual concentration (mg/L) and contact time (min).

✓ TASTE AND ODOR CONTROL

- In surface water: originated from algal bloom e.g., Geosmin, 2-Methylisoborneol (2-MIB)

- Threshold odor concentration: 4 ng/L for geosmin, 9 ng/L for 2-MIB

- In groundwater: sulfides (hydrogen sulfide and organic sulfides) Production of polysulfides (oxidation byproducts, usually S_8 , generates turbidity) is a problem when $H_2S > 1$ ppm

Table

Removal of geosmin and methylisoborneol (MIB) that were spiked into filtered water at initial concentration of 100 ng/L

	Chemical	Removal, %	
Chemical	Feed Rate, mg/L	Geosmin	MIB
Powdered activated carbon	10	40	62
	25	52	65
Potassium permanganate	0.8	42	28
Chlorine	2	45	33
Hydrogen peroxide	1	50	72
Ozone	2.5	94	77
Ozone and hydrogen peroxide	2.5, 0.5	97	95

Source: Adapted from Kawamura (2000).

✓ COLOR REMOVAL

- ✓ OXIDATION AS A COAGULATION AID
- ✓ IRON AND MANGANESE REMOVAL
- ✓ OXIDATION OF SELECTED TRACE ORGANIC CONSTITUENTS

Predicted oxidation of grouped organic pollutants in 1 ppm of ozone dose

Fundamentals of Oxidation and Reduction

Introduction to Redox Reactions

✓ Definitions of oxidation and reduction

✓ Half Reactions

$$Mn^{2+} + O_3(aq) + H_2O \rightarrow MnO_2(s) + O_2(aq) + 2H^+$$

$$Mn^{2+} + 2H_2O \rightarrow MnO_2(s) + 4H^+ + 2e^- \quad (oxidation)$$

$$O_3(aq) + 2H^+ + 2e^- \rightarrow O_2(aq) + H_2O \qquad (reduction)$$

✓ Balancing Redox Reactions

Example Balancing redox reactions

Balance the oxidation-reduction reaction for hydrogen peroxide (H_2O_2) oxidation of 1,1-dichloroethene ($C_2H_2CI_2$).

✓ Define final products (make an unbalanced equation with them)

✓ Balance atoms and charge (Use H⁺, OH⁻ or H₂O if necessary)

Standard Redox Potential

 $O_2(aq) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$ (reduction) $E_{red}^\circ = 1.27 V$ $H_2 \rightleftharpoons 2H^+ + 2e^-$ (oxidation) $E_{ox}^\circ = 0 V$

Expression of Redox Potential

 $\sqrt{}$ "Reduction (redox) potential" is not for a compound, but for a reaction (or a redox couple)!

e.g.,

The reduction potential of A^{3+} is ??? V_{SHE} X

Because A³⁺ may go through different redox reactions with different reduction potentials.

$$\begin{array}{c} \mathsf{A}^{3+} + \mathrm{e}^{-} \rightarrow \mathsf{A}^{2+} \\ \mathsf{A}^{3+} + 3\mathrm{e}^{-} \rightarrow \mathsf{A}^{0} \end{array}$$

The reduction potential of $A^{3+} + e^- \rightarrow A^{2+}$ is ??? V_{SHE} O

The reduction potential of A^{3+}/A^{2+} is ??? V_{SHE} O

$$E^{o}[A^{3+}/A^{2+}] = ??? V_{SHE}$$
 O

Standard Redox Potentials for Several Oxidants

Oxidant	Reaction	Electrode potential (V vs. NHE)
Hydroxyl radical $(pK_a = 11.9)$	$ ^{\bullet}OH + H^{+} + e^{-} \rightarrow H_{2}O $ $ ^{\bullet}OH + e^{-} \rightarrow OH^{-} $	2.813 ^a , 2.59 ^b , 2.72 ^c , 2.74 ^d 1.985 ^a , 1.77 ^b , 1.89 ^c , 1.91 ^d
Ozone	$^{\circ}O^{-} + H_2O + e^{-} \rightarrow 2OH^{-}$ $O_3 + 2H^{+} + 2e^{-} \rightarrow O_2 + H_2O$ $O_3 + 2H_2O \rightarrow O_2 + 2OH^{-}$	1.59°, 1.64°, 1.76°, 1.78° 2.075° 1.246°
Hydrogen peroxide (pK _a = 11.6)	$H_{2}O_{2} + 2H^{+} + 2e^{-} \rightarrow 2H_{2}O$ $HO_{2}^{-} + H_{2}O + 2e^{-} \rightarrow 3OH^{-}$	1.763 ^a 0.867 ^a
Hydroperoxyl/ Superoxide radical (pK _a = 4.8)	$HO_{2}^{\bullet} + 3H^{+} + 3e^{-} \rightarrow 2H_{2}O$ $HO_{2}^{\bullet} + H^{+} + e^{-} \rightarrow H_{2}O_{2}$ $O_{2}^{\bullet-} + 2H_{2}O + 3e^{-} \rightarrow 4OH^{-}$ $O_{2}^{\bullet-} + H_{2}O + e^{-} \rightarrow HO_{2}^{-} + OH^{-}$	1.65 ^a 1.44 ^a 0.645 ^a 0.20 ^a
Sulfate radical anion	$SO_4^{\bullet-} + e^- \rightarrow SO_4^{2-}$	2.43°, 2.5~3.1 ^f
Peroxymonosulfate radical anion	$SO_5^{\bullet-} + H^+ + e^- \rightarrow HSO_5^-$	≈1.1 at pH 7 ^g
Peroxydisulfate	$S_2O_8^{2-} + 2H^+ + 2e^- \rightarrow 2HSO_4^-$ $S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	2.08 ^a 1.96 ^a
Peroxymonosulfate $(pK_a = 9.3)$	$\begin{array}{rcl} HSO_5^- + 2H^+ + 2e^- & \rightarrow & HSO_4^- + 2H_2O \\ HSO_5^- + H^+ + 2e^- & \rightarrow & SO_4^{2-} + H_2O \\ SO_5^{2-} + H_2O & + 2e^- & \rightarrow & SO_4^{2-} + 2OH^- \end{array}$	1.81 ^h , 1.82 ⁱ 1.75 ^h 1.22 ^h
Permanganate	$\frac{MnO_4^- + 4H^+ + 3e^-}{MnO_4^- + 2H_2O + 3e^-} \rightarrow \frac{MnO_{2(s)} + 2H_2O}{MnO_{2(s)} + 4OH^-}$	1.70 ^a 0.60 ^a

Table 1 Standard reduction potentials of various oxidants for ISCO and related radical species

a: Bard *et al.* 1985; b: Koppenol and Liebman 1984; c: Schwarz and Dodson 1984; d: Klaning *et al.* 1985; e: Huie *et al.* 1991; f: Eberson 1982; g: Huie and Neta 1984; h: Spiro 1979; i: Steele and Appelman 1982

Source: Lee et al., 2019 (Membr. Wat. Treat.)

Redox Potential and Thermodynamics

 $\sqrt{}$ We can tell if a certain redox reaction is thermodynamically favored or not by reduction (redox) potentials of its half reactions!

e.g.,

 $Ni^{0} + Fe^{2+} \rightarrow Ni^{2+} + Fe^{0}$ (favored or unfavored) ?

$$\begin{array}{lll} \mathsf{F}\mathrm{e}^{2+}+2\mathrm{e}^{-} \rightarrow \ \mathsf{F}\mathrm{e}^{0} & E^{\mathrm{o}}=-0.44 \ \mathsf{V}_{\mathsf{SHE}} \\ \mathsf{N}\mathrm{i}^{2+}+2\mathrm{e}^{-} \rightarrow \ \mathsf{N}\mathrm{i}^{0} & E^{\mathrm{o}}=-0.20 \ \mathsf{V}_{\mathsf{SHE}} \end{array}$$

 $Fe^{0} + 2H^{+} \rightarrow Fe^{2+} + H_{2}$ (favored or unfavored) ?

$$\begin{array}{ll} \mathsf{H^{+}}+2\mathrm{e^{-}}\rightarrow\mathsf{H}_{2} & \textit{E}^{\mathrm{o}}=0\;\mathsf{V}_{\mathsf{SHE}}\\ \mathsf{Fe}^{2+}+2\mathrm{e^{-}}\rightarrow\mathsf{Fe}^{0} & \textit{E}^{\mathrm{o}}=-0.44\;\mathsf{V}_{\mathsf{SHE}} \end{array}$$

Redox Potential and Thermodynamics

e.g.,

 $Ni^{0} + Fe^{2+} \rightarrow Ni^{2+} + Fe^{0}$ (favored or unfavored) ?

$$Fe^{2+} + 2e^{-} \rightarrow Fe^{0} \quad E^{o(1)} = -0.44 \text{ V}_{SHE}$$
$$Ni^{0} \rightarrow Ni^{2+} + 2e^{-} \quad E^{o(2)} = +0.20 \text{ V}_{SHE}$$
$$E^{o}_{Rxn} = E^{o(1)} + E^{o(2)} = -0.24$$

 $Fe^0 + 2H^+ \rightarrow Fe^{2+} + H_2$ (favored or unfavored) ?

H⁺ + 2e⁻ → H₂
$$E^{o(1)} = 0 V_{SHE}$$

Fe⁰ → Fe²⁺ + 2e⁻ $E^{o(2)} = +0.44 V_{SHE}$
 $E^{o}_{Rxn} = E^{o(1)} + E^{o(2)} = +0.44$

 $\Delta G^{\circ} = -nFE^{\circ}$

 $E_{Rxn}^{\circ} > 0$ Thermodynamically favored $E_{Rxn}^{\circ} < 0$ Thermodynamically unfavored

Redox Potential and Thermodynamics

Redox Potentials of Combined Reactions

e.g.,

$$\begin{array}{rcl} A^{3+} + 2e^{-} &\rightarrow & A^{+} & E^{o(1)} = +0.4 \ V_{SHE} \\ A^{+} + e^{-} &\rightarrow & A^{0} & E^{o(2)} = +0.2 \ V_{SHE} \\ && A^{3+} + 3e^{-} \rightarrow & A^{0} & E^{o(3)} = ? \end{array}$$

$$-(n_{\text{ox},1} + n_{\text{ox},2}) FE_{\text{ox},\text{sum}}^{\circ} = -n_{\text{ox},1} FE_{\text{ox},1}^{\circ} - n_{\text{ox},2} FE_{\text{ox},2}^{\circ}$$
$$E_{\text{ox},\text{sum}}^{\circ} = \frac{n_{\text{ox},1} E_{\text{ox},1}^{\circ} + n_{\text{ox},2} E_{\text{ox},2}^{\circ}}{n_{\text{ox},1} + n_{\text{ox},2}}$$
$$E_{\text{red},\text{sum}}^{\circ} = \frac{n_{\text{red},1} E_{\text{red},1}^{\circ} + n_{\text{red},2} E_{\text{red},2}^{\circ}}{n_{\text{red},1} + n_{\text{red},2}}$$

 $E^{o(3)} = 2E^{o(1)} + E^{o(2)} / (2 + 1) = (2x0.4 + 0.2)/3 = 0.33 V_{SHE}$

Example Oxidation of bromide to bromate

Determine the oxidation potential for converting bromide (Br⁻) to bromate (BrO₃⁻) from the hypobromous/bromide acid reaction and bromate/hypobromous reaction.

Solution

1. From Table E1 at the website listed in in App. E, determine the two half reactions, their potentials, and the overall reaction:

 $Br^- + H_2O \rightleftharpoons HOBr + H^+ + 2e^-$ (oxidation) $E_{ox}^\circ = -1.33 V$

 $HOBr + 2H_2O \rightleftharpoons BrO_3^- + 5H^+ + 4e^-$ (oxidation) $E_{ox}^\circ = -1.49 V$

 $Br^- + 3H_2O \rightleftharpoons BrO_3^- + 6H^+ + 6e^-$ (oxidation) $E^{\circ}_{ox,sum} = ?$

2. Determine the potential for the oxidation reaction using Eq. 8-20 and the values from the online table of standard redox potentials

pH–Dependence of Redox Potential

??? + ne⁻ + mH⁺ \rightarrow ???

 $E_{\rm red}$ (at specific pH) $-E_{\rm red}^{\circ}$ (pH =0)

$$\Delta E_{\text{red}}^{\circ} = -\left(\frac{2.303RT}{nF}\right) \log\left(\frac{1}{[\text{H}^+]^{\text{m}}}\right)$$

$$= -\left[\frac{(2.303) (8.314 \text{ J/mol} \cdot \text{K}) (298 \text{ K})}{(96,500 \text{ C/eq}) (n \text{ eq/mol})}\right]^{\text{m}}_{\text{pH}}$$

$$= -\left(\frac{0.0591}{n}\right)^{\text{m}}_{\text{X}} \text{pH}$$

$$\Delta G_{\text{r}} = \Delta G_{\text{r}}^{\circ} + RT \ln Q_{r}$$

$$-nFE_{\text{red}} = -nFE_{\text{red}}^{\circ} + RT \ln Q_{r}$$

$$E_{\text{red}} - E_{\text{red}}^{\circ} = -RT/nF \ln Q_{r}$$

$$E_{\text{red}} - E_{\text{red}}^{\circ} = -2.303RT/nF \log(1/[\text{H}^+]^{\text{m}})$$

✓ OXYGEN

E_H-pH Predominance Area Diagrams: Definition and Example for Chlorine

$$O_{2}(g) + 4H^{+} + 4e^{-} \rightleftharpoons 2H_{2}O \quad E_{red}^{\circ} = 1.23 \text{ V}$$

$$E_{H} = E^{\circ} - \frac{0.059}{n} \log \frac{1}{[H^{+}]^{4}P_{O_{2}}}$$

$$= E^{\circ} - \frac{0.059}{4} \left(4pH - \log P_{O_{2}}\right)$$
where E_{H} = electrode potential as function of pH, V
 E = standard electrode potential, V
 n = number of electrons transferred, eq/mol
 $P_{O_{2}}$ = partial pressure of oxygen, atm

Assuming
$$P_{O_2} = 0.21$$
 atm
 $E_H = 1.24 - 0.059$ pH

✓ HYDROGEN

 $2H^{+} + 2e^{-} \leftrightarrow H_{2}(g) \quad E^{\circ} = 0 \quad V$ (at pH 0) $2H_{2}O + 2e^{-} \rightleftharpoons H_{2}(g) + 2OH^{-}E^{\circ} = -0.828 \quad V \text{ (at pH 14)}$ $E_{H} = E^{\circ} - \frac{0.059}{2} \left(-2pOH + \log P_{H_{2}}\right)$

Assuming $P_{\text{H}_2} = 1$ atm,

$$E_H = -0.059 \text{pH}$$

Figure

Predominance area diagram for chlorine system with total chlorine species concentration $C_{T,Cl}$ of 10^{-4} mol/L ($C_{T,Cl} = 10^{-4}$ mol/L = 2[Cl₂(aq)] + [HOCI] + [OCI⁻] + [CI⁻]).

*pe = $-\log[e^{-}] = F/(2.3RT)E_{h}$

✓ CHLORINE SPECIES

$$C_{T,Cl} = 10^{-4} \text{ M} = 2[\text{Cl}_2(\text{aq})] + [\text{HOCl}] + [\text{OCl}^-] + [\text{Cl}^-]$$
$$\text{Cl}_2(\text{aq}) + \text{H}_2\text{O} \rightleftharpoons \text{Cl}^- + \text{HOCl} + \text{H}^+$$
$$\text{HOCl} \rightleftharpoons \text{H}^+ + \text{OCl}^- \qquad \text{p}K_a = 7.5 \text{ at } 25^\circ\text{C}$$

$$2\text{HOCl} + 2\text{H}^{+} + 2\text{e}^{-} \rightleftharpoons \text{Cl}_{2}(\text{aq}) + 2\text{H}_{2}\text{O} \qquad E^{\circ} = 1.61 \text{ V}$$
$$E_{H} = E^{\circ} - \frac{0.059}{2} \log \left\{ \frac{[\text{Cl}_{2(\text{aq})}]}{[\text{H}^{+}]^{2}[\text{HOCl}]^{2}} \right\}$$

At the boundary, [HOCl] equals $[Cl_2(aq)]$, and when HOCl and $Cl_2(aq)$ predominate in the solution, $C_{T,Cl} \approx 2[Cl_2(aq)] + [HOCl] = 10^{-4}$ M and $[HOCl] = [Cl_2(aq)] = 3.33 \times 10^{-5}$ M,

$$E_{H} = 1.61 - \frac{0.059}{2} \left\{ 2\text{pH} + \log \left[\frac{3.33 \times 10^{-5}}{(3.33 \times 10^{-5})^{2}} \right] \right\}$$
$$= 1.47 - 0.059 \text{ pH}$$
(1)

$$Cl_2(aq) + 2e^- \rightleftharpoons 2Cl^- \qquad E^\circ = 1.396 V$$

 $E_H = E^\circ - \frac{0.059}{2} \log\left(\frac{[Cl^-]^2}{[Cl_2(aq)]}\right)$

Similarly, at the boundary [Cl⁻] equals [Cl₂(aq)], and when Cl⁻ and Cl₂(aq) predominate in the solution, $C_{T,Cl} \approx 2[Cl_2(aq)] + [Cl^-] = 10^{-4} \text{ M}$ and [Cl⁻] = [Cl₂(aq)] = $3.33 \times 10^{-5} \text{ M}$,

$$E_H = 1.52 \,\mathrm{V}$$
 (2)

$$HOCl + H^+ + 2e^- \rightleftharpoons Cl^- + H_2O$$

The standard cell potential must be determined using the combined reactions shown below:

 $2\text{HOCl} + 2\text{H}^{+} + 2\text{e}^{-} \rightleftharpoons \text{Cl}_{2}(\text{aq}) + 2\text{H}_{2}\text{O} \qquad E_{\text{red}}^{\circ} = 1.61 \text{ V}$ $Cl_{2}(\text{aq}) + 2\text{e}^{-} \rightleftharpoons 2\text{Cl}^{-} \qquad E_{\text{red}}^{\circ} = 1.396 \text{ V}$ $\text{HOCl} + \text{H}^{+} + 2\text{e}^{-} \rightleftharpoons \text{Cl}^{-} + \text{H}_{2}\text{O} \qquad E_{\text{red},\text{sum}}^{\circ} = ?$

The value of $E_{\text{red,sum}}^{\circ}$ can be computed

$$E_{\text{red,sum}}^{\circ} = \frac{n_{\text{red},1} E_{\text{red},1}^{\circ} + n_{\text{red},2} E_{\text{red},2}^{\circ}}{n_{\text{red},1} + n_{\text{red},2}} = \frac{2(1.61 \text{ V}) + 2(1.396 \text{ V})}{2 + 2} = 1.50 \text{ V}$$

The E_H can be determined using the expression

$$E_H = E^\circ - \frac{0.059}{2} \log\left(\frac{[\text{Cl}^-]}{[\text{HOCl}][\text{H}^+]}\right)$$

At the boundary, [Cl⁻] equals [HOCl]

$$E_H = 1.50 - \frac{0.059}{2}$$
 pH (3)

$$OCl^{-} + 2H^{+} + 2e^{-} \rightleftharpoons Cl^{-} + H_{2}O$$

$$HOCl + H^{+} + 2e^{-} \rightleftharpoons Cl^{-} + H_{2} \qquad \Delta G^{\circ}_{Rxn,1} =?$$

$$OCl^{-} + H^{+} \rightleftharpoons HOCl \qquad \Delta G^{\circ}_{Rxn,2} =?$$

$$OCl^{-} + 2H^{+} + 2e^{-} \rightleftharpoons Cl^{-} + H_{2}O \qquad \Delta G^{\circ}_{Rxn,sum} =? \qquad E^{\circ}_{red,sum} =?V$$

The value of $\Delta G^{\circ}_{Rxn,1}$ for the reaction involving hypochlorous acid can be determined

$$\Delta G^{\circ}_{\text{Rxn,HOCl}} = -nFE^{\circ}_{\text{Rxn,1}} \quad E^{\circ}_{\text{Rxn,1}} = 1.5 \text{ V} = 1.5 \text{ J/C}$$
$$= -(2 \text{ eq/mol}) (96,500 \text{ C/eq}) (1.5 \text{ J/C})$$
$$= -289,000 \text{ J/mol}$$

The value of $\Delta G^{\circ}_{Rxn,OCl^{-}}$ for the reaction involving the hypochlorite ion can be determined

$$\Delta G_{\text{Rxn,OCl}^{-}}^{\circ} = -RT \ln K_{\text{eq}} \text{ where } K_{\text{eq}} = 10^{7.5} \text{ pK}_{\text{a}} = 7.5$$
$$= -(8.314 \text{ J/mol} \cdot \text{K}) (298 \text{ K}) \ln (10^{7.5})$$
$$= -42,800 \text{ J/mol}$$

The value of $\Delta G^{\circ}_{\operatorname{Rxn,sum}}$ can be obtained

$$\Delta G_{\text{Rxn,sum}}^{\circ} = \Delta G_{\text{Rxn,HOCl}}^{\circ} + \Delta G_{\text{Rxn,OCl}}^{\circ}$$

= (-289,000 J/mol) + (-42,800 J/mol)
= -331,800 J/mol

The value of $E_{\text{red,sum}}^{\circ}$ can be obtained

$$E_{\text{red,sum}}^{\circ} = \frac{\Delta G_{\text{Rxn,sum}}^{\circ}}{-n_{\text{Rxn,sum}}F} = \frac{-331,800 \text{ J/mol}}{-(2 \text{ eq/mol})(96,500 \text{ C/eq})} \times \frac{1 \text{ V}}{1 \text{ J/C}}$$
$$= 1.72 \text{ V}$$

The E_H can be determined from the equation

$$E_H = E^{\circ} - \frac{0.059}{2} \log\left(\frac{[\text{Cl}^-]}{[\text{OCl}^-][\text{H}^+]^2}\right)$$

At the boundary, [Cl⁻] equals [HOCl] and the following expression may be obtained:

$$E_H = 1.72 - 0.059 \text{ pH}^{(4)}$$

Figure

Predominance area diagram for chlorine system with total chlorine species concentration $C_{T,Cl}$ of 10^{-4} mol/L ($C_{T,Cl} = 10^{-4}$ mol/L = 2[Cl₂(aq)] + [HOCI] + [OCI⁻] + [CI⁻]).

*pe = $-\log[e^{-}] = F/(2.3RT)E_{h}$

Kinetics of Redox Reactions

Rate of Oxidation-Reduction Processes The reaction between an organic compound R (reductant) and an oxidant proceeds as shown in the following elementary reaction; and, based on numerous laboratory and full-scale studies, it has been found that second-order rate constants may be used to assess the rate of reaction:

R + oxidant (electron acceptor, O_2, O_3, HO)

 \rightarrow intermediate by-products

intermediate by-products + oxidant

 \rightarrow CO₂ + H₂O + mineral acids (e.g., HCl)

$$\eta_{\rm R} = -k_{\rm ox} C_{\rm ox} C_{\rm R}$$

where $r_{\rm R}$ = rate of disappearance of organic compound R, mol/L · s $k_{\rm ox}$ = second-order rate constant for oxidation reaction, L · mol/s $C_{\rm ox}$ = concentration of oxidant, mol/L $C_{\rm R}$ = concentration of organic compound R, mol/L

Homework

What would the E_h -pH diagram for chlorine species look like when the total chlorine concentration changes?

Think about it !

Common Chemical Oxidants for Water Treatment Applications

Table

Common oxidants, forms, and application methods

Oxidant	:	Forms	Application Methods
Chlorine	, free	Chlorine gas, sodium hypochlorite (NaOCI) solution	Gas eductors and spray jets
Chlorine	dioxide	Chlorine dioxide gas produced onsite using 25% sodium chlorite solution; sodium chlorite solution reacted with following constituents to form chlorine dioxide [CIO ₂ (g)]: gaseous chlorine (Cl ₂), aqueous chlorine (HOCI), or acid (usually hydrochloric acid, HCI)	Gas eductors
Hydroge	n peroxide	Liquid solution	Concentrated solution mixed with water to be treated
Oxygen		Gas and liquid	Pure oxygen or oxygen in air is applied as gas
Ozone		A gas generated onsite by passing compressed air or pure oxygen across an electrode	Applied to water as a gas; mass transfer is an important issue; ozone contactors are usually bubble columns to ensure high transfer efficiency
Permang	ganate	Available in bulk as granules	Added as dry chemical using feeder or as concentrated solution (no more than 5% by weight due to its limited solubility)

 \checkmark Oxidation rate

 $\mathrm{HO} \bullet > \mathrm{O}_3 > \mathrm{H}_2\mathrm{O}_2$

> HOCl > ClO₂ > KMnO₄

 $> Cl_2 > O_2$

Oxygen (O₂)

✓ Redox potential

 $O_2(aq) + 4H^+ + 4e^- \rightarrow 2H_2O$ $E_{red}^\circ = 1.27 V$

- ✓ Applications
- Oxidation of iron, manganese, and sulfides

Figure

Predominance area diagram for oxygen system for oxygen concentration of 0.21 atm.

Chlorine (Cl₂)

✓ Redox potential

$$Cl_{2}(aq) + 2e^{-} \rightleftharpoons 2Cl^{-} \qquad E_{red}^{\circ} = 1.396 V$$

$$2HOCl + 2H^{+} + 2e^{-} \rightleftharpoons Cl_{2}(aq) + 2H_{2}O \qquad E_{red}^{\circ} = 1.61 V$$

$$HOCl + H^{+} + 2e^{-} \rightleftharpoons Cl^{-} + H_{2}O \qquad E_{red}^{\circ} = 1.50 V$$

$$OCl^{-} + H_{2}O + 2e^{-} \rightleftharpoons Cl^{-} + 2OH^{-} \qquad E_{red}^{\circ} = 0.90 V$$

✓ Applications

- Oxidation of iron, manganese, sulfides, taste and odor compounds (but not applicable to Geosmin & 2-MIB), ammonia
- Oxidation byproducts (chlorinated organic compounds) are problematic

Chlorine Dioxide (CIO₂)

✓ Redox potential

 $ClO_2(g) + 2H_2O + 5e^- \rightarrow Cl^- + 4OH^-E_{red}^\circ = 0.799 V$

$$CIO_2 + e^- \rightarrow CIO_2^- E^{o}_{red} = 0.95 \sim 1 V$$

✓ Decomposition

 $2\text{ClO}_2 + 2\text{OH}^- \rightarrow \text{ClO}_2^- + \text{ClO}_3^- + \text{H}_2\text{O}$

✓ Applications

- Oxidation of iron, manganese, sulfides, taste and odor compounds (little applicable to Geosmin & 2-MIB), and some of organic compounds

Figure 8

Predominance area diagram for chlorine dioxide system for total species concentration of 10^{-4} mol/L.

Hydrogen Peroxide (H₂O₂)

\checkmark Redox potential

 $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ $E_{red}^{\circ} = 1.780 V$

\checkmark Applications

- Oxidation of iron, sulfides
- A Reagent for advanced oxidation technology (a precursor of OH radical) e.g., UV/H₂O₂, O₃/H₂O₂, Fe(II)/H₂O₂

Ozone (O₃)

✓ Redox potential

 $O_3(g) + 2H^+ + 2e^- \rightarrow O_2 + H_2O$ $E_{red}^\circ = 2.08 V$

✓ Applications

- Oxidation of iron, manganese, sulfides, taste and odor compounds, micropollutamnts, removal of color, control of DBP precursors (oxidation of NOM)
- A Reagent for advanced oxidation technology (a precursor of OH radical) e.g., UV/O₃, O₃/H₂O₂, Fe(II)/O₃

 \checkmark Second-order rate constants for reactions of NDMA precursors with oxidants

Source: Lee et al., 2007 (Environ. Sci. Technol.)

Permanganate (MnO₄⁻)

 \checkmark Redox potential

 $MnO_{4}^{-} + 4H^{+} + 3e^{-} \rightleftharpoons MnO_{2} (s) + 2H_{2}O \qquad E_{red}^{\circ} = 1.68 V$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightleftarrows Mn^{2+} + 4H_{2}O \qquad E_{red}^{\circ} = 1.510 V$

Under alkaline conditions the corresponding reduction half reaction is

 $MnO_4^- + 2H_2O + 3e^- \rightleftharpoons MnO_2 (s) + 4OH^- \qquad E_{red}^\circ = 0.590 V$

- ✓ Applications
- Oxidation of iron, manganese, taste and odor compounds
- Pink color: needs dosage control

