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Tokamak stability
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- Considering plasma states which are not in perfect 
thermodynamic equilibrium (no exact Maxwellian distribution, 
e.g. non-uniform density), even though they represent 
equilibrium states in the sense that the force balance is equal 
to 0 and a stationary solution exists, means their entropy is not 
at the maximum possible and hence free energy appears 
available which can excite perturbations to grow: 
unstable equilibrium state

- The gradients of plasma current magnitude and pressure are the 
destabilising forces in connection with the bad magnetic field 
curvature: The ratio of these two free energies turns out to be βp

Tokamak Stability
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Flux conservation
Topology unchanged

Reconnection of field lines
Topology changed

• Ideal MHD instabilities
- current driven (kink) instabilities

internal modes
external modes

- pressure driven instabilities
interchange modes
ballooning modes

- current+pressure driven: Edge Localised Modes (ELMs)
- vertical instability

• Resistive MHD instabilities
- current driven instabilities

tearing modes
neoclassical tearing modes (NTMs)

- nonlinear modes
sawtooth
disruption

• Microinstabilities - Turbulence

Tokamak Stability
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Ideal MHD instabilities in a Tokamak



- fast growth (microseconds)
- the possible extension over the entire plasma
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• The most Virulent Instabilities

Ideal MHD Instabilities



• Kink modes
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q-profile
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Advanced scenario

Baseline scenario 

q95

4Hybrid scenario

- Causing a contortion of the helical plasma column
- Driven by the radial gradient of the toroidal current
- External kind modes: 

Fastest and most dangerous
Arising mainly when qa < 2

Ideal MHD Instabilities

http://www.maysville-online.com/news/local/tollesboro-home-destroyed-in-fire/article_a5e0eb4e-235b-5c7d-afee-74bf98c4e738.html

m: poloidal mode number

m = 1

m = 2

m = 3



- Stabilising effect by the conducting wall 
and strong toroidal magnetic field
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Kruskal-Shafranov criterion:
stability condition for external kink mode for the worst case1>aq

Determining plasma current limit 
set by kink instabilities → safety factor
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Imposing an important constraint on tokamak operation: 
toroidal current upper limit: Kruskal-Shafranov current  (I < IKS)

Ideal MHD Instabilities
• Kink modes



- A toroidally confined plasma sees ‘bad’ convex curvature of the
helical magnetic field lines on the outboard side of the torus.

• Interchange modes
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http://blog.naver.com/PostView.nhn?blogId=ray0620&logNo=150112423635&parentCategoryNo=1&viewDate=&currentPage=1&listtype=0 
http://en.wikipedia.org/wiki/File:St_Louis_Gateway_Arch.jpg

Ideal MHD Instabilities

F. F. Chen, “An Indispensable Truth”, Springer (2011)

http://upload.wikimedia.org/wikipedia/commons/b/b9/St_Louis_Gateway_Arch.jpg
http://upload.wikimedia.org/wikipedia/commons/b/b9/St_Louis_Gateway_Arch.jpg


• Interchange modes
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- A toroidally confined plasma sees ‘bad’ convex curvature of the
helical magnetic field lines on the outboard side of the torus.

- The average curvature of B-field lines over a full poloidal rotation 
is ‘good’ for windings with a rotational transform ι ≤ 2π, i.e., q ≥ 1.

- Interchange perturbations do not grow in normal tokamaks if q ≥ 1.

Ideal MHD Instabilities

Unstable Stable
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• Ballooning modes
Ideal MHD Instabilities

- locally grow in the outboard bad curvature region: ballooning modes
- A high local pressure gradient is responsible for driving the 

ballooning instability.
- Can be suppressed almost everywhere in the plasma by establishing 

appropriate pressure profiles and appropriate magnetic field line 
windings.

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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• Edge Localised Modes (ELMs)
- current driven (peeling mode) and pressure driven (ballooning

mode) combined instability

Ideal MHD Instabilities
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• Edge Localised Modes (ELMs)
Ideal MHD Instabilities

- current driven (peeling mode) and pressure driven (ballooning
mode) combined instability
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A. Critical ∇p in H-mode barrier region reached 
→ short unstable phase (ELM event)

B. Energy and particle loss reduces gradients.
C. Gradients build up during reheat/refuelling

phase.

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities



15

LCFS

A. Critical ∇p in H-mode barrier region reached 
→ short unstable phase (ELM event)

B. Energy and particle loss reduces gradients.
C. Gradients build up during reheat/refuelling

phase.

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities
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t = 2650 τA-1 t = 2700 τA-1 t = 2890 τA-1

- Non-linear MHD simulations with JOREK

Huysmans, Czarny, NF 47 659 (2007)
Evolution of ballooning mode

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities
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- Non-linear MHD simulations with JOREK

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities
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- Standard ELM dynamics in the KSTAR visualized by ECEI

1 2 3
100 ms 200 ms0 ms

LCFS

(1) Initial Growth

4
400 ms

LCFS

(2) Saturation

G.S. Yun et al., PRL (2011)

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities
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(3) ELM crash
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Particles/heat transport 
through the finger

Filaments elongate 
poloidally

A narrow finger-
like structure 

develops

- Standard ELM dynamics in the KSTAR visualized by ECEI

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities

G.S. Yun et al., PRL (2011)



• COMPASS-D (n = 1): triggered (2001)
• DIII-D (n = 3): suppressed (2004)
• JET (n = 1 or 2): mitigated (2007)
• NSTX (n = 3): triggered (2010)
• MAST (n = 3): mitigated (2011)
• ASDEX Upgrade (n = 2): 

mitigated/suppressed (2011)
• KSTAR (n = 1): ELMs suppressed (2011)

- Mitigation by 3D magnetic perturbation

• Edge Localised Modes (ELMs)
Ideal MHD Instabilities
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Courtesy of Y. M. Jeon (NFRI)



• Vertical Instability
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X Ip

Ideal MHD Instabilities

- Macroscopic vertical motion of the plasma towards the wall

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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Ideal MHD Instabilities
• Vertical Instability

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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Ideal MHD Instabilities
• Vertical Instability

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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24KSTAR & ITER

- For a circular cross sections a moderate shaping of the vertical field 
should provide stability.

- For noncircular tokamaks, vertical instabilities produce important 
limitations on the maximum achievable elongations.

- Even moderate elongations require a conducting wall or a feedback 
system for vertical stability.

Ideal MHD Instabilities
• Vertical Instability

J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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