Linear Programming (4541.554 Introduction to Computer–Aided Design)

School of EECS Seoul National University

Optimization Problems

- General nonlinear programming problem
 - minimize f(x)subject to $g_i(x) \ge 0$ i=1,...,m $h_j(x)=0$ j=1,...,p $x \in \mathbb{R}^n$
- Convex programming problem
 - f: convex
 - g_i: concave
 - h_i: linear
 - local optimum = global optimum
- Linear programming problem
 - $-f,g_i,h_j$: linear (can be considered as convex or concave)
 - select a solution from a finite set of possible solutions
 - Simplex algorithm (1947 by G. B. Dantzig)
- Integer linear programming problem
 - integer-valued coordinates

continuous variables, continuous optimization

discrete variables combinatorial optimization

Definitions

- Instance of an optimization problem
 - given (F, c)

where F: domain of feasible points

c: F -> R¹ : cost function

find $f \in F$ for which $c(f) \leq c(y)$ for all $y \in F$

- -> f is a globally optimal solution
- e.g. instance of Traveling Salesman Problem (vertices and edges are given)
- Optimization problem
 - a set of instances of an optimization problem
 - e.g. Traveling Salesman Problem
- Locally optimal solution
 - $c(f) \le c(g)$ for all $g \in N(f)$

where N is a neighborhood defined for each instance

 $- e.g. N_ε(f) = {x: x ∈ F and ||x-f|| ≤ ε}$

• Convex combination of x, $y \in \mathbb{R}^n$ is any point of the form:

$$z = \lambda x + (1-\lambda)y, \lambda \in \mathbb{R}^1$$
 and $0 \le \lambda \le 1$

• A set $S \subseteq \mathbb{R}^n$ is convex if it contains all convex combinations of pairs of points x, $y \in S$

• Lemma 1

The intersection of any number of convex sets is convex.

- Convex Function
 - Let $S \subseteq \mathbb{R}^n$ be a convex set. Function c: $S \rightarrow \mathbb{R}^1$ is convex in S if $c(\lambda x + (1-\lambda)y) \le \lambda c(x) + (1-\lambda)c(y)$, $\lambda \in \mathbb{R}^1$ and $0 \le \lambda \le 1$ for all x, y $\in S$

• Lemma 2

Let c(x) be a convex function on a convex set S. Then set $S_t = \{x : c(x) \le t, x \in S\}$ is convex.

Х

y

а

Proof

For any x,
$$y \in S_t$$
, $\lambda x + (1-\lambda)y$ is in S and
 $c(\lambda x + (1-\lambda)y) \le \lambda c(x) + (1-\lambda)c(y) \le \lambda t + (1-\lambda)t \le t$
 $\Rightarrow \lambda x + (1-\lambda)y$ is in $S_t \Rightarrow S_t$ is convex

Convex Programming Problem

• Theorem 1

For an instance of an optimization problem (F, c) and neighborhood $N_{\varepsilon}(x) = \{y : y \in F \text{ and } ||x-y|| \le \varepsilon\}$, where $F \subseteq R^n$ is a convex set and c is a convex function, a locally optimal point with respect to N_{ε} is also a globally optimal point for any $\varepsilon > 0$.

Proof

Choose a λ such that $y = \lambda x + (1-\lambda)z$ lies within $N_{\epsilon}(x)$ $c(y) = c(\lambda x + (1-\lambda)z) \le \lambda c(x) + (1-\lambda)c(z)$ $=> c(z) \ge (c(y) - \lambda c(x))/(1-\lambda)$ $\ge (c(x) - \lambda c(x))/(1-\lambda) = c(x)$ \uparrow

x is a local optimum point

• Convex programming problem

 $\begin{array}{l} \text{minimize } f(x) \\ \text{subject to } g_i(x) \geq 0 \quad i=1,...,m \\ h_j(x)=0 \quad j=1,...,p \\ x \in R^n \end{array}$

where

- f: convex
- g_i: concave

h_j: linear

$$F = \{x : g_i(x) \ge 0\}$$
$$= \{x : -g_i(x) \le 0\}$$
convex function

=> F is convex by Lemma 1 and Lemma 2=> For (F, f), local optimum = global optimum by theorem 1

Linear Programming Problem

General Form of LP

minimize c'x

subject to

- $\mathbf{a}_i \mathbf{x} = b_i \quad i \in M$
- $\mathbf{a_i'x} \ge b_i \quad i \in \overline{M}$
- $x_j \ge 0$ $j \in N$

 x_j unconstrained $j \in \overline{N}$

Canonical Form

minimize **c'x** subject to $\mathbf{a_i'x} \ge b_i \quad \forall i$ $x_j \ge 0 \quad \forall j$ Standard Form

minimize **c'x** subject to $\mathbf{a_i'x} = b_i \quad \forall i$ $x_i \ge 0 \quad \forall j$ • Conversion

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Rightarrow \begin{cases} \mathbf{A}\mathbf{x} \ge \mathbf{b} \\ -\mathbf{A}\mathbf{x} \ge -\mathbf{b} \end{cases}$$

$$x_{j} \text{ unconstrained} \Rightarrow \begin{cases} x_{j} = x_{j}^{+} - x_{j}^{-} \\ x_{j}^{+} \ge 0 \\ x_{j}^{-} \ge 0 \end{cases}$$

$$\mathbf{A}\mathbf{x} \ge \mathbf{b} \Rightarrow \begin{cases} \mathbf{A}\mathbf{x} - \mathbf{s} = \mathbf{b} \\ \mathbf{s} \ge \mathbf{0} \end{cases} \quad \mathbf{s} : \text{ vector of surplus variables}$$

$$\mathbf{A}\mathbf{x} \le \mathbf{b} \Rightarrow \begin{cases} \mathbf{A}\mathbf{x} + \mathbf{s} = \mathbf{b} \\ \mathbf{s} \ge \mathbf{0} \end{cases} \quad \mathbf{s} : \text{ vector of slack variables}$$

Examples

Diet Problem

minimize $\mathbf{c'x}$ subject to $\mathbf{Ax} \ge \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

where

c : unit cost of each food (c_i won/1gr of kimchi, ...)

x : amount of each food (x_j gr of kimchi, ...)

- A : amount of each nutrient per one unit of each food $(a_{ij} \text{mgr of nutrient } i \text{ in 1 gr of kimchi}, ...)$
- **b** : requirement for each nutrient
 - (at least b_i mgr of nutrient *i* is required per day)

- Hierarchical Compaction
 - Exploit design hierarchy to reduce computation time
 - Compact bottom-up
 - Fixed-cell
 - Cell abstraction with protection frame and terminal frame
 - Interconnections among Sub-cells require routing
 - Stretching and pitch matching
 - Connection by abutment
 - Limitations of the previous hierarchical compactor
 - Protection frame or fixed terminal location

--> Area is wasted.

- Stretching and pitch-matching
 - --> Sub-cells can be distorted.
 - --> New master cells are generated.
 - --> Original layout hierarchy is lost.
- David Marple, "A hierarchy preserving hierarchical compactor," *Proc. 27th Design Automation Conference*, 1990.

- Constraints

- Flat compaction
 - $AX \ge B$, A: incidence matrix
 - Each constraint is related with two object locations. Each row of A has one '-1' and one '1'.

 $x1 + 3 \le x2$

- Hierarchical compaction
 - Each constraint may be related with more than two object locations.

- Compaction algorithm
 - Linear program
 - $\begin{array}{lll} \mbox{ minimize } & x_t = C^T X = [000...1] X \\ \mbox{ subject to } & AX \ge b \end{array}$

 $\textbf{X} \geq \textbf{0}$

where \mathbf{x}_t is the location of the sink vertex

- Example:

$$x1 + 2 \le x2$$

x2 - 1 \le x3
x1 + 5 \le x3
x1 + 2x2 + 4 \le x3

$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix} \ge \begin{bmatrix} 2 \\ -1 \\ 5 \\ 4 \end{bmatrix}$$

Basic Feasible Solution

- Definitions
 - Given a standard form
 - minimize c'x
 - subject to

Ax = b

 $\mathbf{x} \ge \mathbf{0}$

Assume **A** is an $m \times n$ matrix (m < n) and the rank is m.

- Basis of A
 - linearly independent collection of columns of A

$$B = \left\{ \mathbf{A}_{j_1}, \dots, \mathbf{A}_{j_m} \right\}$$

• can be represented by an *m* x *m* matrix

$$\mathbf{B} = \left[\mathbf{A}_{j_1}, \dots, \mathbf{A}_{j_m}\right]$$

Basic solution

$$\begin{cases} x_{j} = 0 & \text{for } \mathbf{A}_{j} \notin \mathbf{B} \\ x_{j_{k}} = k \text{th component of } \mathbf{B}^{-1} \mathbf{b}, k = 1, ..., m \\ x_{j_{k}} : \text{basic variable} \\ \mathbf{A}_{1} \dots \mathbf{A}_{n} \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix} \\ \rightarrow \begin{bmatrix} \mathbf{A}_{j_{1}} \dots \mathbf{A}_{j_{m}} \\ \vdots \\ x_{j_{m}} \end{bmatrix} + \mathbf{0} = \begin{bmatrix} b_{1} \\ \vdots \\ b_{m} \end{bmatrix}$$

- Basic feasible solution (BFS)
 - basic solution in F (domain of feasible points), i.e. $x \ge 0$

- Lemma 1
 - Let x be a BFS of

Ax=b

x ≥ **0**

corresponding to the basis *B*. Then there exists a cost vector c such that x is the unique optimal solution of the LP

min c'x

Ax=b

 $\mathbf{x} \geq \mathbf{0}$

- Proof
 - Let $c_j=0$ if $A_j \in B$ 1 otherwise

Then c'x=0 which is optimum (c is non-negative).

If there is another feasible solution y such that c'y=0, then $y_j=0$ for $A_j \notin B$. Other y_i s are computed by B⁻¹b. --> y=x --> unique • Theorem 1

- If F is not empty, then at least one BFS exists.

- Proof
 - WLOG, assume one solution is $[x_1,...,x_n]$, where $x_1,...,x_t>0$ and $x_{t+1},...,x_n=0$. Then

 $A_1 x_1 + ... + A_t x_t = b$ (1)

Let r=rank of $[A_1,...,A_t] \le m$ (A is an m x n matrix).

WLOG, assume first r columns are linearly independent. Rewrite equations (1) as follows

$$A_1 x_1 + ... + A_r x_r = b - A_{r+1} x_{r+1} - ... - A_t x_t$$
 (2)
Solving (2) gives

 $[x_1,...,x_r]'=\beta-\alpha_{r+1}x_{r+1}-...-\alpha_tx_t$

As $x_t \rightarrow 0$, some of x_1, \dots, x_r increase or decrease. If any of x_1, \dots, x_r becomes 0, then stop decreasing x_t .

--> feasible solution with more zero component

Continue to obtain a feasible solution with $t \le m$ nonzero components. The corresponding columns are independent. Otherwise, we can reduce t further until t=r.

Geometry of Linear Program

• Definitions

- Example

 $\begin{array}{l} a_1x_1 + a_2x_2 + a_3x_3 = b \text{ --> dimension: } 3 \text{ -> } 2 \\ x \geq 0 \end{array}$

- Convex polytope
 - Bounded nonempty intersection of a finite number of halfspaces
 - Every point in a convex polytope is the convex combination of its vertices (convex hull)

• Polytope and LP

$$\mathbf{A}\mathbf{x} = \mathbf{b} \rightarrow [m \times (n - m) \mid m \times m]\mathbf{x} = \mathbf{b}$$

$$\rightarrow [m \times (n - m) \mid \mathbf{B}]\mathbf{x} = \mathbf{b}$$

$$\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \mathbf{B}^{-1}\mathbf{b} \rightarrow [m \times (n - m) \mid \mathbf{I}]\mathbf{x} = \mathbf{B}^{-1}\mathbf{b}$$

$$\rightarrow [\hat{\mathbf{A}} \mid \mathbf{I}]\mathbf{x} = \hat{\mathbf{b}}$$

$$\rightarrow [[\hat{a}_{ij}] \mid \mathbf{I}]\mathbf{x} = [\hat{b}_{i}]$$

$$\sum_{j=1}^{n-m} \hat{a}_{ij} x_j + x_{n-m+i} = \hat{b}_i, i = 1, ..., m$$

$$x_{n-m+i} = \hat{b}_i - \sum_{j=1}^{n-m} \hat{a}_{ij} x_j, i = 1,...,m$$

$$\mathbf{x} \ge \mathbf{0} \longrightarrow \begin{cases} \hat{b}_i - \sum_{j=1}^{n-m} \hat{a}_{ij} x_j \ge 0, i = 1, \dots, m \\ x_j \ge 0, j = 1, \dots, (n-m) \end{cases}$$
$$\rightarrow \hat{x} = (x_1, \dots, x_{n-m}) \in \text{polytope P} \end{cases}$$

$$\begin{cases} \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases} \longleftrightarrow \begin{cases} [\hat{a}_{ij}] \hat{\mathbf{x}} \ge [\hat{b}_i] \\ \hat{\mathbf{x}} \ge \mathbf{0} \end{cases}$$
$$\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \mathbf{B}^{-1}\mathbf{b} \longrightarrow [m \times (n-m) | \mathbf{I}] \mathbf{x} = \mathbf{B}^{-1}\mathbf{b} \\ \longrightarrow [[\hat{a}_{ij}] | \mathbf{I}] \mathbf{x} = [\hat{b}_i] \end{cases}$$

After solving for $\hat{\mathbf{x}}$, x_{n-m+i} can be obtained by

$$x_{n-m+i} = \hat{b}_i - \sum_{j=1}^{n-m} \hat{a}_{ij} x_j, i = 1,...,m$$

– Example 1

• Theorem 2

 \mathbf{x}^* is a bfs of F defined by $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

 $\Leftrightarrow \text{The corresponding } \hat{x}^* \text{ is a vertex of the convex polytope P}$

Proof

 \Rightarrow

There exists a cost vector \mathbf{c} such that

 $\mathbf{x} = \mathbf{x}^*$ is the unique vector satisfying

$$c' x \le c' x *$$
$$Ax = b$$
$$x \ge 0$$
(Lemma1)

$$c' \mathbf{x} = \sum_{j=1}^{n} c_{j} x_{j} = \sum_{j=1}^{n-m} c_{j} x_{j} + \sum_{j=n-m+1}^{n} c_{j} x_{j}$$

$$i = j - (n - m)$$

$$c' \mathbf{x} = \sum_{j=1}^{n-m} c_{j} x_{j} + \sum_{i=1}^{m} c_{n-m+i} x_{n-m+i}$$

$$= \sum_{j=1}^{n-m} c_{j} x_{j} + \sum_{i=1}^{m} c_{n-m+i} (\hat{b}_{i} - \sum_{j=1}^{n-m} \hat{a}_{ij} x_{j})$$

$$= \sum_{j=1}^{n-m} (c_{j} - \sum_{i=1}^{m} c_{n-m+i} \hat{a}_{ij}) x_{j} + \sum_{i=1}^{m} c_{n-m+i} \hat{b}_{i}$$

$$= \mathbf{d}' \hat{\mathbf{x}} + k$$

$$c' \mathbf{x}^{*} = \mathbf{d}' \hat{\mathbf{x}}^{*} + k$$

$$c' \mathbf{x} \leq c' \mathbf{x}^{*} \to \mathbf{d}' \hat{\mathbf{x}} \leq \mathbf{d}' \hat{\mathbf{x}}^{*}$$

There exists a cost vector **c** such that

 $\begin{array}{l} \mathbf{x} = \mathbf{x}^* \text{ is the unique vector satisfying} \\ \mathbf{c'x} \leq \mathbf{c'x^*} \\ \mathbf{Ax} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{array} \right\} \rightarrow \hat{\mathbf{x}} \in \mathbf{P} \\ \mathbf{x} \geq \mathbf{0} \end{array} \right\} \rightarrow \hat{\mathbf{x}} \in \mathbf{P} \\ \text{Then } \hat{\mathbf{x}}^* = (x_1, \dots, x_{n-m}) \text{ is the unique point in } \mathbb{R}^{n-m} \text{ satisfying} \\ \mathbf{d'} \hat{\mathbf{x}} \leq \mathbf{d'} \hat{\mathbf{x}}^* \text{ (halfspace)} \\ \hat{\mathbf{x}} \in \mathbf{P} \end{array} \right\} \rightarrow \text{intersection}$

intersection is a unique point \rightarrow vertex

 $(\mathbf{d'}\hat{\mathbf{x}} = \mathbf{d'}\hat{\mathbf{x}}^*$ is a supporting hyperplane defining $\hat{\mathbf{x}}^*$)

 X_2

 \mathbf{x}^* is a bfs $\Leftarrow \hat{\mathbf{x}}^*$ is a vertex

$$\hat{\mathbf{x}}^*$$
 is a vertex $\rightarrow \hat{\mathbf{x}}^* \in \mathbf{P} \rightarrow \begin{cases} \mathbf{A}\mathbf{x}^* = \mathbf{b} \\ \mathbf{x}^* \ge \mathbf{0} \end{cases} \rightarrow \sum_j \mathbf{A}_j x_j^* = \mathbf{b}, \forall j \text{ s.t. } x_j^* > 0 \end{cases}$

If \mathbf{A}_{j} 's are linearly independent, then \mathbf{x}^{*} is a bfs.

Assume \mathbf{A}_{i} 's are not linearly independent.

Then
$$\sum_{j} \mathbf{A}_{j} d_{j} = \mathbf{0}$$
 for some $d_{j} \neq 0$
 $\rightarrow \sum_{j} \mathbf{A}_{j} (x_{j}^{*} \pm \Theta d_{j}) = \mathbf{b}$ for sufficiently small Θ such that $x_{j}^{*} \pm \Theta d_{j} \ge 0$

Define two points x' and x"

$$x'_{j} = \begin{cases} x_{j}^{*} - \Theta d_{j} & x_{j}^{*} > 0 \\ 0 & x_{j}^{*} = 0 \end{cases} \qquad x''_{j} = \begin{cases} x_{j}^{*} + \Theta d_{j} & x_{j}^{*} > 0 \\ 0 & x_{j}^{*} = 0 \end{cases}$$

then $\mathbf{x}', \mathbf{x}'' \in \mathbf{F}$ and $\mathbf{x}^{*} = \frac{1}{2}\mathbf{x}' + \frac{1}{2}\mathbf{x}'' \rightarrow \text{vertex } \hat{\mathbf{x}}^{*} = \frac{1}{2}\hat{\mathbf{x}}' + \frac{1}{2}\hat{\mathbf{x}}''$

However, a vertex cannot be a strict convex combination of points in P.

• Theorem 3

In any instance of LP with bounded F, there is an optimal vertex of P (optimal BFS).

• Proof

Assume \mathbf{x}_0 is an optimal solution.

$$\mathbf{x}_0 = \sum_{i=1}^N a_i \mathbf{x}_i, \ \mathbf{x}_i = \text{vertices of P}$$

where
$$\sum_{i=1}^{N} a_i = 1, a_i \ge 0$$

Let \mathbf{x}_j be the vertex with lowest cost. Then

$$\mathbf{c'}\mathbf{x}_0 = \sum_{i=1}^N a_i \mathbf{c'}\mathbf{x}_i \ge \mathbf{c'}\mathbf{x}_j \sum_{i=1}^N a_i = \mathbf{c'}\mathbf{x}_j$$

: **v** is an optimal solution

 $\therefore \mathbf{x}_j$ is an optimal solution.

$$\begin{aligned} \mathbf{x}_{0} &= \lambda_{1} \, \mathbf{x}_{1} + (1 - \lambda_{1}) \mathbf{x}_{4} \\ &= \lambda_{1} \, \mathbf{x}_{1} + (1 - \lambda_{1}) (\lambda_{2} \, \mathbf{x}_{2} + (1 - \lambda_{2}) \mathbf{x}_{3}) \\ &= \lambda_{1} \, \mathbf{x}_{1} + (1 - \lambda_{1}) \lambda_{2} \, \mathbf{x}_{2} + (1 - \lambda_{1}) \, (1 - \lambda_{2}) \mathbf{x}_{3} \\ &= \alpha_{1} \, \mathbf{x}_{1} + \alpha_{2} \, \mathbf{x}_{2} + \alpha_{3} \, \mathbf{x}_{3} \\ &= \lambda_{1} + (\alpha_{2} + \alpha_{3}) \\ &= \lambda_{1} + (1 - \lambda_{1}) \lambda_{2} + (1 - \lambda_{1}) \, (1 - \lambda_{2}) \\ &= 1 \end{aligned}$$

Moving from BFS to BFS

Let \mathbf{x}^* be a BFS for a basis $B = {\mathbf{A}_{j_k} : k = 1,...,m}$

$$\mathbf{A}\mathbf{x}^* = \mathbf{b} \longrightarrow \sum_{k=1}^m \mathbf{A}_{j_k} x_{j_k}^* = \mathbf{b}$$
(1)
$$\mathbf{A}\mathbf{x}^m = \mathbf{b} \longrightarrow \sum_{k=1}^m \mathbf{A}_{j_k} x_{j_k}^* = \mathbf{b}$$
(2)

$$\mathbf{A}_{j} = \sum_{k=1}^{n} e_{kj} \mathbf{A}_{j_{k}}, \quad \mathbf{A}_{j} \notin B \to \sum_{k=1}^{n} e_{kj} \mathbf{A}_{j_{k}} - \mathbf{A}_{j} = \mathbf{0}$$
(2)

$$(1) - \theta \cdot (2) \longrightarrow \sum_{k=1}^{m} (x_{j_k}^* - \theta \cdot e_{kj}) \mathbf{A}_{j_k} + \theta \cdot \mathbf{A}_j = \mathbf{b}$$

Increase θ until some $(x_{j_k}^* - \theta \cdot e_{kj})$ becomes 0

 $\rightarrow \theta = \min_{k \mid e_{kj} > 0} \frac{x_{j_k}^*}{e_{kj}} \rightarrow k = l$ If $e_{kj} \le 0, \forall k$, then F is unbounded $(\theta \rightarrow \infty)$

BFS
$$x_{i}^{*} = \begin{cases} x_{j_{k}}^{*}, & i = j_{k} \\ 0, & \text{otherwise} \end{cases} \rightarrow \text{new BFS } x_{i}' = \begin{cases} x_{j_{k}}^{*} - \theta \cdot e_{kj}, & i = j_{k} \text{ and } k \neq l \\ 0, & i = j_{l} \\ \theta, & i = j \\ 0, & \text{otherwise} \end{cases}$$

- Theorem 4 $B' = \{A_{j_1}, ..., A_{j_{l-1}}, A_j, A_{j_{l+1}}, ..., A_{j_m}\}$ is a new basis
- Proof

Let
$$\mathbf{B}' = \left[\mathbf{A}_{j_1}, ..., \mathbf{A}_{j_{l-1}}, \mathbf{A}_j, \mathbf{A}_{j_{l+1}}, ..., \mathbf{A}_{j_m}\right]$$

 $\mathbf{B}'\mathbf{d} = d_l \mathbf{A}_j + \sum_{k=1, k \neq l}^m d_k \mathbf{A}_{j_k} = d_l \sum_{k=1}^m e_{kj} \mathbf{A}_{j_k} + \sum_{k=1, k \neq l}^m d_k \mathbf{A}_{j_k}$
 $= d_l e_{lj} \mathbf{A}_{j_l} + \sum_{k=1, k \neq l}^m (d_l e_{kj} + d_k) \mathbf{A}_{j_k}$ (3)

A_{*j_k*}, *k* = 1,...,*m* are linearly independent \rightarrow if we set (3) = 0, then $d_i e_{ij} = 0 \rightarrow$ since $e_{ij} > 0, d_i = 0$

$$\rightarrow$$
 (3) = 0 becomes $\sum_{k=1,k\neq l}^{m} d_k A_{j_k} = 0 \rightarrow d_k = 0, k = 1,...,m$

 \rightarrow d = 0 \rightarrow All columns of B' are linearly independent \rightarrow B' is a basis

• Theorem 5

If x and y are adjacent, i.e. $B_y = (B_x - \{A_j\}) \cup \{A_k\},\$

then \hat{x} and \hat{y} are adjacent, i.e. $[\hat{x}, \hat{y}]$ is an edge of the polytope.

• Proof

Let us construct a cost vector $c_j = \begin{cases} 0 & \text{if } A_j \in B_x \cup B_y \\ 1 & \text{otherwise} \end{cases}$ Then all feasible solutions that are convex combinations of x and y are uniquely optimal. BFS2 To prove uniqueness, suppose z is optimal. ØFS1 Then z is a convex combination of bfs's with bases subsets of $B_x \cup B_y$. However, x and y are the only such bfs's. $\sum_{k=1}^{m} (x_{j_k}^* - \theta \cdot e_{kj}) \mathbf{A}_{j_k} + \theta \cdot \mathbf{A}_j = \mathbf{b}$ Therefore, only convex combinations w of x and y satisfy $Aw = b, w \ge 0$, and $c'w \le c'x$. Therefore, in P, only w on $[\hat{x}, \hat{y}]$ satisfy $d'\hat{w} \leq d'\hat{x}$. Hence only $[\hat{x}, \hat{y}]$ is the intersection of a halfspace with P and is therefore an edge.

Tableau

• Example

3x1 + 2x2 + x3 = 1									
5x1 + x2 + x3 + x4 = 3									
2x1	+ 5x2	+ x3	+ X	5 = 4					
	x1	х2	xЗ	x4	x5				
1	3	2	1	0	0				
3	5	1	1	1	0				
4	2	5	1	0	1				

Select B={A₃, A₄, A₅} --> make an identity matrix

	x1	х2	xЗ	x4	xБ
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

x1=x2=0, x3=1, x4=2, x5=3 : BFS x3, x4, x5 : basic variables

	x1	x2	xЗ	x4	x5
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

$$\mathbf{A}_{1} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix} = 3\mathbf{A}_{3} + 2\mathbf{A}_{4} - \mathbf{A}_{5} = \sum_{k=1}^{m=3} e_{k1}\mathbf{A}_{j_{k}} \rightarrow j_{1} = 3, j_{2} = 4, j_{3} = 5$$

To put A_1 into a new basis,

 $\Theta = \min_{k \mid e_{k1} > 0} \frac{x_{j_k}^*}{e_{k1}} = \min(\frac{1}{3}, \frac{2}{2}) = \frac{1}{3} \rightarrow l = 1 \rightarrow \mathbf{A}_{j_1} = \mathbf{A}_3 \text{ becomes non - basic}$ $Make \mathbf{A}_1 = [100]' \rightarrow BFS = \left[\frac{1}{3}, 0, 0, \frac{4}{3}, \frac{10}{3}\right], B = \{\mathbf{A}_1, \mathbf{A}_4, \mathbf{A}_5\}$ $\frac{xl}{4/3} = \frac{x^2}{1/3} \frac{x^3}{1/3} \frac{x^4}{1/3} \frac{x^5}{1/3} \frac{x^2}{1/3} \frac{x^3}{1/3} \frac{x^4}{1/3} \frac{x^5}{1/3} \frac{x^2}{1/3} \frac{x^3}{1/3} \frac{x^4}{1/3} \frac{x^5}{1/3} \frac$

Choosing a Profitable Column

$$\begin{aligned} x_{j} : 0 \to \Theta \\ x_{j_{k}} : x_{j_{k}}^{*} \to x_{j_{k}}^{*} - \Theta e_{kj} \\ \text{cost} : \sum_{k=1}^{m} c_{j_{k}} x_{j_{k}}^{*} \to \sum_{k=1}^{m} c_{j_{k}} x_{j_{k}}^{*} - \sum_{k=1}^{m} c_{j_{k}} \Theta e_{kj} + c_{j} \Theta \\ \Delta_{j} = \Theta \cdot \left(c_{j} - \sum_{k=1}^{m} c_{j_{k}} e_{kj} \right) = \Theta \cdot \left(c_{j} - z_{j} \right) = \Theta \cdot \overline{c}_{j} \end{aligned}$$

Theorem

If $\overline{c}_i \ge 0$ for all *j*, then we are at an optimum

Proof

$$\overline{\mathbf{c}} = \left[\overline{c}_1 \ \overline{c}_2 \ \dots \ \overline{c}_n\right]' \ge 0 \longrightarrow \overline{\mathbf{c}} = \mathbf{c} - \mathbf{z} \ge \mathbf{0} \longrightarrow \mathbf{c} \ge \mathbf{z}$$
$$\longrightarrow \text{ for any } \mathbf{y} \ge \mathbf{0}, \mathbf{c}' \mathbf{y} \ge \mathbf{z}' \mathbf{y}$$

$$\mathbf{A}_{j} = \sum_{k=1}^{m} e_{kj} \mathbf{A}_{j_{k}} = \mathbf{B} \begin{bmatrix} e_{1j} \\ \vdots \\ e_{mj} \end{bmatrix} \rightarrow \mathbf{A} = \mathbf{B} \begin{bmatrix} e_{11} & \cdots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mn} \end{bmatrix} = \mathbf{B} \mathbf{E} \rightarrow \mathbf{E} = \mathbf{B}^{-1} \mathbf{A}$$

For any $y \ge 0$,

$$\mathbf{c'y} \ge \mathbf{z'y} = \begin{bmatrix} \sum_{k=1}^{m} c_{j_k} e_{k1} & \cdots & \sum_{k=1}^{m} c_{j_k} e_{kn} \end{bmatrix} \cdot \mathbf{y}$$

$$= \begin{bmatrix} c_{j_1} & \cdots & c_{j_m} \end{bmatrix} \cdot \begin{bmatrix} e_{11} & \cdots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mn} \end{bmatrix} \cdot \mathbf{y}$$

$$= \begin{bmatrix} c_{j_1} & \cdots & c_{j_m} \end{bmatrix} \cdot \mathbf{E} \cdot \mathbf{y} = \begin{bmatrix} c_{j_1} & \cdots & c_{j_m} \end{bmatrix} \cdot \mathbf{B}^{-1} \mathbf{A} \cdot \mathbf{y}$$

$$= \begin{bmatrix} c_{j_1} & \cdots & c_{j_m} \end{bmatrix} \cdot \mathbf{B}^{-1} \mathbf{b}$$

$$= \begin{bmatrix} c_{j_1} & \cdots & c_{j_m} \end{bmatrix} \cdot \begin{bmatrix} x_{j_1}^* & \cdots & x_{j_m}^* \end{bmatrix} = \mathbf{c'x^*} \quad (\text{non-basic variables are 0})$$

$$\rightarrow \mathbf{c'y} \ge \mathbf{c'x^*}$$

 $\therefore x^*$ is a global optimum

Simplex Algorithm

procedure simplex

begin

```
opt ≔'no'; unbounded ≔'no';
```

(when either becomes 'yes' the algorithm terminates)

```
while opt ='no' and unbounded ='no' do
```

```
if \overline{c}_j \ge 0 for all j then opt :='yes'
```

else begin

choose any *j* such that $\overline{c}_j < 0$;

if $e_{kj} \leq 0$ for all k then unbounded :='yes'

else

find
$$\theta_0 = \min_{k|e_{kj}>0} \left[\frac{x_{j_k}}{e_{kj}}\right] = \frac{x_{j_l}}{e_{lj}}$$

$$\sum_{k=1}^{m} (x_{j_k}^* - \boldsymbol{\theta} \cdot \boldsymbol{e}_{kj}) \mathbf{A}_{j_k} + \boldsymbol{\theta} \cdot \mathbf{A}_j = \mathbf{b}$$

and pivot on e_{lj}

end

end

• Example

z=x1+x2+x3+x4+x5

-6	-3	-3	0	0	0
1	3	2	1	0	0
2	2	-1	0	1	0
3	-1	3	0	0	1

5. select column *j* that gives most negative \overline{c}_j or most negative $\Theta \cdot \overline{c}_j$ (more computation)

6. compute
$$\Theta = \min_{k \mid e_{kj} > 0} \frac{x_{j_k}}{e_{kj}}$$

7. pivot
8. repeat steps 3 - 7
until $\overline{c}_j \ge 0$ for all j

-9/2	3/2	0	3/2	0	0
1/2	3/2	1	1/2	0	0
5/2	7/2	0	1/2	1	0
3/2	-11/2	0	-3/2	0	1

Beginning the Simplex Algorithm

- How to obtain an initial BFS?
 - Use slack variables
 - $Ax \le b \longrightarrow Ax + Ix^s = b$, x^s are initial basic variables
 - What if b < 0? --> -Ax Ix^s = -b, then use artificial variables
 - Use artificial variables, then two-phase method
 - Ax=b --> Ax + Ix^a = b, x^a are initial basic variables
 - All the artificial variables are driven out of the basis

$$\rightarrow \begin{cases} \mathbf{x}^{a} = \mathbf{0} \\ x_{j_{k}} \ge 0, k = 1, ..., m \rightarrow \text{basic variables} \\ x_{j} = 0, \text{otherwise} \rightarrow \text{non} - \text{basic variables} \end{cases}$$

 \rightarrow original problem

• Two-phase method

- In phase I, minimize the cost function

$$\xi = \sum_{i=1}^m x_i^a$$

 $\begin{cases} \xi = 0 \text{ and all } x_i^a \text{'s are driven out of the basis : ok} \\ \xi > 0 \text{ : no feasible solution to the original problem} \\ \xi = 0 \text{ but some } x_i^a \text{'s remain in the basis :} \\ \text{ continue pivoting until we get a basis} \\ \text{ with the original variables} \end{cases}$

In the last case, $e_{kj} < 0$ can be a pivot because $\Theta = 0$

$$(\operatorname{recall}\sum_{k=1}^{m} (x_{j_k} - \Theta \cdot e_{kj}) \mathbf{A}_{j_k} + \Theta \cdot \mathbf{A}_{j} = \mathbf{b})$$

```
procedure two - phase
```

begin

```
infeasible :='no'; redundant :='no';
```

```
(Phase I may set these to 'yes')
```

Phase I :

introduce an artificial basis, \mathbf{x}_{i}^{a} ; call simplex with cost $\xi = \sum x_{i}^{a}$; if $\xi_{opt} > 0$ in Phase I then infeasible :='yes' else begin

if an artificial variable is in the basis and cannot be driven out $(e_{kj} = 0 \forall j)$

then redundant :=' yes' and omit the corresponding row;

Phase II:

```
call simplex with original cost
```

end

end

• Example

		x1 ^a	x2ª	xЗa	x1	x2	xЗ	x4	x5	
-z=	0	0	0	0	1	1	1	1	1	
_ح=	0	1	1	1	0	0	0	0	0	
	1	1	0	0	3	2	1	0	0	
	3	0	1	0	5	1	1	1	0	
	4	0	0	1	2	5	1	0	1	
$\begin{bmatrix} m \\ m \end{bmatrix} = \begin{bmatrix} m \\ m \end{bmatrix} = \begin{bmatrix} m \\ m \end{bmatrix}$										-
$\varsigma = \sum_{i=1}^{n} x_i$		x1 ^a	x2ª	хЗ ^а	x1	x2	xЗ	x4	х5	
Z=	0	0	0	0	1	1	1	1	1	m
` -ξ=	-8	0	0	0	-10	-8	-3	-1	-1	$\overline{c}_{j} = c_{j} - \sum_{k=1}^{j} e_{kj} c_{jk}$
x1ª=	1	1	0	0	3	2	1	0	0	κ=1
x2ª=	3	0	1	0	5	1	1	1	0	
хЗа=	4	0	0	1	2	5	1	0	1	

Beginning the Simplex Algorithm

		x1 ^a	x2ª	хЗa	x1	x2	xЗ	x4	x5
-z=	-3	0	-1	0	-4	0	0	0	1
<u>-ξ</u> =	-3/2	7/2	1	0	11/2	0	3/2	0	-1
x2=	1/2	1/2	0	0	3/2	1	1/2	0	0
x4=	5/2	-1/2	1	0	7/2	0	1/2	1	0
х3а=	3/2	-5/2	0	1	-11/2	0	-3/2	0	(1)
		x1 ^a	x2ª	хЗ ^а	x1	x2	xЗ	x4	x5
-z=	-9/2	x1 ^a 0	x2ª -1	x3ª -1	x1 3/2	x2 0	x3 3/2	x4 0	x5 0
−z= −ξ=	-9/2 0	x1 ^a 0 7/2	x2ª -1 1	x3 ^a -1 1	x1 3/2 0	x2 0 0	x3 3/2 0	x4 0 0	x5 0 0
-z= -ξ= x2=	-9/2 0 1/2	x1 ^a 0 7/2 1/2	x2 ^a -1 1 0	x3 ^a -1 1 0	x1 3/2 0 3/2	x2 0 0 1	x3 3/2 0 1/2	x4 0 0	x5 0 0 0
-z= -ξ= x2= x4=	-9/2 0 1/2 5/2	x1 ^a 0 7/2 1/2 -1/2	x2 ^a -1 1 0 1	x3 ^a -1 1 0 0	x1 3/2 0 3/2 7/2	x2 0 0 1 0	x3 3/2 0 1/2 1/2	x4 0 0 0 1	x5 0 0 0 0

This example gives an optimum point when Phase I is finished $\left(\overline{c}_{j} \geq 0 \forall j\right)$

Geometric Aspects of Pivoting

Geometric Aspects of Pivoting

		x1	x2	xЗ	x4	x5	x6	x7	
	-34	-1	-14	-6	0	0	0	0	
x4=	4	1	1	1	1	0	0	0	
x5=	2	(1)	0	0	0	1	0	0	
x6=	3	0	0	1	0	0	1	0	
x7=	6	0	3	1	0	0	0	1	
		_							
		x1	x2	xЗ	x4	x5	x6	x7	
	-32	-1	-14	-6	0	0	0	0	
x4=	2	0	1	(1)	1	-1	0	0	X ₂
x1=	0		0	0	\cap	1	\cap	\cap	
	2		0	0	0	T	0	0	(2)
х6=	2 3	1 0	0	0	0	1 0	1	0	(2)

		x1	x2	xЗ	x4	x5	x6	x7	
	-4	0	0	-2/3	1	0	0	13/3	
x2=	2	0	1	1/3	0	0	0	1/3	
x1=	2	1	0	2/3	1	0	0	-1/3	$\overline{(5)}$
x6=	3	0	0	1	0	0	1	0	
х5=	0	0	0	-2/3	-1	1	0	1/3	6
-		-							
		x1	x2	xЗ	x4	x5	x6	x7	
	-2	x1 1	x2 0	x3 0	x4 2	x5 0	x6 0	x7 4	
x2=	-2 1	x1 1 -1/2	x2 0 1	x3 0 0	x4 2 -1/2	x5 0 0	x6 0 0	x7 4 1/2	$\begin{array}{c c} 1 \\ x_2 \\ \hline \end{array} \\ \hline $ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
x2= x3=	-2 1 3	x1 1 -1/2 3/2	x2 0 1 0	x3 0 0 1	x4 2 -1/2 3/2	x5 0 0 0	x6 0 0 0	x7 4 1/2 -1/2	4=5
x2= x3= x6=	-2 1 3 0	x1 1 -1/2 3/2 -3/2	x2 0 1 0 0	x3 0 0 1 0	x4 2 -1/2 3/2 -3/2	x5 0 0 0 0	x6 0 0 0 1	x7 4 1/2 -1/2 1/2	$\begin{array}{c c} 1 \\ x_{2} \\ 4 = 5 \\ \hline 6 \end{array}$

• Taking an alternative path

		x1	x2	xЗ	x4	x5	x6	x7	
	-2	-1	0	0	0	0	4/3	14/3	
x4=	0	(1)	0	0	1	0	-2/3	-1/3	
х5=	2	1	0	0	0	1	0	0	3
х3=	3	0	0	1	0	0	1	0	
x2=	1	0	1	0	0	0	-1/3	1/3	(3) = (4)
		<u> </u>							
		x1	x2	xЗ	x4	x5	x6	x7	
	-2	0	0	0	1	0	2/3	13/3	x (2) x_{T}
x1=	0	1	0	0	1	0	-2/3	-1/3	∧ <u>∕</u>
х5=	2	0	0	0	-1	1	2/3	1/3	$\overline{(4)}$
х3=	3	0	0	1	0	0	1	0	
x2=	1	0	1	0	0	0	-1/3	1/3	

Integer Linear Programming

• Problem

 $\min \mathbf{c'x}$ $\mathbf{Ax} = \mathbf{b}$

- $x \ge 0$
- x:integer

• Cutting-Plane Algorithm

 Add constraints to an ILP that do not exclude integer feasible points until the solution to the LP relaxation is integer

$$\mathbf{A}\mathbf{x} = \mathbf{b} \to \mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \mathbf{B}^{-1}\mathbf{b} \to \mathbf{E}\mathbf{x} = \widetilde{\mathbf{b}}$$

$$x_{j_{k}} + \sum_{j:\mathbf{A}_{j}\notin B} e_{ij}x_{j} = \widetilde{b}_{i}, A_{j_{k}} \in B$$
Let $e_{ij} = \lfloor e_{ij} \rfloor + f_{ij}$ and $\widetilde{b}_{i} = \lfloor \widetilde{b}_{i} \rfloor + f_{i}$
Then $x_{j_{k}} + \sum_{j:\mathbf{A}_{j}\notin B} (\lfloor e_{ij} \rfloor + f_{ij})x_{j} = \lfloor \widetilde{b}_{i} \rfloor + f_{i}$
 $\to x_{j_{k}} + \sum_{j:\mathbf{A}_{j}\notin B} \lfloor e_{ij} \rfloor x_{j} - \lfloor \widetilde{b}_{i} \rfloor = f_{i} - \sum_{j:\mathbf{A}_{j}\notin B} f_{ij}x_{j}$
For $x_{j_{k}}$ and x_{j} to be integers, $f_{i} - \sum_{j:\mathbf{A}_{j}\notin B} f_{ij}x_{j}$ must be an integer. (1)

Because $0 \le f_i < 1$, $0 \le f_{ij} < 1$, and $x_j \ge 0$, $f_i - \sum_{j:A_j \notin B} f_{ij} x_j < 1$. (2)

From (1) and (2), $f_i - \sum_{j:A_j \notin B} f_{ij} x_j \le 0$.

 \rightarrow This excludes the solution ($x_j = 0$, $f_i > 0$) of the relaxation LP. But does not exclude any integer feasible point.

$$\rightarrow$$
 Add $-\sum_{j:\mathbf{A}_j \notin B} f_{ij} x_j + x^s = -f_i$ as a new constraint (Gomory cut).