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Optimization Problems

Optimization Problems
• General nonlinear programming problem

– minimize   f(x)
subject to gi(x) ≥ 0  i=1,...,m

hj(x)=0    j=1,...,p
x ∈ Rn

• Convex programming problem
– f : convex

gi: concave
hj: linear

– local optimum = global optimum
• Linear programming problem

– f,gi, hj: linear (can be considered as convex or concave)
– select a solution from a finite set of possible solutions
– Simplex algorithm (1947 by G. B. Dantzig)

• Integer linear programming problem
– integer-valued coordinates

continuous
variables,
continuous
optimization

discrete variables
combinatorial
optimization

boundary



Definitions 

Definitions
• Instance of an optimization problem

– given (F, c)
where F: domain of feasible points

c: F -> R1 : cost function
find f ∈ F for which c(f) ≤ c(y) for all y ∈ F
-> f is a globally optimal solution

– e.g. instance of Traveling Salesman Problem (vertices 
and edges are given)

• Optimization problem 
– a set of instances of an optimization problem
– e.g. Traveling Salesman Problem

• Locally optimal solution
– c(f) ≤ c(g) for all g ∈ N(f)

where N is a neighborhood defined for each instance
– e.g. Nε (f) = {x: x ∈ F and ||x-f|| ≤ ε}

F
f



Definitions

• Convex combination of x, y ∈ Rn is any point of the form:
z = λx + (1-λ)y, λ ∈ R1 and 0 ≤ λ ≤ 1

• A set S ⊆ Rn is convex if it contains all convex 
combinations of pairs of points x, y ∈ S

• Lemma 1
The intersection of any number of convex sets is convex.
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Definitions

• Convex Function
– Let S ⊆ Rn be a convex set. Function c: S -> R1 is convex 

in S if c(λx + (1-λ)y) ≤ λc(x) + (1-λ)c(y), λ∈R1 and 0 ≤ λ ≤ 1 
for all x, y ∈ S

• Lemma 2
Let c(x) be a convex function on a convex set S. Then
set St = {x : c(x) ≤ t, x ∈ S} is convex.

Proof
For any x, y ∈ St, λx + (1-λ)y is in S and
c(λx + (1-λ)y) ≤ λc(x) + (1-λ)c(y) ≤ λt + (1-λ)t ≤ t 
=> λx + (1-λ)y is in St => St is convex
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Convex Programming Problem

Convex Programming Problem
• Theorem 1

For an instance of an optimization problem (F, c) and 
neighborhood Nε (x) = {y : y ∈ F and ||x-y|| ≤ ε}, where     
F ⊆ Rn is a convex set and c is a convex function, a 
locally optimal point with respect to Nε is also a globally 
optimal point for any ε > 0.

Proof
Choose a λ such that
y = λx + (1-λ)z lies within Nε (x)
c(y) = c(λx + (1-λ)z) ≤ λc(x) + (1-λ)c(z)
=> c(z) ≥ (c(y) - λ c(x))/(1- λ)

≥ (c(x) - λ c(x))/(1- λ) = c(x)

xy
z

any point
in F

x is a local optimum point



Convex Programming Problem

• Convex programming problem
minimize f(x)
subject to gi(x) ≥ 0  i=1,...,m

hj(x)=0 j=1,...,p
x ∈ Rn

where
f: convex
gi: concave
hj: linear

F = {x : gi(x) ≥ 0}
= {x : -gi(x) ≤ 0}

=> F is convex by Lemma 1 and Lemma 2
=> For (F, f), local optimum = global optimum by theorem 1 

convex function



Linear Programming Problem

Linear Programming Problem
• General Form of LP

• Canonical Form
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Linear Programming Problem

• Conversion
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Examples

Examples
• Diet Problem
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Examples

• Hierarchical Compaction
– Exploit design hierarchy to reduce computation time
– Compact bottom-up
– Fixed-cell

• Cell abstraction with protection frame and terminal frame
• Interconnections among Sub-cells require routing

– Stretching and pitch matching
• Connection by abutment

– Limitations of the previous hierarchical compactor
• Protection frame or fixed terminal location

--> Area is wasted.
• Stretching and pitch-matching

--> Sub-cells can be distorted.
--> New master cells are generated.
--> Original layout hierarchy is lost.

– David Marple, "A hierarchy preserving hierarchical 
compactor," Proc. 27th Design Automation Conference, 
1990.
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Examples

– Constraints
• Flat compaction

– AX ≥ B,  A: incidence matrix
– Each constraint is related with two object locations. Each row 

of A has one '-1' and one '1'.
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Examples

• Hierarchical compaction
– Each constraint may be related with more than two object 

locations.

x1 + x2 + 5 ≤ x3 + x4

x2

x3

x4

5

sub-cell A sub-cell B

x1

x1 + x2 + 4 ≤ x3 - x2
or

x1 + 2x2 + 4 ≤ x3

x2
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x2
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sub-cell C sub-cell C (reflect)

x1



Examples

– Compaction algorithm
• Linear program

– minimize         xt=CTX=[000...1]X
subject to        AX ≥ b

X ≥ 0
where xt is the location of the sink vertex

– Example:
x1 + 2 ≤ x2
x2 - 1 ≤ x3
x1 + 5 ≤ x3
x1 + 2x2 + 4 ≤ x3
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Basic Feasible Solution

Basic Feasible Solution
• Definitions

– Given a standard form

– Basis of A
• linearly independent collection of columns of A

• can be represented by an m x m matrix
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Basic Feasible Solution

– Basic solution

– Basic feasible solution (BFS)
• basic solution in F (domain of feasible points), i.e. x ≥ 0
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Basic Feasible Solution

• Lemma 1
– Let x be a BFS of

Ax=b
x ≥ 0

corresponding to the basis B. Then there exists a cost 
vector c such that x is the unique optimal solution of the 
LP

min c'x
Ax=b
x ≥ 0

• Proof
– Let cj=0  if Aj ∈ B

1  otherwise
Then c'x=0 which is optimum (c is non-negative).
If there is another feasible solution y such that c'y=0, 
then yj=0 for Aj ∉ B. Other yis are computed by B-1b.
--> y=x --> unique



Basic Feasible Solution

• Theorem 1
– If F is not empty, then at least one BFS exists.

• Proof
– WLOG, assume one solution is [x1,...,xn], where x1,...,xt>0 

and xt+1,...xn=0. Then 
A1x1+...+Atxt=b (1)

Let r=rank of [A1,...,At] ≤ m (A is an m x n matrix).
WLOG, assume first r columns are linearly independent.
Rewrite equations (1) as follows

A1x1+...+Arxr=b-Ar+1xr+1-...-Atxt (2)
Solving (2) gives

[x1,...,xr]'=β-αr+1xr+1-...-αtxt
As xt-->0, some of x1,...,xr increase or decrease. If any of 
x1,...,xr becomes 0, then stop decreasing xt.
--> feasible solution with more zero component
Continue to obtain a feasible solution with t ≤ m nonzero 
components. The corresponding columns are 
independent. Otherwise, we can reduce t further until t=r.



Geometry of Linear Program

Geometry of Linear Program
• Definitions

– Example
a1x1+a2x2+a3x3=b --> dimension: 3 -> 2
x ≥ 0

x1

x3

b/a1

b/a2

b/a3

x2



Geometry of Linear Program

– Linear subspace S of Rd

S = {x ∈ Rd : aj1x1+...+ajdxd= 0, j=1,...m}
--> dimension=d-rank([aij])=d-m

– Affine subspace A of Rd

A = {x ∈ Rd : aj1x1+...+ajdxd= bj, j=1,...m}
= {u+x : x ∈ S}

– Hyperplane
An affine subspace of Rd of dimension d-1
{x ∈ Rd : a1x1+...+adxd= b}
Defines two halfspaces
{x ∈ Rd : a1x1+...+adxd ≥ b}
{x ∈ Rd : a1x1+...+adxd ≤ b}

u



Geometry of Linear Program

– Convex polytope
• Bounded nonempty intersection of a finite number of 

halfspaces
• Every point in a convex polytope is the convex 

combination of its vertices (convex hull)

x2

x3

x1

(2,2,0)

(2,0,0)

(2,0,2)

(0,1,3)
(0,0,3) (1,0,3)

(0,0,0)

(0,2,0)

x1 +  x2 +  x3 ≤ 4
x1 ≤ 2

x3 ≤ 3
3x2 +  x3 ≤ 6

x1 ≥ 0
x2 ≥ 0 

x3 ≥ 0



Geometry of Linear Program

• Polytope and LP
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Geometry of Linear Program
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Geometry of Linear Program

– Example 1

– Example 2

x1 +  x2 +  x3 ≤ 4
x1 ≤ 2

x3 ≤ 3
3x2 +  x3 ≤ 6

x1, ..., x3 ≥ 0

x1 +  x2 +  x3 + x4 = 4
x1 + x5 = 2

x3 + x6 = 3
3x2 +  x3 + x7 = 6

x1, ..., x7 ≥ 0

x4 = 4 - (x1 +  x2 +  x3) ≥ 0

x1 +  x2 +  x3 = b x1 +  x2 ≤ b

x1
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x2

b b
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Geometry of Linear Program

• Theorem 2

• Proof
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Geometry of Linear Program
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Geometry of Linear Program
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Geometry of Linear Program
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Geometry of Linear Program

• Theorem 3
In any instance of LP with bounded F, there is an 
optimal vertex of P (optimal BFS).

• Proof
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Moving from BFS to BFS

Moving from BFS to BFS
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Moving from BFS to BFS

• Theorem 4

• Proof
{ } basis new a is A,...,A,A,A,...,A
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Moving from BFS to BFS

• Theorem 5

• Proof
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Tableau

Tableau
• Example

3x1 + 2x2 + x3           = 1
5x1 +  x2 + x3 + x4      = 3
2x1 + 5x2 + x3      + x5 = 4

Select B={A3, A4, A5} --> make an identity matrix

x1=x2=0, x3=1, x4=2, x5=3 : BFS
x3, x4, x5 : basic variables

x1 x2 x3 x4 x5

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1



Tableau

x1 x2 x3 x4 x5

1/3 1 2/3 1/3 0 0

4/3 0 -7/3 -2/3 1 0

10/3 0 11/3 1/3 0 1

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1
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Choosing a Profitable Column

Choosing a Profitable Column

( )

[ ]
yzyc0y

zc0zccc

Proof

Theorem

′≥′≥→
≥→≥−=→≥′=

≥

⋅=−⋅=⎟
⎠

⎞
⎜
⎝

⎛
−⋅=

+−→

−→

→

∑

∑∑∑

=

===

 ,any for 
0...

optimuman at  are  then we, allfor  0 If

θθθΔ

θθ:cost

θ:

θ0:

21

1

11

*

1

*

**

n

j

jjj

m

k
kjjjj

j

m

k
kjj

m

k
jj

m

k
jj

kjjjj

j

ccc

jc

czcecc

cecxcxc

exxx

x

k

kkkkk

kkk



Choosing a Profitable Column
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Simplex Algorithm

Simplex Algorithm

end
end        

on pivot  and                

minθ find                

else            

yes'':unbounded then  allfor  0 if            

;0such that  any  choose            
begin else        

yes'':opt then  allfor  0 if        
do no''unbounded and no''opt     while

s) terminatealgorithm  theyes'' becomeseither (when     
;no'':unbounded;no'':opt    
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Simplex Algorithm

• Example
z=x1+x2+x3+x4+x5

0 1 1 1 1 1

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

-6 -3 -3 0 0 0

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1

( )( )
( )( ) 31311121   
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Simplex Algorithm

-6 -3 -3 0 0 0

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1

jc

e
x

c

c
j

j

kj

j

ek

j

j

k

kj

 allfor  0 until   
 7-3 stepsrepeat  8.

pivot  .7

minθ compute6.

n)computatio (more θ negativemost    

or   negativemost    
gives that column select .5
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⋅

> -9/2 3/2 0 3/2 0 0

1/2 3/2 1 1/2 0 0

5/2 7/2 0 1/2 1 0

3/2 -11/2 0 -3/2 0 1



Beginning the Simplex Algorithm

Beginning the Simplex Algorithm
• How to obtain an initial BFS?

– Use slack variables
• Ax ≤ b --> Ax + Ixs = b, xs are initial basic variables
• What if b < 0? --> -Ax - Ixs = -b, then use artificial variables

– Use artificial variables, then two-phase method
• Ax=b --> Ax + Ixa = b, xa are initial basic variables
• All the artificial variables are driven out of the basis

problem original

 variablesbasicnonotherwise,0

 variablesbasic,...,1,0

→

⎪
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Beginning the Simplex Algorithm

• Two-phase method
– In phase I, minimize the cost function

( ) )θθ (recall

0θ becausepivot  a becan  0 case,last  In the

 variablesoriginal  with the          
 basis aget   weuntil pivoting continue           

 :basis in theremain  s' somebut  0ξ
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Beginning the Simplex Algorithm

end
end    

cost originalth simplex wi call        
:II Phase

row; ingcorrespond omit the and yes'':redundant  then           

)0(out driven  becannot  and basis in the is  variableartificialan  if        
begin else    

yes'':infeasible then I Phasein  0ξ if    
;ξcost th simplex wi call    

; basis, artificialan  introduce    
 :I Phase

)yes''  toset thesemay  I (Phase    
;no'':redundant;no'':infeasible    

begin
phase- twoprocedure
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Beginning the Simplex Algorithm

• Example
x1a x2a x3a x1 x2 x3 x4 x5

-z= 0 0 0 0 1 1 1 1 1

-ξ= 0 1 1 1 0 0 0 0 0

1 1 0 0 3 2 1 0 0

3 0 1 0 5 1 1 1 0

4 0 0 1 2 5 1 0 1

x1a x2a x3a x1 x2 x3 x4 x5

-z= 0 0 0 0 1 1 1 1 1

-ξ= -8 0 0 0 -10 -8 -3 -1 -1

x1a= 1 1 0 0 3 2 1 0 0

x2a= 3 0 1 0 5 1 1 1 0

x3a= 4 0 0 1 2 5 1 0 1
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Beginning the Simplex Algorithm

x1a x2a x3a x1 x2 x3 x4 x5

-z= -1/3 -1/3 0 0 0 1/3 2/3 1 1

-ξ= -14/3 10/3 0 0 0 -4/3 1/3 -1 -1

x1= 1/3 1/3 0 0 1 2/3 1/3 0 0

x2a= 3/4 -5/3 1 0 0 -7/3 -2/3 1 0

x3a= 10/3 -2/3 0 1 0 11/3 1/3 0 1
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kjjj cecc ∑
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1
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i

a
ix

1
ξ

x1a x2a x3a x1 x2 x3 x4 x5

-z= -1/2 -1/2 0 0 -1/2 0 1/2 1 1

-ξ= -4 4 0 0 2 0 1 -1 -1

x2= 1/2 1/2 0 0 3/2 1 1/2 0 0

x2a= 5/2 -1/2 1 0 7/2 0 1/2 1 0

x3a= 3/2 -15/6 0 1 -11/2 0 -3/2 0 1



Beginning the Simplex Algorithm

x1a x2a x3a x1 x2 x3 x4 x5

-z= -3 0 -1 0 -4 0 0 0 1

-ξ= -3/2 7/2 1 0 11/2 0 3/2 0 -1

x2= 1/2 1/2 0 0 3/2 1 1/2 0 0

x4= 5/2 -1/2 1 0 7/2 0 1/2 1 0

x3a= 3/2 -5/2 0 1 -11/2 0 -3/2 0 1

x1a x2a x3a x1 x2 x3 x4 x5

-z= -9/2 0 -1 -1 3/2 0 3/2 0 0

-ξ= 0 7/2 1 1 0 0 0 0 0

x2= 1/2 1/2 0 0 3/2 1 1/2 0 0

x4= 5/2 -1/2 1 0 7/2 0 1/2 1 0

x5= 3/2 -5/2 0 1 -11/2 0 -3/2 0 1

This example gives an optimum point when Phase I is finished ( )jc j ∀≥ 0



Geometric Aspects of Pivoting

Geometric Aspects of Pivoting
x1 x2 x3 x4 x5 x6 x7

-34 -1 -14 -6 0 0 0 0

x4= 4 1 1 1 1 0 0 0

x5= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 6 0 3 1 0 0 0 1

1

x1 x2 x3 x4 x5 x6 x7

-32 -1 -14 -6 0 0 0 0

x4= 2 0 1 1 1 -1 0 0

x1= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 6 0 3 1 0 0 0 1

2

x2

x3

x11
2



Geometric Aspects of Pivoting

x1 x2 x3 x4 x5 x6 x7

-20 0 -8 0 6 -5 0 0

x3= 2 0 1 1 1 -1 0 0

x1= 2 1 0 0 0 1 0 0

x6= 1 0 -1 0 -1 1 1 0

x7= 4 0 2 0 -1 1 0 1

3

x1 x2 x3 x4 x5 x6 x7

-4 0 0 8 14 -13 0 0

x2= 2 0 1 1 1 -1 0 0

x1= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 0 0 0 -2 -3 3 0 1

4

x2

x3

x1
1

2
4

3



Geometric Aspects of Pivoting

x1 x2 x3 x4 x5 x6 x7

-4 0 0 -2/3 1 0 0 13/3

x2= 2 0 1 1/3 0 0 0 1/3

x1= 2 1 0 2/3 1 0 0 -1/3

x6= 3 0 0 1 0 0 1 0

x5= 0 0 0 -2/3 -1 1 0 1/3

5

x1 x2 x3 x4 x5 x6 x7

-2 1 0 0 2 0 0 4

x2= 1 -1/2 1 0 -1/2 0 0 1/2

x3= 3 3/2 0 1 3/2 0 0 -1/2

x6= 0 -3/2 0 0 -3/2 0 1 1/2

x5= 2 1 0 0 0 1 0 0

6

x2

x3

x11
2

4

3

5

6

=



Geometric Aspects of Pivoting

• Taking an alternative path 
x1 x2 x3 x4 x5 x6 x7

-34 -1 -14 -6 0 0 0 0

x4= 4 1 1 1 1 0 0 0

x5= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 6 0 3 1 0 0 0 1

1

2

x2

x3

x11
2

  x1 x2 x3 x4 x5 x6 x7 

 -6 -1 0 -4/3 0 0 0 14/3 

x4= 2 1 0 2/3 1 0 0 -1/3 

x5= 2 1 0 0 0 1 0 0 

x6= 3 0 0 1 0 0 1 0 

x2= 2 0 1 1/3 0 0 0 1/3 



Geometric Aspects of Pivoting

3

4

x2

x3

x11
2

43

  x1 x2 x3 x4 x5 x6 x7 

 -2 -1 0 0 0 0 4/3 14/3 

x4= 0 1 0 0 1 0 -2/3 -1/3 

x5= 2 1 0 0 0 1 0 0 

x3= 3 0 0 1 0 0 1 0 

x2= 1 0 1 0 0 0 -1/3 1/3 

  x1 x2 x3 x4 x5 x6 x7 

 -2 0 0 0 1 0 2/3 13/3 

x1= 0 1 0 0 1 0 -2/3 -1/3 

x5= 2 0 0 0 -1 1 2/3 1/3 

x3= 3 0 0 1 0 0 1 0 

x2= 1 0 1 0 0 0 -1/3 1/3 

=



Integer Linear Programming

Integer Linear Programming
• Problem

integer :

 min

x
0x

bAx
xc

≥
=

′

Feasible region of LP

Decreasing 
cost

Optimum of ILP

Optimum of LP

1x

2x



Integer Linear Programming

• Cutting-Plane Algorithm 

0x
bAx
xc

≥
=

′ min
ILP  theof Relaxation

x*, LP solution

Decreasing 
cost

x0, ILP solution

Feasible
set

1x

2x

Rounded x*



Integer Linear Programming

– Add constraints to an ILP that do not exclude integer 
feasible points until the solution to the LP relaxation is 
integer 

Decreasing cost

x*
x* x*=x0



Integer Linear Programming
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