
Linear Programming
(4541.554 Introduction to Computer-Aided Design)

School of EECS
Seoul National University

Optimization Problems

Optimization Problems
• General nonlinear programming problem

– minimize f(x)
subject to gi(x) ≥ 0 i=1,...,m

hj(x)=0 j=1,...,p
x ∈ Rn

• Convex programming problem
– f : convex

gi: concave
hj: linear

– local optimum = global optimum
• Linear programming problem

– f,gi, hj: linear (can be considered as convex or concave)
– select a solution from a finite set of possible solutions
– Simplex algorithm (1947 by G. B. Dantzig)

• Integer linear programming problem
– integer-valued coordinates

continuous
variables,
continuous
optimization

discrete variables
combinatorial
optimization

boundary

Definitions

Definitions
• Instance of an optimization problem

– given (F, c)
where F: domain of feasible points

c: F -> R1 : cost function
find f ∈ F for which c(f) ≤ c(y) for all y ∈ F
-> f is a globally optimal solution

– e.g. instance of Traveling Salesman Problem (vertices
and edges are given)

• Optimization problem
– a set of instances of an optimization problem
– e.g. Traveling Salesman Problem

• Locally optimal solution
– c(f) ≤ c(g) for all g ∈ N(f)

where N is a neighborhood defined for each instance
– e.g. Nε (f) = {x: x ∈ F and ||x-f|| ≤ ε}

F
f

Definitions

• Convex combination of x, y ∈ Rn is any point of the form:
z = λx + (1-λ)y, λ ∈ R1 and 0 ≤ λ ≤ 1

• A set S ⊆ Rn is convex if it contains all convex
combinations of pairs of points x, y ∈ S

• Lemma 1
The intersection of any number of convex sets is convex.

x

y

a

b

z
1-λ

λ

a

b convex set non-convex set

Definitions

• Convex Function
– Let S ⊆ Rn be a convex set. Function c: S -> R1 is convex

in S if c(λx + (1-λ)y) ≤ λc(x) + (1-λ)c(y), λ∈R1 and 0 ≤ λ ≤ 1
for all x, y ∈ S

• Lemma 2
Let c(x) be a convex function on a convex set S. Then
set St = {x : c(x) ≤ t, x ∈ S} is convex.

Proof
For any x, y ∈ St, λx + (1-λ)y is in S and
c(λx + (1-λ)y) ≤ λc(x) + (1-λ)c(y) ≤ λt + (1-λ)t ≤ t
=> λx + (1-λ)y is in St => St is convex

x y a

c(a)

z

a

c(a)

t

x y

Convex Programming Problem

Convex Programming Problem
• Theorem 1

For an instance of an optimization problem (F, c) and
neighborhood Nε (x) = {y : y ∈ F and ||x-y|| ≤ ε}, where
F ⊆ Rn is a convex set and c is a convex function, a
locally optimal point with respect to Nε is also a globally
optimal point for any ε > 0.

Proof
Choose a λ such that
y = λx + (1-λ)z lies within Nε (x)
c(y) = c(λx + (1-λ)z) ≤ λc(x) + (1-λ)c(z)
=> c(z) ≥ (c(y) - λ c(x))/(1- λ)

≥ (c(x) - λ c(x))/(1- λ) = c(x)

xy
z

any point
in F

x is a local optimum point

Convex Programming Problem

• Convex programming problem
minimize f(x)
subject to gi(x) ≥ 0 i=1,...,m

hj(x)=0 j=1,...,p
x ∈ Rn

where
f: convex
gi: concave
hj: linear

F = {x : gi(x) ≥ 0}
= {x : -gi(x) ≤ 0}

=> F is convex by Lemma 1 and Lemma 2
=> For (F, f), local optimum = global optimum by theorem 1

convex function

Linear Programming Problem

Linear Programming Problem
• General Form of LP

• Canonical Form
Njx

Njx
Mib

Mib

j

j

i

i

∈

∈≥
∈≥

∈=

nedunconstrai

0

subject to
minimize

x'a

x'a

xc'

i

i

jx
ib

j

i

∀≥
∀≥

0

subject to
minimize

x'a

xc'

i

• Standard Form

jx
ib

j

i

∀≥
∀=

0

subject to
minimize

x'a

xc'

i

Linear Programming Problem

• Conversion

ablesslack vari ofvector :

 variablessurplus ofvector :

0

0nedunconstrai

s
0s

bsAx
bAx

s
0s

bsAx
bAx

bAx
bAx

bAx

⎩
⎨
⎧

≥
=+

⇒≤

⎩
⎨
⎧

≥
=−

⇒≥

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

≥

−=

⇒

⎩
⎨
⎧

−≥−
≥

⇒=

−

+

−+

j

j

jjj

j

x

x

xxx

x

Examples

Examples
• Diet Problem

day)per required is nutrient ofmgr least (at
nutrient each for t requiremen :

...) kimchi, of1gr in nutrient ofmgr (
foodeach ofunit oneper nutrient each ofamount :

...) kimchi, ofgr (foodeach ofamount :

...) kimchi, ofwon/1gr (foodeach ofcost unit :
where

subject to
minimize

ib

ia

x

c

i

ij

j

j

b

A

x

c

0x
bAx

xc'

≥
≥

Examples

• Hierarchical Compaction
– Exploit design hierarchy to reduce computation time
– Compact bottom-up
– Fixed-cell

• Cell abstraction with protection frame and terminal frame
• Interconnections among Sub-cells require routing

– Stretching and pitch matching
• Connection by abutment

– Limitations of the previous hierarchical compactor
• Protection frame or fixed terminal location

--> Area is wasted.
• Stretching and pitch-matching

--> Sub-cells can be distorted.
--> New master cells are generated.
--> Original layout hierarchy is lost.

– David Marple, "A hierarchy preserving hierarchical
compactor," Proc. 27th Design Automation Conference,
1990.

A1

A3

A2
A

master
cell

Examples

– Constraints
• Flat compaction

– AX ≥ B, A: incidence matrix
– Each constraint is related with two object locations. Each row

of A has one '-1' and one '1'.

1 2 3
b1 b2

b3
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−

b3

b2

b1

x3

x2

x1

101

110

011

x1 + 3 ≤ x2

x1 x2
3

Examples

• Hierarchical compaction
– Each constraint may be related with more than two object

locations.

x1 + x2 + 5 ≤ x3 + x4

x2

x3

x4

5

sub-cell A sub-cell B

x1

x1 + x2 + 4 ≤ x3 - x2
or

x1 + 2x2 + 4 ≤ x3

x2

x3

x2

4

sub-cell C sub-cell C (reflect)

x1

Examples

– Compaction algorithm
• Linear program

– minimize xt=CTX=[000...1]X
subject to AX ≥ b

X ≥ 0
where xt is the location of the sink vertex

– Example:
x1 + 2 ≤ x2
x2 - 1 ≤ x3
x1 + 5 ≤ x3
x1 + 2x2 + 4 ≤ x3

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

≥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−
−

4

5

1-

2

x3

x2

x1

121
101
110
011

Basic Feasible Solution

Basic Feasible Solution
• Definitions

– Given a standard form

– Basis of A
• linearly independent collection of columns of A

• can be represented by an m x m matrix

. isrank theand)(matrix an is Assume

subject to
minimize

mnmnm <×
≥

=

A
0x

bAx

xc'

{ }
mjj AA ,...,

1
=Β

[]
mjj AAB ,...,

1
=

Basic Feasible Solution

– Basic solution

– Basic feasible solution (BFS)
• basic solution in F (domain of feasible points), i.e. x ≥ 0

[]

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪⎩

⎪
⎨
⎧

==

∉=

mj

j

jj

mn

n

j

j

jj

b

b

x

x

b

b

x

x

x

mkkx

x

m

m

k

k

MM

MM

1

11

1

1-

1

1

 variablebasic:

,...,1,B ofcomponent th

for 0

0...AA

...AA

b

A B

Basic Feasible Solution

• Lemma 1
– Let x be a BFS of

Ax=b
x ≥ 0

corresponding to the basis B. Then there exists a cost
vector c such that x is the unique optimal solution of the
LP

min c'x
Ax=b
x ≥ 0

• Proof
– Let cj=0 if Aj ∈ B

1 otherwise
Then c'x=0 which is optimum (c is non-negative).
If there is another feasible solution y such that c'y=0,
then yj=0 for Aj ∉ B. Other yis are computed by B-1b.
--> y=x --> unique

Basic Feasible Solution

• Theorem 1
– If F is not empty, then at least one BFS exists.

• Proof
– WLOG, assume one solution is [x1,...,xn], where x1,...,xt>0

and xt+1,...xn=0. Then
A1x1+...+Atxt=b (1)

Let r=rank of [A1,...,At] ≤ m (A is an m x n matrix).
WLOG, assume first r columns are linearly independent.
Rewrite equations (1) as follows

A1x1+...+Arxr=b-Ar+1xr+1-...-Atxt (2)
Solving (2) gives

[x1,...,xr]'=β-αr+1xr+1-...-αtxt
As xt-->0, some of x1,...,xr increase or decrease. If any of
x1,...,xr becomes 0, then stop decreasing xt.
--> feasible solution with more zero component
Continue to obtain a feasible solution with t ≤ m nonzero
components. The corresponding columns are
independent. Otherwise, we can reduce t further until t=r.

Geometry of Linear Program

Geometry of Linear Program
• Definitions

– Example
a1x1+a2x2+a3x3=b --> dimension: 3 -> 2
x ≥ 0

x1

x3

b/a1

b/a2

b/a3

x2

Geometry of Linear Program

– Linear subspace S of Rd

S = {x ∈ Rd : aj1x1+...+ajdxd= 0, j=1,...m}
--> dimension=d-rank([aij])=d-m

– Affine subspace A of Rd

A = {x ∈ Rd : aj1x1+...+ajdxd= bj, j=1,...m}
= {u+x : x ∈ S}

– Hyperplane
An affine subspace of Rd of dimension d-1
{x ∈ Rd : a1x1+...+adxd= b}
Defines two halfspaces
{x ∈ Rd : a1x1+...+adxd ≥ b}
{x ∈ Rd : a1x1+...+adxd ≤ b}

u

Geometry of Linear Program

– Convex polytope
• Bounded nonempty intersection of a finite number of

halfspaces
• Every point in a convex polytope is the convex

combination of its vertices (convex hull)

x2

x3

x1

(2,2,0)

(2,0,0)

(2,0,2)

(0,1,3)
(0,0,3) (1,0,3)

(0,0,0)

(0,2,0)

x1 + x2 + x3 ≤ 4
x1 ≤ 2

x3 ≤ 3
3x2 + x3 ≤ 6

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0

Geometry of Linear Program

• Polytope and LP
[]
[]

[]
[]
[][] []

P polytope),...,(ˆ

)(,...,1,0

,...,1,0ˆˆ

,...,1,ˆˆ

,...,1,ˆˆ

ˆ|ˆ

ˆˆ

|)(
|)(
|)(

1

1

1

1

∈=→

⎪
⎩

⎪
⎨

⎧

−=≥

=≥−
→≥

=−=

==+

=→

=→

=−×→=

=−×→
=×−×→=

−

−

=

−

=
+−

−

=
+−

−−−

∑

∑

∑

mn

j

mn

j
jiji

mn

j
jijiimn

mn

j
iimnjij

iij

xxx

mnjx

mixab

mixabx

mibxxa

ba

mnm
mnm

mmmnm

0x

xI

bxI|A

bBxIbBAxB
bxB

bxbAx

111

Geometry of Linear Program

[] []

[]
[][] []

∑
−

=
+−

+

−−−

=−=

=→

=−×→=

⎪⎩

⎪
⎨
⎧

≥

≥
↔

⎩
⎨
⎧

≥
=

mn

j
jijiimn

in-m

iij

iij

mixabx

x

ba

mnm

ba

1

1

,...,1,ˆˆ

by obtained becan ,ˆfor solvingAfter

ˆ|ˆ

|)(

ˆ

ˆˆˆ

x

xI

bBxIbBAxB

0x

x
0x

bAx

11

Geometry of Linear Program

– Example 1

– Example 2

x1 + x2 + x3 ≤ 4
x1 ≤ 2

x3 ≤ 3
3x2 + x3 ≤ 6

x1, ..., x3 ≥ 0

x1 + x2 + x3 + x4 = 4
x1 + x5 = 2

x3 + x6 = 3
3x2 + x3 + x7 = 6

x1, ..., x7 ≥ 0

x4 = 4 - (x1 + x2 + x3) ≥ 0

x1 + x2 + x3 = b x1 + x2 ≤ b

x1

x3

x2

b b

b

x1

x2

b
b

Geometry of Linear Program

• Theorem 2

• Proof

P polytopeconvex theof vertex a is ˆ ingcorrespond The

by defined F of bfs a is

*x
0x

bAx
*x

⇔
≥

=

(Lemma1)

satisfying vector unique theis
such that r cost vecto a exists There

0x
bAx

*xc'xc'
*xx

c

≥
=
≤

=

⇒

Geometry of Linear Program

*xd'xd'x*c'xc'
xd'xc'

xd'

xc'

xc'

ˆˆ
ˆ

ˆ

ˆ)ˆ(

)ˆˆ(

)(

111

1 11

11

111

≤→≤
+=

+=

+−=

−+=

+=

−−=

+==

∑∑∑

∑ ∑∑

∑∑

∑∑∑

=
+−

=
+−

−

=

=

−

=
+−

−

=

=
+−+−

−

=

+−=

−

==

k
k

bcxacc

xabcxc

xcxc

mnji

xcxcxc

m

i
iimn

m

i
jijimn

mn

j
j

m

i
j

mn

j
ijiimn

mn

j
jj

m

i
imnimn

mn

j
jj

n

mnj
jj

mn

j
jj

n

j
jj

Geometry of Linear Program

)ˆ defining hyperplane supporting a isˆˆ(
vertexpoint unique a ison intersecti

onintersecti
Pˆ

halfspace)(ˆˆ
satisfying Rin point theis)(ˆThen

Pˆ

satisfying vector theis
such that r cost vecto a exists There

m-n
1

*x*xd'xd'

x
*xd'xd'

unique*x

x
0x

bAx
*xc'xc'

unique*xx
c

=
→

→
⎭
⎬
⎫

∈
≤

=

∈→
⎭
⎬
⎫

≥
=

≤
=

n-m,...,xx

x1

x3

x2

Geometry of Linear Program

()

P.in points ofn combinatioconvex strict a becannot vertex a However,

ˆ
2
1ˆ

2
1*ˆvertex

2
1

2
1* and F ,then

00

0θ

00

0θ-

 and points twoDefine

0θsuch that θ smallly sufficientfor θ

0 somefor Then

t.independenlinearly not are s' Assume

bfs. a is then t,independenlinearly are s' If

0 s.t. ,
*

*
Pˆ vertexa isˆ

 vertexa isˆbfs a is

*

**

*

**

**

**

xxxxxxxx

xx

bA

0A

A

*xA

bA
0x

bAx
*x*x

*x*x

′′+′=→′′+′=∈′′′

⎪⎩

⎪
⎨
⎧

=

>+
=′′

⎪⎩

⎪
⎨
⎧

=

>
=′

′′′

≥±=±→

≠=

>∀=→
⎩
⎨
⎧

≥
=

→∈→

⇐

∑

∑

∑

j

jjj
j

j

jjj
j

jj
j

jjj

j
j

jj

j

j

j
j

jj

x

xdx
x

x

xdx
x

dxdx

dd

xjx

x1

x3

x2

Geometry of Linear Program

• Theorem 3
In any instance of LP with bounded F, there is an
optimal vertex of P (optimal BFS).

• Proof

solution. optimalan is

Then

 cost.lowest th vertex wi thebe Let

0,1 where

P of vertices,

solution. optimalan is Assume

11
0

1

1
0

j

N

i
jij

N

i
ii

j

i

N

i
i

i

N

i
ii

αα

αα

 α

x

xc'xc'xc'xc'

x

xxx

x0

∴

=≥=

≥=

==

∑∑

∑

∑

==

=

=

x1

x3x2 x4

1-λ1

λ2

λ1

1-λ2

x0

x0 = λ1 x1+(1-λ1)x4
= λ1 x1+(1-λ1)(λ2 x2+(1-λ2)x3)
= λ1 x1+(1-λ1)λ2 x2+(1-λ1) (1-λ2)x3
= α1 x1 + α2 x2 + α3 x3

α1 + α2 + α3
= λ1 +(1-λ1)λ2+(1-λ1) (1-λ2)
= 1

Moving from BFS to BFS

Moving from BFS to BFS

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
=

≠=⋅−

=′→
⎪⎩

⎪
⎨
⎧ =

=

∞→∀≤=→=→

⋅−

=⋅+⋅−→⋅−

=−→∉=

=→=

==

>

=

==

=

∑

∑∑

∑

otherwise ,0
 , θ
 0,

 and , θ

 BFS new
otherwise ,0

,
 BFS

)θ(unbounded is F then ,,0 If minθ

 0 becomes) θ(some until θ Increase

 θ) θ()2(θ)1(

)2(,

)1(*

},...,1:{ basis afor BFS a be*Let

*

*
*

*

0|

*
1

*

11

1

*

ji
ji

lkjiex

x
jix

x

kelk
e
x

ex

ex

ee

x

mk

l

kkjj

i
kj

i

kj
kj

j

ek

kjj

jj

m

k
kjj

j

m

k
jkjj

m

k
jkjj

m

k
jj

j

k

k

k

kj

k

kk

kk

kk

k

bAA

0AAAAA

bAbAx

Ax

B

B

Moving from BFS to BFS

• Theorem 4

• Proof
{ } basis new a is A,...,A,A,A,...,A

111 mll jjjjjB
+−

=′

[]

basis a is
tindependen linearly are B of columns All0d

,...,1 0, 0A becomes 0(3)

0 0, since0 then 0,(3)set we if

tindependen linearly are ,...,1,A

(3) A)(A

AAAAdB

A,...,A,A,A,...,ABLet

,1

,1

,11,1

111

B

mkdd

deed

mk

deded

deddd

k

m

lkk
jk

lljljl

j

m

lkk
jkkjljljl

j

m

lkk
k

m

k
jkjlj

m

lkk
kjl

jjjjj

k

k

kl

kkk

mll

′→

′→=→

==→==→

=>→==→

=

++=

+=+=′

=′

∑

∑

∑∑∑

≠=

≠=

≠==≠=

+−

BFS1

BFS2

Moving from BFS to BFS

• Theorem 5

• Proof

{ } { }
polytope. the of edge an]isˆ ,ˆ[i.e. adjacent, are ˆ and ˆ then

,A)A(i.e. adjacent, are and If

yxyx

BByx kjxy ∪−=

edge.an thereforeis and
P with halfspace a ofon intersecti theis]ˆ,ˆ[only Hence

.ˆˆsatisfy]ˆ,ˆ[on only P,in Therefore,
. and ,0satisfy

 and of wnscombinatioconvex only Therefore,
s.bfs'such only theare and However,

. of subsets bases with sbfs' ofn combinatioconvex a is Then
optimal. is suppose ,uniqueness prove To

optimal.uniquely are and of
nscombinatioconvex are that solutions feasible allThen

otherwise1
 if0

r cost vecto aconstruct usLet

yx
xd'wd'yxw

c'xc'wb,wAw
yx

yx

BBz
z

yx

BBA
c

yx

yxj
j

≤
≤≥=

∪

⎩
⎨
⎧ ∪∈

=

BFS2

BFS1

bAA =⋅+⋅−∑
=

jj

m

k
kjj kk

ex θ) θ(
1

*

Tableau

Tableau
• Example

3x1 + 2x2 + x3 = 1
5x1 + x2 + x3 + x4 = 3
2x1 + 5x2 + x3 + x5 = 4

Select B={A3, A4, A5} --> make an identity matrix

x1=x2=0, x3=1, x4=2, x5=3 : BFS
x3, x4, x5 : basic variables

x1 x2 x3 x4 x5

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1

Tableau

x1 x2 x3 x4 x5

1/3 1 2/3 1/3 0 0

4/3 0 -7/3 -2/3 1 0

10/3 0 11/3 1/3 0 1

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1

{ }5411

3
1

*

0|

1

321

3

1
15431

,,,
3

10,
3
4,0,0,

3
1BFS]'0 0 1[Make

basic-non becomes 1
3
1)

2
2,

3
1min(minθ

basis, new a into put To

5,4,323
1
2
3

1
1

AAAA

AA

A

AAAAA

=⎥⎦
⎤

⎢⎣
⎡=→=

=→=→===

===→=−+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

>

=

=
∑

B

l
e
x

jjje

j
k

j

ek

m

k
jk

k

k

k

Choosing a Profitable Column

Choosing a Profitable Column

()

[]
yzyc0y

zc0zccc

Proof

Theorem

′≥′≥→
≥→≥−=→≥′=

≥

⋅=−⋅=⎟
⎠

⎞
⎜
⎝

⎛
−⋅=

+−→

−→

→

∑

∑∑∑

=

===

 ,any for
0...

optimuman at are then we, allfor 0 If

θθθΔ

θθ:cost

θ:

θ0:

21

1

11

*

1

*

**

n

j

jjj

m

k
kjjjj

j

m

k
kjj

m

k
jj

m

k
jj

kjjjj

j

ccc

jc

czcecc

cecxcxc

exxx

x

k

kkkkk

kkk

Choosing a Profitable Column

[]

[] []
[]
[] []

optimum global a is *
*

0) are variablesbasic-non(*

 ,any For

**

1

1

1

111

11
1

1

1

1111

1

11

1

11

1

x
xcyc

xc

bB

yAByE

y

yyzyc

0y

ABEBEBABAA

∴

′≥′→

′=
′

⋅=

⋅=

⋅⋅=⋅⋅=

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅=

⋅⎥
⎦

⎤
⎢
⎣

⎡
=′≥′

≥

=→=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==

−

−

==

−

=

∑∑

∑

mm

m

mm

m

kk

k

jjjj

jj

jjjj

mnm

n

jj

m

k
knj

m

k
kj

mnm

n

mj

jm

k
jkjj

xxcc

cc

cccc

ee

ee
cc

ecec

ee

ee

e

e
e

LL

L

LL

L

MOM

L

L

L

L

MOM

L

M

Simplex Algorithm

Simplex Algorithm

end
end

on pivot and

minθ find

else

yes'':unbounded then allfor 0 if

;0such that any choose
begin else

yes'':opt then allfor 0 if
do no''unbounded and no''opt while

s) terminatealgorithm theyes'' becomeseither (when
;no'':unbounded;no'':opt

begin
simplex procedure

0|
0

lj

lj

j

kj

j

ek

kj

j

j

e

e
x

e
x

ke

cj

jc

lk

kj

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

=≤

<

=≥
==

==

>

bAA =⋅+⋅−∑
=

jj

m

k
kjj kk

ex θ) θ(
1

*

Simplex Algorithm

• Example
z=x1+x2+x3+x4+x5

0 1 1 1 1 1

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

-6 -3 -3 0 0 0

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1

()()
()() 31311121

31112131

.3

2

1

1

−=⋅+⋅−+⋅−=
−=⋅−+⋅+⋅−=

−= ∑
=

c
c

cecc
kj

m

k
kjjj

1. obtain basis x3 x4 x5

2. make identity matrix

∑
=

−
m

k
jj kk

cx
1

.4

21 kkj eex
k

Simplex Algorithm

-6 -3 -3 0 0 0

1 3 2 1 0 0

2 2 -1 0 1 0

3 -1 3 0 0 1

jc

e
x

c

c
j

j

kj

j

ek

j

j

k

kj

 allfor 0 until
 7-3 stepsrepeat 8.

pivot .7

minθ compute6.

n)computatio (more θ negativemost

or negativemost
gives that column select .5

0|

≥

=

⋅

> -9/2 3/2 0 3/2 0 0

1/2 3/2 1 1/2 0 0

5/2 7/2 0 1/2 1 0

3/2 -11/2 0 -3/2 0 1

Beginning the Simplex Algorithm

Beginning the Simplex Algorithm
• How to obtain an initial BFS?

– Use slack variables
• Ax ≤ b --> Ax + Ixs = b, xs are initial basic variables
• What if b < 0? --> -Ax - Ixs = -b, then use artificial variables

– Use artificial variables, then two-phase method
• Ax=b --> Ax + Ixa = b, xa are initial basic variables
• All the artificial variables are driven out of the basis

problem original

 variablesbasicnonotherwise,0

 variablesbasic,...,1,0

→

⎪
⎩

⎪
⎨

⎧

−→=

→=≥
=

→

j

j

a

x

mkx
k

0x

Beginning the Simplex Algorithm

• Two-phase method
– In phase I, minimize the cost function

())θθ (recall

0θ becausepivot a becan 0 case,last In the

 variablesoriginal with the
 basis aget weuntil pivoting continue

 :basis in theremain s' somebut 0ξ

problem original theosolution t feasible no:0ξ

ok:basis theofout driven are s' all and 0ξ

ξ

1

1

bAA =⋅+⋅−

=<

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

>
=

=

∑

∑

=

=

jj

m

k
kjj

kj

a
i

a
i

m

i

a
i

kk
ex

e

x

x

x

Beginning the Simplex Algorithm

end
end

cost originalth simplex wi call
:II Phase

row; ingcorrespond omit the and yes'':redundant then

)0(out driven becannot and basis in the is variableartificialan if
begin else

yes'':infeasible then I Phasein 0ξ if
;ξcost th simplex wi call

; basis, artificialan introduce
 :I Phase

)yes'' toset thesemay I (Phase
;no'':redundant;no'':infeasible

begin
phase- twoprocedure

=

∀=

=>

=

==

∑

je

x

kj

opt

a
i

a
ix

Beginning the Simplex Algorithm

• Example
x1a x2a x3a x1 x2 x3 x4 x5

-z= 0 0 0 0 1 1 1 1 1

-ξ= 0 1 1 1 0 0 0 0 0

1 1 0 0 3 2 1 0 0

3 0 1 0 5 1 1 1 0

4 0 0 1 2 5 1 0 1

x1a x2a x3a x1 x2 x3 x4 x5

-z= 0 0 0 0 1 1 1 1 1

-ξ= -8 0 0 0 -10 -8 -3 -1 -1

x1a= 1 1 0 0 3 2 1 0 0

x2a= 3 0 1 0 5 1 1 1 0

x3a= 4 0 0 1 2 5 1 0 1

kj

m

k
kjjj cecc ∑

=

−=
1

jc

∑
=

=
m

i

a
ix

1
ξ

Beginning the Simplex Algorithm

x1a x2a x3a x1 x2 x3 x4 x5

-z= -1/3 -1/3 0 0 0 1/3 2/3 1 1

-ξ= -14/3 10/3 0 0 0 -4/3 1/3 -1 -1

x1= 1/3 1/3 0 0 1 2/3 1/3 0 0

x2a= 3/4 -5/3 1 0 0 -7/3 -2/3 1 0

x3a= 10/3 -2/3 0 1 0 11/3 1/3 0 1

kj

m

k
kjjj cecc ∑

=

−=
1

∑
=

=
m

i

a
ix

1
ξ

x1a x2a x3a x1 x2 x3 x4 x5

-z= -1/2 -1/2 0 0 -1/2 0 1/2 1 1

-ξ= -4 4 0 0 2 0 1 -1 -1

x2= 1/2 1/2 0 0 3/2 1 1/2 0 0

x2a= 5/2 -1/2 1 0 7/2 0 1/2 1 0

x3a= 3/2 -15/6 0 1 -11/2 0 -3/2 0 1

Beginning the Simplex Algorithm

x1a x2a x3a x1 x2 x3 x4 x5

-z= -3 0 -1 0 -4 0 0 0 1

-ξ= -3/2 7/2 1 0 11/2 0 3/2 0 -1

x2= 1/2 1/2 0 0 3/2 1 1/2 0 0

x4= 5/2 -1/2 1 0 7/2 0 1/2 1 0

x3a= 3/2 -5/2 0 1 -11/2 0 -3/2 0 1

x1a x2a x3a x1 x2 x3 x4 x5

-z= -9/2 0 -1 -1 3/2 0 3/2 0 0

-ξ= 0 7/2 1 1 0 0 0 0 0

x2= 1/2 1/2 0 0 3/2 1 1/2 0 0

x4= 5/2 -1/2 1 0 7/2 0 1/2 1 0

x5= 3/2 -5/2 0 1 -11/2 0 -3/2 0 1

This example gives an optimum point when Phase I is finished ()jc j ∀≥ 0

Geometric Aspects of Pivoting

Geometric Aspects of Pivoting
x1 x2 x3 x4 x5 x6 x7

-34 -1 -14 -6 0 0 0 0

x4= 4 1 1 1 1 0 0 0

x5= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 6 0 3 1 0 0 0 1

1

x1 x2 x3 x4 x5 x6 x7

-32 -1 -14 -6 0 0 0 0

x4= 2 0 1 1 1 -1 0 0

x1= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 6 0 3 1 0 0 0 1

2

x2

x3

x11
2

Geometric Aspects of Pivoting

x1 x2 x3 x4 x5 x6 x7

-20 0 -8 0 6 -5 0 0

x3= 2 0 1 1 1 -1 0 0

x1= 2 1 0 0 0 1 0 0

x6= 1 0 -1 0 -1 1 1 0

x7= 4 0 2 0 -1 1 0 1

3

x1 x2 x3 x4 x5 x6 x7

-4 0 0 8 14 -13 0 0

x2= 2 0 1 1 1 -1 0 0

x1= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 0 0 0 -2 -3 3 0 1

4

x2

x3

x1
1

2
4

3

Geometric Aspects of Pivoting

x1 x2 x3 x4 x5 x6 x7

-4 0 0 -2/3 1 0 0 13/3

x2= 2 0 1 1/3 0 0 0 1/3

x1= 2 1 0 2/3 1 0 0 -1/3

x6= 3 0 0 1 0 0 1 0

x5= 0 0 0 -2/3 -1 1 0 1/3

5

x1 x2 x3 x4 x5 x6 x7

-2 1 0 0 2 0 0 4

x2= 1 -1/2 1 0 -1/2 0 0 1/2

x3= 3 3/2 0 1 3/2 0 0 -1/2

x6= 0 -3/2 0 0 -3/2 0 1 1/2

x5= 2 1 0 0 0 1 0 0

6

x2

x3

x11
2

4

3

5

6

=

Geometric Aspects of Pivoting

• Taking an alternative path
x1 x2 x3 x4 x5 x6 x7

-34 -1 -14 -6 0 0 0 0

x4= 4 1 1 1 1 0 0 0

x5= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x7= 6 0 3 1 0 0 0 1

1

2

x2

x3

x11
2

 x1 x2 x3 x4 x5 x6 x7

 -6 -1 0 -4/3 0 0 0 14/3

x4= 2 1 0 2/3 1 0 0 -1/3

x5= 2 1 0 0 0 1 0 0

x6= 3 0 0 1 0 0 1 0

x2= 2 0 1 1/3 0 0 0 1/3

Geometric Aspects of Pivoting

3

4

x2

x3

x11
2

43

 x1 x2 x3 x4 x5 x6 x7

 -2 -1 0 0 0 0 4/3 14/3

x4= 0 1 0 0 1 0 -2/3 -1/3

x5= 2 1 0 0 0 1 0 0

x3= 3 0 0 1 0 0 1 0

x2= 1 0 1 0 0 0 -1/3 1/3

 x1 x2 x3 x4 x5 x6 x7

 -2 0 0 0 1 0 2/3 13/3

x1= 0 1 0 0 1 0 -2/3 -1/3

x5= 2 0 0 0 -1 1 2/3 1/3

x3= 3 0 0 1 0 0 1 0

x2= 1 0 1 0 0 0 -1/3 1/3

=

Integer Linear Programming

Integer Linear Programming
• Problem

integer :

 min

x
0x

bAx
xc

≥
=

′

Feasible region of LP

Decreasing
cost

Optimum of ILP

Optimum of LP

1x

2x

Integer Linear Programming

• Cutting-Plane Algorithm

0x
bAx
xc

≥
=

′ min
ILP theof Relaxation

x*, LP solution

Decreasing
cost

x0, ILP solution

Feasible
set

1x

2x

Rounded x*

Integer Linear Programming

– Add constraints to an ILP that do not exclude integer
feasible points until the solution to the LP relaxation is
integer

Decreasing cost

x*
x* x*=x0

Integer Linear Programming

⎣ ⎦ ⎣ ⎦
⎣ ⎦() ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ∑∑

∑

∑

∉∉

∉

∉

−−

−=−+→

+=++

+=+=

∈=+

=→=→=

Bj
jijii

Bj
jijj

ii
Bj

jijijj

iiiijijij

ji
Bj

jijj

jj

k

j

k

k

j

k

xffbxex

fbxfex

fbbfee

BAbxex

AA

A

A

11 bExbBAxBbAx

::

:

:

~

~

~~

,~

~

 Then

 and Let

cut). (Gomory constraintnew a as Add
point. feasible integer any excludenot doesBut

LP. relaxation the of 0) 0,(solution the excludes This

 (2), and (1) From

(2) and 0 0 Because

(1) integer. an bemust integers, be to and For

i
s

Bj
jij

ij

Bj:A
jiji

Bj
jijijiji

Bj
jijijj

fxxf

fx

xff

xffxff

xffxx

j

j

j

j

k

−=+−→

>=→

≤−

<−≥<≤<≤

−

∑

∑

∑

∑

∉

∉

∉

∉

A

A

A

0

1011

:

:

:

.

.,,,

	Linear Programming�(4541.554 Introduction to Computer-Aided Design)
	Optimization Problems
	Definitions
	Definitions
	Definitions
	Convex Programming Problem
	Convex Programming Problem
	Linear Programming Problem
	Linear Programming Problem
	Examples
	Examples
	Examples
	Examples
	Examples
	Basic Feasible Solution
	Basic Feasible Solution
	Basic Feasible Solution
	Basic Feasible Solution
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Geometry of Linear Program
	Moving from BFS to BFS
	Moving from BFS to BFS
	Moving from BFS to BFS
	Tableau
	Tableau
	Choosing a Profitable Column
	Choosing a Profitable Column
	Simplex Algorithm
	Simplex Algorithm
	Simplex Algorithm
	Beginning the Simplex Algorithm
	Beginning the Simplex Algorithm
	Beginning the Simplex Algorithm
	Beginning the Simplex Algorithm
	Beginning the Simplex Algorithm
	Beginning the Simplex Algorithm
	Geometric Aspects of Pivoting
	Geometric Aspects of Pivoting
	Geometric Aspects of Pivoting
	Geometric Aspects of Pivoting
	Geometric Aspects of Pivoting
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming
	Integer Linear Programming

