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Optimization Problems

Optimization Problems

e General nonlinear programming problem
— minimize f(x)
subject to g;(x) =0 i=1,....m

h(x)=0 J=1,....p continuous
X e RN variables,
: continuous
« Convex programming problem optimization
— f: convex
g;: concave
h;: linear

— local optimum = global optimum

 Linear programming problem
— f,g;, h;: linear (can be considered as convex or concave)
— select a solution from a finite set of possible solutions undary
— Simplex algorithm (1947 by G. B. Dantzig)

* Integer linear programming problem ldiSCf?te variables
combinatorial

— integer-valued coordinates optimization




Definitions

Definitions
* Instance of an optimization problem
— given (F, c)

where F: domain of feasible points
c. F->R!: cost function

find f € F for which c(f)<c(y)forally e F
-> f is a globally optimal solution

— e.g. instance of Traveling Salesman Problem (vertices
and edges are given)

e Optimization problem
— aset of instances of an optimization problem
— e.g. Traveling Salesman Problem

 Locally optimal solution ‘ ‘
— ¢(f) £c(g) for all g € N(f)
where N is a neighborhood defined for each instance f
— e.g. N_(f) = {x: x e Fand ||x-f|| < €}

F



Definitions
« Convex combination of x, y € R"is any point of the form:
z=AxX+(1-M)y,AeRtand 0<A<1

b

« AsetScR"isconvex ifit contains all convex
combinations of pairs of points X,y € S

b convex set non-convex set

4G

a

e Lemmal
The intersection of any number of convex sets is convex.



Definitions

e Convex Function

— Let Sc R"be aconvex set. Functionc: S -> Rl is convex
in S if c(Ax + (1-A)y) < Ac(x) + (1-A)c(y), AeRtand 0<A <1
forall x,y € S

c(a)

c(a)

e Lemma?2 X y a
Let c(x) be a convex function on a convex set S. Then
set S, ={x:c(x)<t, x € S} is convex.

Proof
For any x,y € S;, AX + (1-A)y is In S and
c(AX + (1-A)y) < Ac(X) + (1-M)c(y) <At + (1-At <t
=>AX + (1-A)y is in S, => S, IS convex



Convex Programming Problem

Convex Programming Problem

e Theorem 1

For an instance of an optimization problem (F, ¢) and
neighborhood N_(x) ={y : y € F and ||x-y|| £ &}, where
FcR"is aconvex set and c is a convex function, a
locally optimal point with respect to N, is also a globally

optimal point for any € > 0.
Z\@
ally [)()illt

Proof
in F

Choose a A such that
y = Ax + (1-A)z lies within N, (x)
c(y) = c(Ax + (1-A)z) £ Ac(x) + (1-A)c(2)
=>¢(z) 2 (c(y) - A c(x))/(1- 1)

> (c(x) - A c(x))/(1- ) =c(x)

T

X is a local optimum point




Convex programming problem
minimize f(x)
subjectto g,(x)>0 i=1,....m
h,(x)=0 J=1,....p
X e R"
where
f. convex
g;: concave
h;: linear

F={x:gx)=0}
= {x 1 -gi(x) < 0}

convex function

Convex Programming Problem

=>F is convex by Lemma 1 and Lemma 2
=> For (F, f), local optimum = global optimum by theorem 1



Linear Programming Problem

General Form of LP

minimize C'X

subject to

a.'x=hb 1eM
a'x>h ieM
X; 20 jeN

X unconstrained

Canonical Form

minimize C' X

subject to
a'x>h Vi
X; 20 \Y|

Linear Programming Problem

e Standard Form

minimize
subject to
a.'x=Nh.
X; 20

c'X

Vi
V]



Linear Programming Problem

e Conversion

AX>Db
—Ax>-b

r

Ax:b:{

—_— +_ -
Xj_Xj Xj

X; unconstrained = < Xj+ > ()

X; 20
(AX—-s=D ,
AX>b =+ 0 S : vector of surplus variables
S22
(AXx+s=Db .
AX<b =+ 50 S : vector of slack variables
S22




Examples
Examples

e Diet Problem

minimize C' X
subject to
Ax>Db
x>0

where

C:unit cost of each food (c;won/lgr of kimchi, ...)

X :amount of each food (X;gr of kimchi,...)

A :amount of each nutrient per one unit of each food
(a;mgr of nutrient I in 1gr of kimchi, ...)

b : requirement for each nutrient

(at least b.mgr of nutrient i is required per day)



Examples
 Hierarchical Compaction
— Exploit design hierarchy to reduce computation time
— Compact bottom-up
— Fixed-cell

« Cell abstraction with protection frame and terminal frame
* Interconnections among Sub-cells require routing

— Stretching and pitch matching
 Connection by abutment

— Limitations of the previous hierarchical compactor
» Protection frame or fixed terminal location

--> Area is wasted.

e Stretching and pitch-matching A o >
--> Sub-cells can be distorted.
master
--> New master cells are generated. cell A3

--> Original layout hierarchy is lost.

— David Marple, "A hierarchy preserving hierarchical
compactor,” Proc. 27th Design Automation Conference,
1990.



Examples
— Constraints

* Flat compaction
— AX >B, A:incidence matrix

— Each constraint is related with two object locations. Each row
of A has one'-1'and one '1".

bl b2
1 @ (3 0 -1 11/x2|>|b2
10 -1||x3| |b3

A 4

x1 X2

X1+ 3<x2



Hierarchical compaction

Examples

— Each constraint may be related with more than two object

locations.
sub-cell A sub-cell B
5 '
X2 x4
x1 X3
X1+x2+5<x3+x4
sub-cell C sub-cell C (reflect)
4
X2 X2
x1 X3
X1+ X2+4<x3-x%x2
or

X1 + 2x2 + 4 <x3



Examples
— Compaction algorithm
 Linear program
— minimize Xx,=CTX=[000...1]X
subject to AX2>Db

X>0
where x; is the location of the sink vertex
— Example:
X1+ 2<x2
X2 -1<x3
X1+ 5<x3

X1+ 2x2 +4<x3

-1 1 0 2
x1

0O -1 1 -1
X2 | >

-1 0 1 3 5
X

-1 -2 1 4




Basic Feasible Solution

Basic Feasible Solution

e Definitions
— Given a standard form
minimize C' X

subject to
Ax=Db
X>0

Assume A is an mx N matrix (M < Nn) and the rank 1s m.

— Basis of A
* linearly independent collection of columns of A
B=A,r,

« can be represented by an m x m matrix

B=|A,,..A, ]



— Basic solution

X =0 forAj ¢ B

x; =kth component of B"'b,k =1,...,m

X;, : basic variable

Xl
AA ]

_Xn
SA LA,

— Basic feasible solution (BFS)

+0=]:

Basic Feasible Solution

* basic solution in F (domain of feasible points),i.e.x >0



Basic Feasible Solution

e Lemmal
— Let x be a BFS of
Ax=Db
x>0

corresponding to the basis B. Then there exists a cost
vector ¢ such that x is the unique optimal solution of the
LP

min c'X

AX=D

x>0

 Proof
— Letc=0 ifA;eB
1 otherwise

Then ¢'x=0 which is optimum (c is non-negative).
If there is another feasible solution y such that c'y=0,
then y;=0 for A; ¢ B. Other y;s are computed by B-b.
--> y=X --> unique



Basic Feasible Solution

e Theorem 1
— If Fis not empty, then at least one BFS exists.

e Proof

— WLOG, assume one solution is [Xy,...,X,], where Xj,...,Xx,>0
and X,4,...X,=0. Then

A X+ FAX=D (1)
Let r=rank of [A,....A] <m (A is an m x n matrix).
WLOG, assume first r columns are linearly independent.
Rewrite equations (1) as follows

A X+ AAXED-AL X g mAX (2)
Solving (2) gives

[Xgree X ] ZB-0 1 X gm0 X
As x>0, some of x,,...,X, Increase or decrease. If any of
Xy,...,X, becomes 0, then stop decreasing X..
--> feasible solution with more zero component

Continue to obtain a feasible solution with t < m nonzero
components. The corresponding columns are
Independent. Otherwise, we can reduce t further until t=r.



Geometry of Linear Program

Geometry of Linear Program
e Definitions

— Example
a,X,;+a,X,+azX;=b --> dimension: 3 -> 2
x=0
X3
b/a,
X2
b/a,
b/a,



Geometry of Linear Program

— Linear subspace S of Rd
S={xeRd:ax+..+ax,=0, j=1,.m}
--> dimension=d-rank([a;])=d-m

— Affine subspace A of Rd
A ={x e Rd & X+t gXy= b, J=1,..m}

—{U+X.X€S} \
u

— Hyperplane
An affine subspace of RY of dimension d-1 \ \
{x e Rd: a,x;+...+a,x,= b}
Defines two halfspaces
{x e RI:ax,+...+a ;x4 = b}
{x e R9: ax;+...+a x4 < b}




Geometry of Linear Program

— Convex polytope
 Bounded nonempty intersection of a finite number of
halfspaces

 Every pointin a convex polytope is the convex
combination of its vertices (convex hull)

X1+ X, + X3 <4
X1 <2
X3 <3

3X, + X3<6

X1 >0
X5 >0
X32=0

(0,0,31-23-(1,0,3)

(2,0,2)

(2,0,0) X,




 Polytope and LP

Ax=b —[mx(n-m)|mxmx=b

—[mx(n-m)|Bx=b

Geometry of Linear Program

B'Ax=B'b > 'm x(n—m)|1x=B"b
— A| I}x_
- [a;] ]x b
QX + Xy =b,i=1...,m
j=1
X mei =0 — > & X, =1,
j=1
6i— q;X; 20,1=1,..,m
X>0— j=1
X; 20, j=1...,(n—m)
_))2:()(19 9 n m)EpOlytOpeP



Geometry of Linear Program

{AX: b {[éij]ﬁz b |

x=0 x>0
B*Ax=B"0 —>[mx(n-m)[Ijx=B"b

—>|Iéij]||]x:[5i]

After solving for X, X__ . can be obtained by

n-m+i

n—m
— bI _ZaIJXJ,I — 1,.-.,m
=1

N—m-+i



Geometry of Linear Program

— Example 1

— Example 2

- » X1+ X, <D
X1+ Xo+ X3=D 1 2

X3




Geometry of Linear Program

e Theorem 2

X*1s a bfs of F defined by
Ax=Db
X>0

< The corresponding X * is a vertex of the convex polytope P

e Proof
—

There exists a cost vector € such that
X = X*1s the unique vector satisfying
c'X<c'x™
Ax=D
x>0

(Lemmal)



Geometry of Linear Program

C'X = ZCX—ZCX—I— Zcx

j=n-m+1
| = J—(n—m)
n—m m
ClX:ZCJXj +ch m+i Rn-mi
j=1 =1
n—m n-m

d
"X*=d"X*+k
"X <



Geometry of Linear Program

There exists a cost vector C such that
X = X*is the unigue vector satisfying
C'’X<C'X™
Ax=Db A
—>XeP
x20
Then X* = (X,,...,X, ., ) is the unique point in R™™ satisfying
d'X <d'X* (halfspace) , ,
) — 1ntersection
XeP
intersection 1s a unique point — vertex X5

(d'X =d'X*is a supporting hyperplane defining X*)




Geometry of Linear Program

X*1s a bfs < X*1s a vertex
AX* =D

X*isavertex > X*eP o>
x*>0

—>ZAJ.X]7 =b,Vjs.t.x; >0
J

If A,'s are linearly independent, then X ™ is a bfs.

Assume A ;'s are not linearly independent.

The:nZ:Ajdj =Oforsomedj =0
J

— Z A, (Xj +Od j ): b for sufficiently small© such that X]f i@dj >0
j

X3

Define two points X" and X"

i * i *
0 X; =0 0 X; =0
X
1
r " % 1 / 1 " Gk 1/\! 1’\”
then X', X" € Fand X =5x +5x — vertex X =5x +5x

However, a vertex cannot be a strict convex combination of points in P.



C'X, = ZN:aic'xi >C'X; Y a;=C'X

Theorem 3

Geometry of Linear Program

In any instance of LP with bounded F, thereis an

optimal vertex of P (optimal BFS).

Proof

Assume X, is an optimal solution.

1“7

N
X, = Za-X- X, = vertices of P
i=1

N
where Zai =1,a, 20
=1

Let X j be the vertex with lowest cost.

Then

N

=1 i=1

Xo

= Ay X H(1-A)X,
= Ay X H(1-Ag) Ay X+ (1-25)X3)
= Ay XpH(L-Ag)ho X+ (1-1q) (1-A5)X5

oy +a, + oy

~. X; 18 an optimal solution.

= Ay H(1-A)Ap+(1-Ag) (1-4y)
=1



Moving from BFS to BFS

Moving from BFS to BFS

Letx*bea BFSforabasis B ={A; :k=1,...m}

Ax*=b—> A, X, =b (1)
k=1
A, :Zeijjk, A, gBaZeKjAjk -A, =0 (2)
k=1 k=1

H)-6-(2)> D (X, —06-e)A; +6-A;=b
k=1

Increase 0 until some (X?fk —0-¢,) becomes 0
X ,
—>0=min——>k=I Ife,; <0, VK, then F is unbounded (6 — )
kley; >0 ekj

%

* X-, i: -:-
BFSXiz{Jk e newBFS X =% =)

0, otherwise 0, | = ]

0, otherwise



Moving from BFS to BFS

 Theorem 4
B' = {Ajl e A AGA e A }isanew basis

* Proof
LetB'=|A, .. A, A A, .. A ]

B'd=d,A,+ ZdA —d,Zeij + ZdA

k=1 k=l k=1 k=l
=dg;A; + Z(d|ekj +d,)A; (3)
k=1 k=l

A; ,k=1,..,marelinearly independent
— If weset (3)=0,thende; =0—sincee; >0,d, =0

—> (3)=0becomes » d,A;, =0—>d, =0,k=1...,m

k=1,k=#I
— d =0— All columns of B’ are linearly independent

— B’ isabasis BFS2

BFS1



Moving from BFS to BFS

« Theorem 5

If xand yareadjacent, i.e.B, = (B, - {Aj }) U {Ak},

then x and y are adjacent, i.e.[X, y]is an edge of the polytope.
 Proof
if A, € B, UB,

0
Let us construct a cost vector C | = )
otherwise

Then all feasible solutions that are convex combinations

of X and Yy are uniquely optimal. BFS2

To prove uniqueness, suppose Z is optimal. Fs1

Then 7 is a convex combination of bfs's with bases subsets of B, UB, .

However, X and Y are the only such bfs's. D.(x;, —0-e)A; +6-A =b
k=1

Therefore, only convex combinations w of X and y
satisfy Aw =b,w >0, and c'w < C'X.

Therefore, in P, only Won [ X, V] satisfy d'w < d'X.

Hence only[X, ¥]is the intersection of a halfspace with P

and is therefore an edge.



Tableau

Tableau

« Example
3x1 + 2x2 + X3 =1
5x1 + x2 + x3 + x4 =3
2X1 + 5x2 + x3 +x5=14
x/ x2 X3 x4 x5

1 2 1 0 0
3 1 1
4 o 1 0

Select B={A;, A,, A} --> make an identity matrix
x1 x2 X3 x4 x5
3 2 1 0

2 -1 0 1 0
-1 3 0 0 1

Xx1=x2=0, x3=1, x4=2, x6=3 : BFS
X3, X4, X5 : basic variables



x1 x2 x3 x4 x5
3 2 1 0 0
2 -1 0 1 0
-1 3 0 1

A =

—1

To put A, into a new basis,

m=3
2|=3A+2A,-A; =) A, > =3j,=4,],=5
k=1

},E3::{/\1,/\4,/\5}

S 12001
0= min, <k =min(..3
Make A, =[100]'— BFS = [—,o,o,f,E
3 3 3
x1 xZ X3 x4 x5
1/3 2/3 1/3 0 0
4/3 0 -7/3 -2/3 1 0
10/3 0 11/3  1/3 0

Tableau

):§—>I :1—>Aj1 = A, becomes non - basic



Choosing a Profitable Column

Choosing a Profitable Column
X;:0 >0

m m m
cost:chjkxjk — kZ(:jkxjk —chjk@ekj +cO
=1 =1 =1

A, :9'(‘31 —kz;cjkekj]=6-(cj _21)29‘61

Theorem

If C; > 0 forall J, then we are at an optimum

Proof

/

ct=[cC,..C.] 20>CT=c-2z20—>c>z
— foranyy >0,c'y > z'y



Ajzggﬁfﬁk:B

Foranyy >0,

—>A=B

Choosing a Profitable Column

m m
/ !
CYZZYILE,Cjkekl kEl,Cjkekn]y

:kh

)
i
=15,
—>Cc'y >c¢c'x*

Cm}

Jm

Jm

Jm

ell

e

ml

-B™'b

'th

. X*1s a global optimum

ell eln
' . |=BE>E=B"A
eml emn_
en1_
'y
emn_
c, | BA-y

-éiyzkh

k

X

Jm

I =C'X* (non-basic variables are 0)



Simplex Algorithm

procedure simplex

begin

opt :='no'; unbounded :='no';

Simplex Algorithm

(when either becomes 'yes' the algorithm terminates)

while opt ='no'and unbounded ='no'do
if C; > 0 for all J then opt :='yes'

else begin

choose any ] such thatC; <0;

if &; <0 for all k then unbounded :='yes'

else

D (X, —0-e)A;, +0-A =b
k=1

X.
find6 0= m1n|: i

kley; >0 ekj
and pivot on €;

end

end




Simplex Algorithm

« Example
Z=X1+X2+X3+Xx4+x5

0 1 1 1 1 1
1 3 9 1 0 0
3 5 1 1 1 0
4 2 5 1 0 1
;;chn
— 1. obtain basisx3 x4 x5 il
= e.C
\ % | 3 =3 0 0 0 |— Z: 97k
35 2 1 0 0 C,=1-(3-1+2-1+(~1)-1)=-3
L C,=1-(2-1+(-1)-1+3-1)=-3
-1 3 0 0 1 ( +( ) i )

3
v N

Xio G G 2. make identity matrix




Simplex Algorithm

| 3 3 0 0 0
1 3 2 1 0 0
2 2 -1 0 1 0
3 -1 3 0 0 1

5.select column | that gives

most negative C; or

most negative©-C; (more computation)

X
6. compute© = lquelk,lg e—: 52132 0 32 0 .
7.pivot 12132 1 12 0 0
8.repeat steps 3-7 o2 |72 0 12 1 0

until €; > 0 for all | 32 |-11/2 0 =3/2 0 1




Beginning the Simplex Algorithm

Beginning the Simplex Algorithm

e How to obtain an initial BFS?
— Use slack variables
e AX<Db -->AXx +Ixs =D, xs are initial basic variables
e What if b <07? -->-AX - Ixs = -b, then use artificial variables
— Use artificial variables, then two-phase method
« AXx=b --> AX + Ix2 = Db, x2 are initial basic variables
o All the artificial variables are driven out of the basis
x*=0

—>1X; 20, k =1,...,m — basic variables

X; = 0,otherwise — non — basic variables
N\

— original problem



Beginning the Simplex Algorithm

Two-phase method
— In phase I, minimize the cost function

g :ina

T =0andall X's are driven out of the basis : ok

¢ > 0:no feasible solution to the original problem

.

¢ =0but some X 's remain in the basis :

continue pivoting until we get a basis

with the original variables

\

In the last case, e,; <0 can be a pivot because© =0

(recall ¥ (x, —6-e, A, +6-A, =b)
k=1



Beginning the Simplex Algorithm

procedure two - phase
begin
infeasible :='no'; redundant :="no';
(Phase I may set these to 'yes')
Phase I :
introduce an artificial basis, X;;
call simplex with cost? = Z X
if ¢

else begin

opt > 010 Phase I then infeasible :='yes'

if an artificial variableis in the basis and cannot be driven out (g,; = 0 V])

then redundant :='yes'and omit the corresponding row;
Phase II :
call simplex with original cost
end

end



Beginning the Simplex Algorithm

« Example

x4 x5

X3

x1

X3

x]?

x4 x5

X3




Beginning the Simplex Algorithm

m
ZekJ Jk
k=1

¢ = Zm: X;

= x* x2 x3 x1 xX2 x3 ¥  x0
- |-1/3|-1/3 0 0| 0 13 23 1 1
&= |-14/3|10/3 0 0| 0 43 13 -1 -l
xX=|1/3[1/3 0 0|1 @3 113 0 0
x2=|3/4|5/3 1 0| 0 73 23 1 0
x¥=|10/3|=2/3 0o 1|0 13 13 0 1

x* x2 x3 xI xX2 x3 x4 x
—=|-1/2|-1/2 0 0 |-1/2 0 12 1 1
| 4|4 0 o0]2 o0 1 -1 -
x= | 1/2|1/2 0 0|32 1 12 0 0
=|52]-1/2 1 o772 o 12 (1) o
x¥=| 321|156 0 1 |-11/2 0 32 0 1

7




Beginning the Simplex Algorithm

x* x2 x3F xI xX x3 x4 x0
—~[=3]0 -1 0]-4 0 o0 o0 1
<= [=32[72 1 o0 |Ww2z o0 32 0 -1
=[12]12 0 0 |32 1 12 0
= [520-12 1 o |72 0o 12 1 0
=252 o 1|12 o 32 o (1

x* x2 x3F xI xX x3 x4 x0
(92 0 -1 —1]32 0 32 0 o0
=072 1 1]0 0 0 0 o0
2=[12[1/2 0 0 |32 1 12 0 0
= [52(-12 1 o |72 0o 12 1 0
5= 32|52 0 1|42 0 32 0 1

This example gives an optimum point when Phase | is finished ((_:j > O‘v’j)




Geometric Aspects of Pivoting

Geometric Aspects of Pivoting

X/

X0

x4

X3

x1
-1

-14

X/

X3 x4 XD

W

x1
-1

-14

32
2
2

6

x4
xX1=

XO0=

X/=




Geometric Aspects of Pivoting

X7

)

X0

x4

X3

x1

x4 XD ) X/
-13

14

X3

x1




Geometric Aspects of Pivoting

X/
13/3
1/3
-1/3

X3 x4 XD )
0 0

—2/3

x1

1

0

0

1/3

2/3 -1 1

0

X7

X0

XD

x4

X3

x1

@=®

NN
I M
SO O —~H O
SO O O
N N N
~— ~
— -
RSCINE
O~ o O
— o O O
N N N
/ /
1/ —
oo
— MmO AN
4L
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Geometric Aspects of Pivoting

X2 x4 XD ) X7
-14

x1

« Taking an alternative path
X3
-1

4

x4=

X0

X/

X0

x4

X3

x1

S|= @
— |

o |o -
o |o -
o |~ -
S EGE
o |o —
T o
P | N




Geometric Aspects of Pivoting

X0 X/
0 4/3 14/3
0 -2/3

1 0

x4

X3

x1

-1/3
0

0 -1/3 1/3

0

x4=
5=

XD X0 X7

0
0

x4

X3

x1

2/3  13/3

—2/3
2/3

1

-1/3
1/3

-1/3  1/3

0

0

x]=




Integer Linear Programming
 Problem

min C'X
Ax=Db
X>0

X :integer

X2 4

O

Integer Linear Programming

O O
« Optimum of LP

Decreasing
cost

@) @)

Optimum of ILP
O O

Feasible region of LP




Integer Linear Programming

e Cutting-Plane Algorithm

Relaxation of the ILP
min C'X X, 1 o 5 . - S
Ax=b Feasible
Xz0 set
— @)
x9, ILP solution
- O O O
Decreasing
cost
- O O O
- O O O
— 9 e
Rounded x* ™ x*, LP solution
| | | | |




Integer Linear Programming

— Add constraints to an ILP that do not exclude integer
feasible points until the solution to the LP relaxation is
Integer

Decreasing cost

/ O O / O O




Integer Linear Programming

Ax=b—>B'Ax=B b —>Ex=b
X; + Zex —b A, €B

i
J:A ;2B

Lete, =|e, |+ f, and b, = \_BIJ+ f

Then x; + Z(LeijJJr f )xj :\_EJ+ f

J:A;¢B
=X F ZL&,—JX,——\_ J fi— 2 fiX;
J:A ;2B j:A; 2B

For x; and x; to beintegers, f; - Zf X. must be aninteger. (1)

J:AjeB

BecauseO0< f, <1, 0< f;, <1, and x; >0, f,— > f;x

J:AeB

7]

<1. (2)

ij 7]

From(1)and (2), f,— > f;x; <0.

ijo]
J:A;B

— This excludes the solution (x; =0, f; >0) of the relaxation LP.
But does not exclude any integer feasible point.

— Add Zf X. +Xx =—f as anew constraint (Gomory cut).
J:A 2B
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