
Two-Level Logic Optimization
(4541.554 Introduction to Computer-Aided Design)

School of EECS
Seoul National University

Minimization of Two-Level Functions

Minimization of Two-Level Functions
• Goals:

– Minimize cover cardinality
– Minimize number of literals

PLA implementation:
– Minimize number of rows
– Minimize number of transistors

--> Minimize area and time
• Karnaugh map: manual minimization

f=Σm(0,2,3,6,7,8,9,10,13)

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

1

ab
cd 00

00

01 11 10

10

01

11
f=b’d’+a’c+ac’d

Minimization of Two-Level Functions

• Quine-McCluskey Method
– Exact minimization (global minimum)
– Generate all prime implicants

• Start from 0-dimensional cubes (minterms)
• Find k-dimensional cubes from (k-1)-dimensional cubes

(find cubes that are different in only one position)
– Find a minimum prime cover

• Minimum set of prime implicants covering all the minterms

1’s Minterms

m0

m2

m8

m3

m6

m9

m10

m7

m13

0000 √
0010 √
1000 √
0011 √
0110 √
1001 √
1010 √
0111 √
1101 √

0
1

2

3

1-Cubes

0,2
0,8
2,3
2,6
2,10
8,9
8,10
3,7
6,7
9,13

00x0 √
x000 √
001x √
0x10 √
x010 √
100x *
10x0 √
0x11 √
011x √
1x01*

2-Cubes

0,2,8,10
2,3,6,7

x0x0 *
0x1x *

Minimization of Two-Level Functions

0,2,8,10

2,3,6,7

8,9

9,13

0

√

√

*

*

*

2

√

√

√

3

√

√

6

√

√

7

√

√

8

√

√

√

9

√

√

√

10

√

√

13

√

√

essential

f=m0,2,8,10+m2,3,6,7+m9,13

=b’d’+a’c+ac’d

Minimization of Two-Level Functions

• Petrick’s method
6 7 15 38 46 47

a √ √ 00011x
b √ √ x01111
c √ √ 00x111
d √ √ 10111x
e √ √ 10x110
f √ √ x00110

“covering proposition”
CP=(a+f)(a+c)(b+c)(e+f)(d+e)(b+d)

m6 m7 m15 m38 m46 m47

=abe+abdf+acde+bcef+cdf (exponential)
select terms with fewest product terms (abe, cdf)
---> then select the term with fewest literals

Minimization of Two-Level Functions

• Branching method

select a

select b select b

no yes

select c select c

no yes

...

...

If worse, prune the branch

Minimization of Two-Level Functions

– Complexity:
• Number of minterms: ~ 2n

• Number of prime implicants: ~ 3n/n
• Very large table
• Covering problem is NP-complete --> Branch and bound

technique
• Use heuristic minimization

– Find a minimal cover using iterative improvement
– Example: MINI, PRESTO, ESPRESSO

MINI

MINI
• S.J.Hong, R.G. Cain, and D.L.Ostapco, "MINI: a

heuristic approach for logic minimization," IBM J.
of Res. and Dev., Sep. 1974.

• Three processes
– Expansion: Expand implicants and remove those that

are covered
– Reduction: Reduce implicants to minimal size
– Reshape: Modify implicants

MINI

• Expansion
– Iterate on implicants
– Make implicants as large as possible
– Remove covered implicants
– Goal: Minimal prime cover w.r.t. single cube

containment
– Most minimizers use this technique
– Algorithm:

For each implicant {
For each care literal {

Replace literal by *
If (implicant not valid) restore

}
Remove all implicants covered by expanded

implicants
}

– Validity check:
• Check intersection of expanded implicant with XOFF

MINI

– Example
0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

1 0 1 0

0 1 1 0

1 1 1 0

1 1 0 *

Take 0 0 0
Expand * 0 0 ok
Expand * * 0 ok
Expand * * * not ok
Restore * * 0
Remove covered implicants

* * 0
0 0 1

Take 0 0 1
Expand * 0 1 not ok
Restore 0 0 1
Expand 0 * 1 not ok
Restore 0 0 1
Expand 0 0 * ok
Remove covered implicants

* * 0
0 0 *

MINI

• Reduce
– Iterate on implicants
– Reduce implicant size while preserving cover cardinality
– Goal: Escape from local minima
– Alternate with expansion
– Algorithm:

For each implicant {
For each don't care literal {

Replace literal by 1 or 0
If (implicant not valid) restore

}
}

– Heuristics: ordering
– Example:

* * 0 can't be reduced

0 0 * can be reduced to 0 0 1

MINI

• Reshape
– Modify implicants while preserving cover cardinality
– Goal: Escape from local minima

A, B : disjoint
A and B are different in exactly two parts
One different part of A covers the corresponding part of B

A=π1 π2 … πi … πj … πp
B=π1 π2 … μi … μj … πp
πj covers μj

A’=π1 π2 … πi … (πj ∩ μj’) … πp
B’=π1 π2 … (πi ∪ μi) … μj … πp

B=001

A=1x1

B’=X01

A’=111

MINI

– Alternate with expansion and reduce.
– Example:

001

1x1

110

a b c
0 0 1
1 x 1
1 1 0

a b c
x 0 1
1 1 1
1 1 0

reshape

expand a b c
x 0 1
1 1 x

x01

111

110

x01 11x

Espresso II

Espresso II
• R.K.Brayton, G.D.Hachtel, C.T.McMullen, and

A.L.Sangiovanni-Vincentelli, Logic Minimization
Algorithms for VLSI Synthesis, Kluwer Academic
Publishers, 1984.

• Results are often global minimum.
• Very fast

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Complementation
– Recursive computation

F’= (xjFxj+xj’Fxj’)’
= (xjFxj)’(xj’Fxj’)’
= (xj’+(Fxj)’)(xj+(Fxj’)’)
= xj’(Fxj’)’+xj(Fxj)’+(Fxj)’(Fxj’)’
= xj’(Fxj’)’+xj(Fxj)’+xj’(Fxj)’(Fxj’)’+xj(Fxj)’(Fxj’)’
= xj’(Fxj’)’+xj(Fxj)’

– Computation of (Fxj’)’ and (Fxj)’:
• |Fxj’| =< |F| (cubes with xj are removed)
• |Fxj| =< |F| (cubes with xj’ are removed)
• One less variable (xj is removed)

– If the cubes have variables xj only for j=1,...,k,
then Fx1x2…xk is tautology and the complement is empty.

– Choice of variables:
• Choose variables of the largest cube (with least # of literals) -->

terminate the recursion fast
• In the cube, choose first the variable that appears most often in

the other cubes of F --> remove as many literals as possible

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Expand
– Ordering cubes in the cover:

• Arrange cubes in the order of decreasing size.
--> Larger cubes are more likely to cover other cubes and
less likely to be covered by other cubes.

– Selecting columns in a cube (c):
1. If a cube (d) in the off-set has only one column (j) that

satisfies the following condition,
(cj=1 and dj=0) or (cj=0 and dj=1)

column j cannot be expanded.
ex) c=01*, d=111

--> Column 1 of c cannot be expanded.
Reduce problem size by eliminating the excluded column,
d, and cubes that cannot be covered.

Espresso II

2. Select columns that can be expanded to cover as many cubes in
the on-set as possible.
If there are no more covered cubes, select a column with
maximum conflicts between c and other cubes in the on-set.
The corresponding columns and covered cubes are eliminated.

3. If all cubes in the off-set have no conflict on column j, select the
column for expansion. The corresponding column and covered
cubes are eliminated.

4. Repeat step 1, 2, and 3 until
(1) all columns are eliminated

--> done
(2) all cubes in the off-set are eliminated

--> select all remaining columns for expansion
(3) all cubes in the on-set are covered

--> select for expansion as many columns as possible, to
reduce # of literals

--> find the minimum column cover of the Blocking Matrix
--> NP-complete
--> use heuristics

Espresso II

• Blocking Matrix
on-set: c=10101
off-set: r1=11*00

r2=10111
r3=01101
r4=11000

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

01101
11000
00010
01001

r4
r3
r2
r1 1 when cj ⊆ rij

If c is not expanded for these columns
--> {c} ∩ R=∅

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Essential primes
– Consensus e of two cubes c and d is a cube such that:

If d(c, d) = 0, then e = c ∩ d
if d(c, d) = 1, then ei = cidi, cidi ≠ ∅

*, otherwise
if d(c, d) ≥ 2, then e = ∅

c=*00

d=1*1

e=10*

c=*01
d=1*1

c=0*0

d=1*1

Espresso II

– For a prime p, iff the consensus of ((on-set ∪ dc-set)-{p})
with p completely covers p, p is not essential.

– Why take consensus?

p p

essential not essential

p

((on-set ∪ dc-set)-{p}) does not cover p
even though p is not essential

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Irredundant cover
– Partition the prime cover into two sets:

• set E of relatively essential cubes
• set R of redundant cubes.

– For a cube c in the (on-set), if ((on-set ∪ dc-set) - {c})
covers c, then c is a redundant cube (c ∈ R), else c is a
relatively essential cube (c ∈ E).

– A redundant cube r is partially redundant if (dc-set ∪ E)
does not cover r.

– Remaining cubes in R are totally redundant.
– Totally redundant cubes are removed.
– From the set Rp of partially redundant cubes, extract a

minimal set Rc such that E ∪ Rc is still a cover.
--> minimum column cover

Espresso II

p

a, c : relatively essential
b : totally redundant

a

b

c

d

a, d : relatively essential
b, c : partially redundant

p

a

b

c

d

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Reduction
– Ordering cubes for reduction:

• Select the largest cube
--> Largest cubes can be reduced most easily.

• Order the remaining cubes in increasing pseudo-distance
(number of mismatches)

ex) pd(01*1, 0*11) = 2
--> Later expansion easily covers its neighbors.

– For a cube c in the cover, compute the smallest cube s
containing
c ((on-set - {c}) ∪ dc-set)’ = c (F(c))’

on-{c}

dc
{c}

Espresso II

• Example

AB
CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB
CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB
CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

AB
CD 00 01 11 10

00

01

11

10

D

B

C

A

1 1 0 0

1 1 1 1

0 0 1 1

1 1 1 1

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Lastgasp
– Reduce cubes independently (order independent)

The set of reduced cubes {c1, c2, ... cp} is not
necessarily a cover.

– Expand the reduced cubes to generate a set of new
primes (NEW_PR)

– Run IRREDUNDANT_COVER with NEW_PR ∪ OLD_PR,
where OLD_PR is the set of old primes

Espresso II

• Sequence of operations
1. Complement

• Compute the off-set (complement of XON U XDC)
2. Expand

• Expand each implicant into a prime and remove covered
implicants

3. Essential primes
• Extract essential primes and put them in the don't care set

4. Irredundant cover
• Find a minimal irredundant cover

5. Reduce
• Reduce each implicant to a minimum essential implicant

6. Iterate 2, 4, and 5 until no improvement
7. Lastgasp

• Try reduce, expand, and irredundant cover using a different
strategy

• If successful, continue the iteration
8. Makesparse

• Include the essential primes back into the cover and make the
PLA structure as sparse as possible

Espresso II

• Makesparse
– Reduce number of literals in each cube

--> Make PLA matrix as sparse as possible
--> Enhance ability to be folded and improve electrical

properties
– Irredundant cover for multiple output can have

redundant cubes for single output.
(ex) input output

01* 010
011 110
001 101

--> 2nd cube is redundant for 2nd output.
– Lower output part:

• make output plane sparse
• compute irredundant cover for single output

(ex) input output
01* 010
011 110 100
001 101

Espresso II

– Raise input part
• Make input plane sparse
• For each cube that has been changed, perform expand

operation on input part
(ex) input output

01* 010
011 100
001 101

01* 010
0*1 100
001 101

01* 010
0*1 100
001 001

	Two-Level Logic Optimization�(4541.554 Introduction to Computer-Aided Design)
	Minimization of Two-Level Functions
	Minimization of Two-Level Functions
	Minimization of Two-Level Functions
	Minimization of Two-Level Functions
	Minimization of Two-Level Functions
	Minimization of Two-Level Functions
	MINI
	MINI
	MINI
	MINI
	MINI
	MINI
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II
	Espresso II

