
V - Combinational Logic Case
Studies Contemporary Logic Design 1

Ch 5. Combinational Logic Case
Studies

V - Combinational Logic Case
Studies Contemporary Logic Design 2

Combinational logic design case studies

General design procedure
Case studies

process line controller
telephone keypad decoder
calendar subsystem

V - Combinational Logic Case
Studies Contemporary Logic Design 3

General design procedure
for combinational logic

1. Understand the problem
what is the circuit supposed to do?
write down inputs (data, control) and outputs
draw block diagram or other picture

2. Formulate the problem using a suitable design representation
truth table or waveform diagram are typical
may require encoding of symbolic inputs and outputs

3. Choose implementation target
ROM, PAL, PLA
mux, decoder and OR-gate
discrete gates

4. Follow implementation procedure
K-maps for two-level, multi-level
design tools and hardware description language (e.g., Verilog)

V - Combinational Logic Case
Studies Contemporary Logic Design 4

Production line control

Rods of varying length (+/-10%) travel on conveyor belt
mechanical arm pushes rods within spec (+/-5%) to one side
second arm pushes rods too long to other side
rods that are too short stay on belt
3 light barriers (light source + photocell) as sensors
design combinational logic to activate the arms

Understanding the problem
inputs are three sensors
outputs are two arm control signals
assume sensor reads "1" when tripped, "0" otherwise
call sensors A, B, C

V - Combinational Logic Case
Studies Contemporary Logic Design 5

Sketch of problem

Position of sensors
A to B distance = specification – 5%
A to C distance = specification + 5%

Within
Spec

Too
Short

Too
Long

A

B

C

spec
- 5%

spec
+ 5%

V - Combinational Logic Case
Studies Contemporary Logic Design 6

logic implementation now straightforward
just use three 3-input AND gates

"too short" = AB'C'
(only first sensor tripped)

"in spec" = A B C'
(first two sensors tripped)

"too long" = A B C
(all three sensors tripped)

A B C Function
0 0 0 do nothing
0 0 1 do nothing
0 1 0 do nothing
0 1 1 do nothing
1 0 0 too short
1 0 1 don't care
1 1 0 in spec
1 1 1 too long

Formalize the problem

Truth table
show don't cares

V - Combinational Logic Case
Studies Contemporary Logic Design 7

Telephone Keypad Decoder

1 2 3

4 5 6

7 8 9

* 0 #

R1

R2

R3

R4

C1 C2 C3

Design a combinational circuit that decodes a button press on a telephone
keypad that has four rows and three columns of buttons

Decoded into a 4-bit binary number.

* and # decoded into 10 and 15

V - Combinational Logic Case
Studies Contemporary Logic Design 8

Step 1. Understand the problem
Determine Input and Output
Input : Four rows and three columns
Output : 4-bit binary number
Assumptions
a. A button is pressed, corresponding

row and col signals go to logic 1.
b. Multiple press case is ignored.

Step 2. Formulate in a standard
representation.

Truth table is very large!(128 rows)
Hardware description language

Telephone Keypad Decoder
Module keypaddecoder(R1, R2, R3, R4, C1, C2
, C3, K8, K4, K2, K1, KP);
Input R1, R2, R3, R4, C1, C2, C3;
Output K8, K4, K2, K1, KP;
Reg[3:0] key;

Always @(R1, R2, R3, R4, C1, C2, C3) begin
If R1 & C1 key =1;
If R1 & C2 key =2;
If R1 & C3 key =3;
If R2 & C1 key =4;
If R2 & C2 key =5;
If R2 & C3 key =6;
If R3 & C1 key =7;
If R3 & C2 key =8;
If R3 & C3 key =9;
If R4 & C1 key =10;
If R4 & C2 key =0;
If R4 & C3 key =15;
KP = ((R1+R2+R3+R4) == 3b`001)

&& ((C1+C2+C3) == 3b`001);
end

Assign K8 = key[3];
Assign K4 = key[2];
Assign K2 = key[1];
Assign K1 = key[0];

Endmodule

}

V - Combinational Logic Case
Studies Contemporary Logic Design 9

Step3. Implementation target
Transform the Verilog into logic equations.
K1 = R1C1 + R1C3 + R2C2 + R3C1 + R3C3 + R4C3

K2 = R1C2 + R1C3 + R2C3 + R3C1 + R4C1 + R4C3

K4 = R2C1 + R2C2 + R2C3 + R3C1 + R4C3

K8 = R3C2 + R3C3 + R4C1 + R4C3

KP has too many terms (12), so we implement KP`.
KP` = R1R2 + R1R3 + R1R4 + R2R3 + R2R4 + R3R4 + C1C2 + C1C3

+ C2C3

Step4. Implementation procedure.
In FPGA, we can decompose the equations by using intermediate
terms

Telephone Keypad Decoder

V - Combinational Logic Case
Studies Contemporary Logic Design 10

integer number_of_days (month, leap_year_flag) {
switch (month) {

case 1: return (31);
case 2: if (leap_year_flag == 1)

then return (29)
else return (28);

case 3: return (31);
case 4: return (30);
case 5: return (31);
case 6: return (30);
case 7: return (31);
case 8: return (31);
case 9: return (30);
case 10: return (31);
case 11: return (30);
case 12: return (31);
default: return (0);

}
}

Calendar subsystem

Determine number of days in a month (to control watch display)
used in controlling the display of a wrist-watch LCD screen

inputs: month, leap year flag
outputs: number of days

Use software implementation
to help understand the problem

V - Combinational Logic Case
Studies Contemporary Logic Design 11

leapmonth

28 29 30 31

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Formalize the problem

Encoding:
binary number for month: 4 bits
4 wires for 28, 29, 30, and 31
one-hot – only one true at any time

Block diagram:

V - Combinational Logic Case
Studies Contemporary Logic Design 12

month leap 28 29 30 31
0000 – – – – –
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Choose implementation target
and perform mapping

Discrete gates

28 =

29 =

30 =

31 =

Can translate to S-o-P or P-o-S

m8’ m4’ m2 m1’ leap’

m8’ m4’ m2 m1’ leap

m8’ m4 m1’ + m8 m1

m8’ m1 + m8 m1’

V - Combinational Logic Case
Studies Contemporary Logic Design 13

Leap year flag

Determine value of leap year flag given the year
For years after 1582 (Gregorian calendar reformation),
leap years are all the years divisible by 4,
except that years divisible by 100 are not leap years,
but years divisible by 400 are leap years.

Encoding the year:
binary – easy for divisible by 4,
but difficult for 100 and 400 (not powers of 2)
BCD – easy for 100,
but more difficult for 4, what about 400?

Parts:
construct a circuit that determines if the year is divisible by 4
construct a circuit that determines if the year is divisible by 100
construct a circuit that determines if the year is divisible by 400
combine the results of the previous three steps to yield the leap year flag

V - Combinational Logic Case
Studies Contemporary Logic Design 14

Use BCD encoded year instead of binary encoded year.
YM8 YM4 YM2 YM1 – YH8 YH4 YH2 YH1 – YT8 YT4 YT2 YT1 – YO8 YO4 YO2
YO1

Idea to get a divisible-by-4-circuit
00-04-08, 12-16, 20
if tens digit is even, then divisible by 4 if ones digit is 0, 4, or 8
if tens digit is odd, then divisible by 4 if the ones digit is 2 or 6.

Boolean Expression
YT1’ (YO8’ YO4’ YO2’ YO1’ + YO8’ YO4 YO2’ YO1’ + YO8 YO4’ YO2’ YO1’) +
YT1 (YO8’ YO4’ YO2 YO1’ + YO8’ YO4 YO2 YO1’)

Simplified Boolean Expression
Digits with values of 10 to 15 will never occur
YT1’ YO2’ YO1’ + YT1 YO2 YO1’

Activity: divisible-by-4 circuit

V - Combinational Logic Case
Studies Contemporary Logic Design 15

Divisible-by-100 and divisible-by-400 circuits

Divisible-by-100 just requires checking that all bits of two low-order digits are all 0:

YT8’ YT4’ YT2’ YT1’ • YO8’ YO4’ YO2’ YO1’

Divisible-by-400 combines the divisible-by-4 (applied to the thousands and hundreds
digits) and divisible-by-100 circuits

(YM1’ YH2’ YH1’ + YM1 YH2 YH1’)

• (YT8’ YT4’ YT2’ YT1’ • YO8’ YO4’ YO2’ YO1’)

V - Combinational Logic Case
Studies Contemporary Logic Design 16

Combining to determine leap year flag

Label results of previous three circuits: D4, D100, and D400

leap_year_flag = D4 (D100 • D400’) ’

= D4 • D100’ + D4 • D400

= D4 • D100’ + D400

V - Combinational Logic Case
Studies Contemporary Logic Design 17

Implementation of leap year flag

	Ch 5. Combinational Logic Case Studies
	Combinational logic design case studies
	General design procedure�for combinational logic
	Production line control
	Sketch of problem
	Formalize the problem
	Telephone Keypad Decoder
	Telephone Keypad Decoder
	Telephone Keypad Decoder
	Calendar subsystem
	Formalize the problem
	Choose implementation target�and perform mapping
	Leap year flag
	Activity: divisible-by-4 circuit
	Divisible-by-100 and divisible-by-400 circuits
	Combining to determine leap year flag
	Implementation of leap year flag

