IEEE 802.15.4 LR-WPAN

Sunghyun Choi, Associate Professor, Ph.D. Multimedia & Wireless Networking Lab. (MWNL) Seoul National University E-mail: <u>schoi@snu.ac.kr</u> URL: <u>http://mwnl.snu.ac.kr</u>

Talk Outline

- Introduction to IEEE 802.15.4
- Technical aspects
 - MAC
 - PHY
- Miscellaneous
- Conclusion

802.15.4 with Five Key Words

- Very low cost
- Very low power consumption
- Low complexity
- Low rate
- Short range

Why Not Other Wireless Solutions?

802.11 WLAN

Too heavy for most 802.15.4 applications

Bluetooth

- Originally, for the cable replacement
- But, too heavy for most 802.15.4 applications too (e.g., synchronous voice support)!
- Both are too expensive and too much power hungry!
 - Would require battery replacement several times per year

LR-WPAN vs. Other Wireless

802.15.4 Applications Space

Home Networking Automotive Networks Industrial Networks Interactive Toys Remote Metering

Application Examples

- Industrial networks with wireless sensors
 - Emergency situation detection hazardous chemical levels and fires
- Automotive networks with sensors
 - Tire monitoring system
- Precision farming
 - For environment-adaptive intelligent farming
- Home automation
 - Networking among security system, lighting, AC, and appliances

Common Requirements

Low power consumption

 Frequent battery change is not desired and/or not feasible

Low cost

- Otherwise, wireline alternative may be preferred
 An application itself may not be attractive
- High throughput is not required
 - Typically, short-lived sporadic messages
 - Latency or reliability could be more important

IEEE 802.15.4 for LR-WPAN

Technical Aspects

High-Level Characteristics

Property	Range
Raw data rate	868 MHz: 20 kb/s; 915 MHz: 40 kb/s; 2.4 GHz: 250 kb/s
Range	10–20 m
Latency	Down to 15 ms
Channels	868/915 MHz: 11 channels 2.4 GHz: 16 channels
Frequency band	Two PHYs: 868 MHz/915 MHz and 2.4 GHz
Addressing	Short 8-bit or 64-bit IEEE
Channel access	CSMA-CA and slotted CSMA-CA
Temperature	Industrial temperature range –40 to +85 C

802.15.4 Architecture

MAC Overview

Design Drivers

- Extremely low cost
- Ease of implementation
- Reliable data transfer
- Short range operation
- Very low power consumption

Simple, but flexible protocol

Typical Network Topologies

MAC Features

- Association, disassociation
- Optional acknowledged frame delivery
- Channel access mechanism
- Frame validation
- Guaranteed time slot management
- Beacon management
- MAC management has 35 primitives
 - RFD has 24 primitives
 - cf. 131 primitives of 802.15.1 / Bluetooth

Device Classes

- Full function device (FFD)
 - Any topology
 - Network coordinator capable
 - Talks to any other device
- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become a network coordinator
 - Talks only to a network coordinator
 - Very simple implementation

Access Mechanisms

- Carrier-Sense Multiple Access with Collision Avoidance (CSMA-CA)
- Either slotted or unslotted version used
 - Slotted CSMA-CA in a beacon-enabled network
 - Unslotted or standard CSMA-CA in networks without beacons
- Optionally, contention-free access using Guaranteed Time Slots (GTSs) in beaconenabled mode

Optional Contention Free Period

- For some applications requiring dedicated bandwidth to achieve low latencies
 - Beacon transmitted every 15 msec~245 sec
 - Each superframe comprises 16 equal superframe slots

Superframe Structure

- Inactive portion can exist for the power save
- Guaranteed Time Slots (GTSs) allocated within CFP
 - Up to 7 GTSs can be allocated in a superframe

MAC-Related Parameters

- One symbol = 16 usec (@2.4GHz)
- UnitBackoffPeriod = 20 symbols
- BaseSlotDuration = 60 symbols
- CCA detection time = 8 symbols
- Random backoff [0,2^BE-1]
 - Backoff exponent BE increases by one whenever CCA busy
- Contention window length CW
 - For slotted CSMA-CA, it is initially 2 and decreases by one after a CCA idle assessment
 - For unslotted CSMA-CA, initial value is one тнк1

THK1 CW is used in both mode Tae Hyun Kim, 2006–04–13

Unslotted CSMA-CA

- Backoff periods of a device not related to that of any other device
 - Therefore, synchronization is not required THK2
- CCA Clear Channel Assessment to check if channel is busy or idle

슬라이드 21

To clarify the previous sentence. Tae Hyun Kim, 2006-04-13 THK2

irrespective of csma-ca type, aTurnaroundTime should be secured between any Rx-Tx radio switching. This is PHY-constant. THK3

Tae Hyun Kim, 2006-04-13

Slotted CSMA-CA

- Backoff period boundaries aligned by the periodic beacon transmission
- It also implies that they are aligned with superframe slot boundaries (for GTS) as Slot = n
 * aUnitBackoffPeriod

Power Save Mechanisms

- Going to sleep state as often as possible by utilizing:
 - Inactive mode in superframes
 - Backoff periods when macRxOnWhenIdle is reset.
 - GTS for other devices
- Extracting pending messages from coordinator
 - Using data request command
 - Message pending indicated in beacon frames

Addressing

- All devices have either 16-bit or 64-bit IEEE addresses
- Short addresses can be allocated by coordinator

General MAC Frame Format

MAC Frame Components

Frame control

- MAC frame type, Address field format
- Controls the ACK ACK or no ACK
- Address Information
 - Variable number of addresses
 - 16-bit short or 64-bit IEEE device address
- Sequence number
 - Same number use for the subsequent ACK
- Frame check sequence (FCS)
 CRC-16 for frame integrity check

Four Types of MAC Frames

Data Frame

- Acknowledgment Frame
 - After some amount of time varying from TurnaroundTime (12 symbols) to UnitBackoffPeriod + TurnaroundTime (32 symbols)

Beacon Frame

- Specifies devices with pending messages
- MAC Command Frame
 - Association request/response
 - Data request for pending messages
 - GTS request/allocation and many others

THK4 More exactly speaking, this one sounds better. Tae Hyun Kim, 2006-04-13

PHY Overview

PHY Overview – Operating Frequency Bands

Channel Frequencies

Channel number	Channel center frequency (MHz)				
<i>k</i> = 0	868.3				
<i>k</i> = 1, 2,, 10	906 + 2(<i>k</i> – 1)				
<i>k</i> = 11, 12,, 26	2405 + 5(<i>k</i> – 11)				

Co-existence with 11b

Modulation Parameters

РНҮ	Frequency band	Data parameters			Spreading parameters	
		Bit rate (kb/s)	Symbol rate (kbaud)	Modulation	Chip rate (Mchips/s)	Modulation
868/915	868.0-868.6 MHz	20	20	BPSK	0.3	BPSK
MHz PHY	902.0–928.0 MHz	40	40	BPSK	0.6	BPSK
2.4 GHz PHY	2.4–2.4835 GHz	250	62.5	16-ary orthogonal	2.0	O-QPSK

- For 868/915 MHz, 15-chip m-sequence used
- For 2.4GHz, each symbol (for 4 bits) = one of 16 nearly orthogonal 32-chip PN sequences

PHY Common Parameters

Transmit Power

Capable of at least 1 mW

Transmit Center Frequency Tolerance – 40 ppm

- Receiver Sensitivity (Packet Error Rate <1%)</p>
 - □ -85 dBm @ 2.4 GHz band
 - □ -92 dBm @ 868/915 MHz band
- RSSI Measurement
 - Packet strength indication
 - Clear channel assessment (CCA)
 - Dynamic channel selection

PHY Overview: PHY Frame Structure

Miscellaneous

Differences from 802.11 WLAN

Simpler PHY

- One Tx rate per channel
- Low Tx power
- Simpler MAC
 - No virtual carrier-sense
 - No worry about hidden nodes
 - No RTS/CTS & No fragmentation
 - No continuous CCA
 - Relaxed timing requirement
- Extensive power saving features

Zigbee Alliance (http://www.zigbee.org)

- Spinoff from HomeRF
- Defining the higher layers for IEEE 802.15.4
- Different application profiles will be defined there
- IEEE 802.15.4 standardization is done, but the rest is for Zigbee

Conclusion

- Overviewed emerging IEEE 802.15.4 LR– WPAN
 - Based on IEEE 802.15.4-2003
- Expected to be used for many different applications
 - with low-power and low-cost devices

References

- Ed Callaway et al., "Home Networking with IEEE 802.15.4," IEEE Comm. Magazine, Aug. 2002
- Jose A. Gutierrez et al., "IEEE 802.15.4: A Developing Standard for Low-Power Low-Cost Wireless Personal Area Networks," IEEE Network Magazine, Sept./Oct. 2001
 IEEE Std 802.15.4-2003 standard specification, Dec. 2003

