
Opportunistic Wireless Scheduling

Wireless Networking <u>Sunghyun Choi</u>, Associate Professor <u>Multimedia & Wireless Networking Lab.</u> (MWNL) School of Electrical Engineering Seoul National University

Fairness Model for Networks

Network model

source $s=1,2,,S$	x_s : allocated rate of source s			
links l=1,2,,L	c_l : capacity of link l			
$\begin{bmatrix} A_{l,s} \in \{0,1\} \end{bmatrix}$	indicator for the source <i>s</i> which flows on the link <i>l</i>			
<i>feasible allocation</i> : $\sum_{s=1}^{S} A_{l,s} x_s \leq c_l, \forall l$				

Max-min fairness

Definition

A *feasible allocaion* $\mathbf{x} = [x_1, ..., x_s]$ is "max-min fair" if and only if for any other feasible allocation $\mathbf{y} = [y_1, ..., y_s]$, if $y_s > x_s$, then there exist some *s*' s.t. $x_{s'} \le x_s$ and $y_{s'} \le x_{s'}$

The algorithm "progressive filling"

step -1: set $x_s = 0, \forall s$

step -2: grows all x_s together at same pace

step -3: if some link *l* saturated, x_s stops growing for *s* s.t. $A_{l,s} = 1$

Proportional fairness

Definition

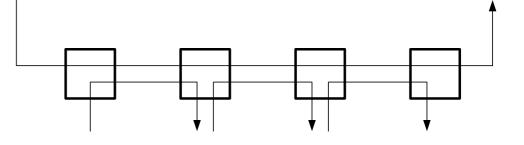
An *allocaion* $\mathbf{x} = [x_1, ..., x_s]$ is "proportionally fair" if and only if

for any other feasible allocation $y = [y_1, ..., y_s]$, we have

$$\sum_{s=1}^{S} \frac{y_s - x_s}{x_s} \le 0$$

- Any change in the allocation must have a negative average change
- Max-min fair is not proportional fair
- PF takes into consideration the usage of network resources

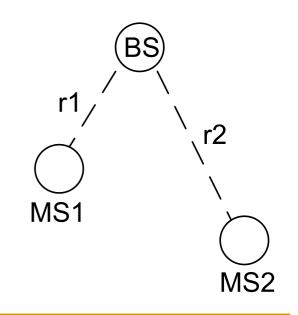
Theorem


There exists one unique PF allocation.

It can be obtained by maximizing $J(\mathbf{x}) = \sum_{s} \ln(x_s)$ for feasible allocation

Examples

- c1=c2=c3=1
- Max-min fair


 \square x1=x2=x3=x4=1/2

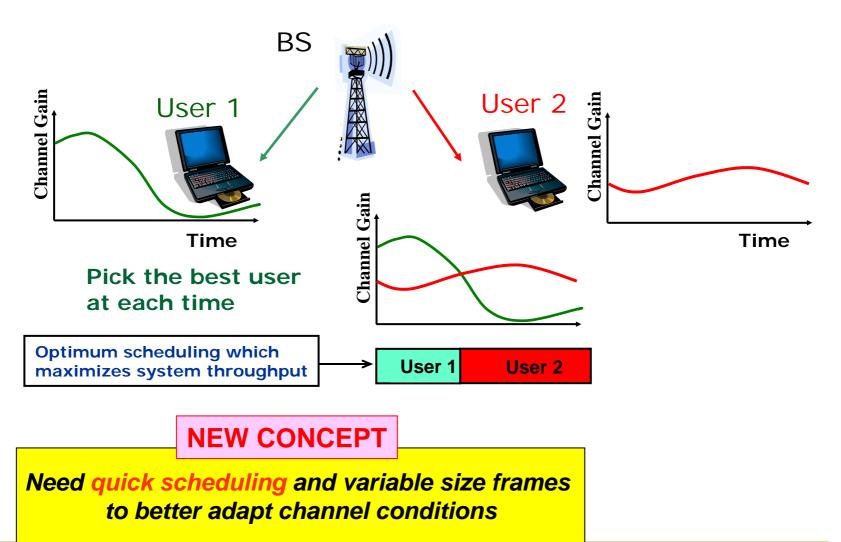
- PF
 x1=1/4 & x2=x3=x4=3/4
- For single-hop flows
 Max-min = PF

Wireless Single-hop Case

- Max-min ≠ proportional due to
 - Location-dependent channel
 - Time-varying channel
- Example
 - Time-invariant & TDM-based
 - Time-share ratio a1, a2
 - Max-min: a1=r2/(r1+r2), a2=r1/(r1+r2)
 - PF: a1=a2=1/2
 - PF = resource usage fair
 - = temporal fairness

 $Th_1 = G_1 r_1 \lambda Th_2 = (I - G_1) r_2$ $\implies q_{i,PF} = arg max Th, XTh_2$ $= \operatorname{argmax} G_1 \cdot (\Gamma G_1) \Gamma_1 \Gamma_2 = \frac{1}{2}$

 $R_{1,max-min} = \frac{12}{r_1+r_2}$

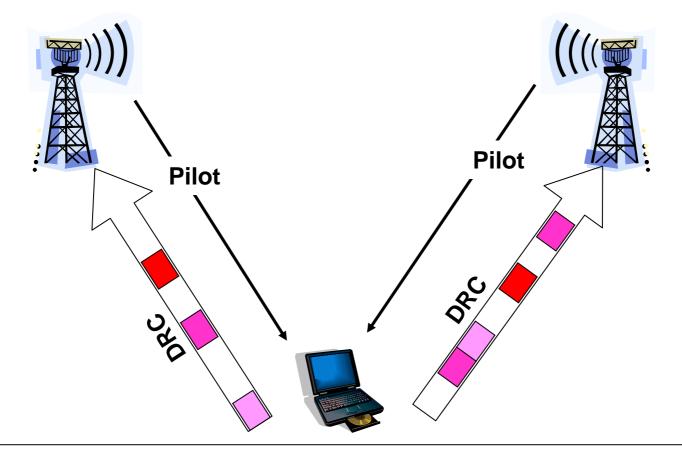

Packet Scheduling

Scheduling Issues

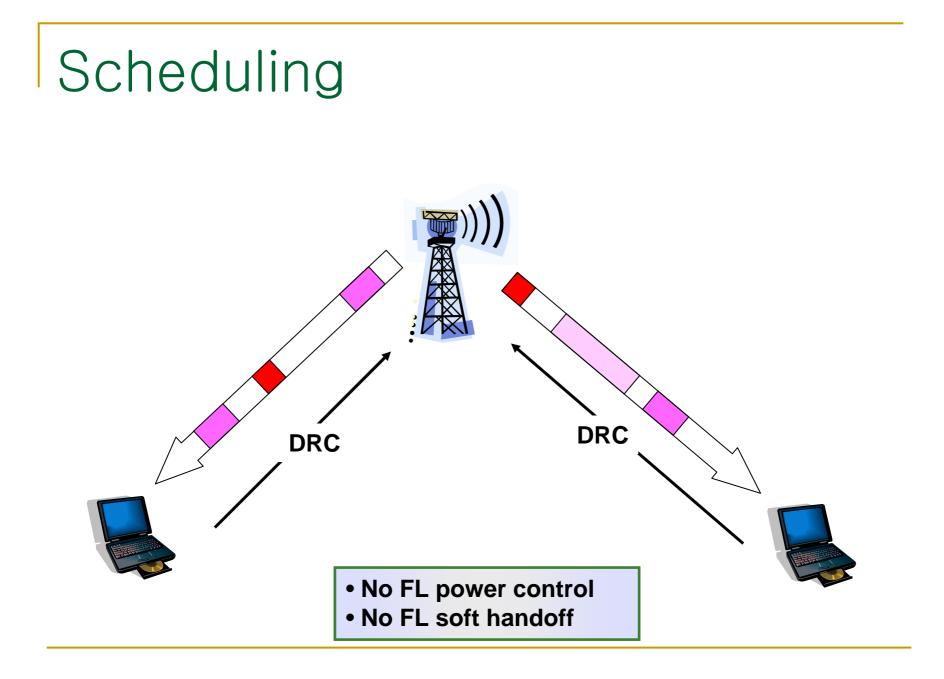
FIFO vs. WFQ

- WFQ provides weighted share of bandwidth to each flow
- Throughput fairness vs. temporal fairness
 - They become different in wireless network with AMC
- Opportunistic scheduling
 - Channel gain for a user fluctuates over time
 - Multi-user diversity (MUD) possible

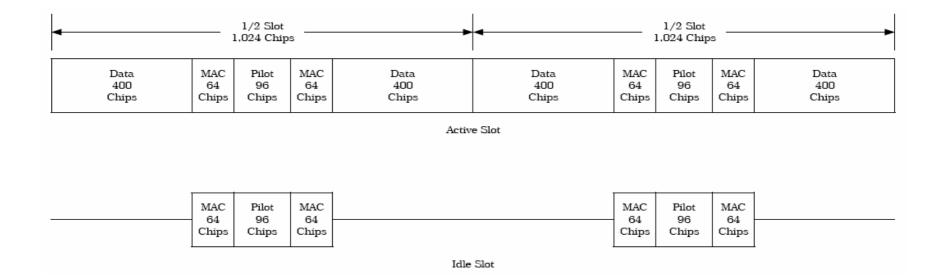
Opportunistic Scheduling


cdma2000 1xEV-DO

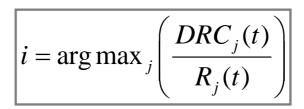
Note: this is used for June (SKT) and Fimm (KTF) today


EV-DO: Multiple Tx Rates

	\mathcal{C}			
HAR	Complete Packet Type	Nominal Data Rate (kbps)	Nominal Packet Length (slots)	Packet Size (bits)
R	38K	38.4	16	1024
\geq	76K	76.8	8	1024
	153K	153.6	4	1024
	307K-2S	307.2	2	1024
	307K-4S	307.2	4	2048
\sim	614K-1S	614.4	1	1024
	614K-2S	614.4	2	2048
	921K	921.6	2	3072
	1.2M-1S	1,228.8	1	2048
	1.2M-2S	1,228.8	2	4096
	1.8M	1,843.2	1	3072
	2.4M	2,457.6	1	4096


C/I Measurement

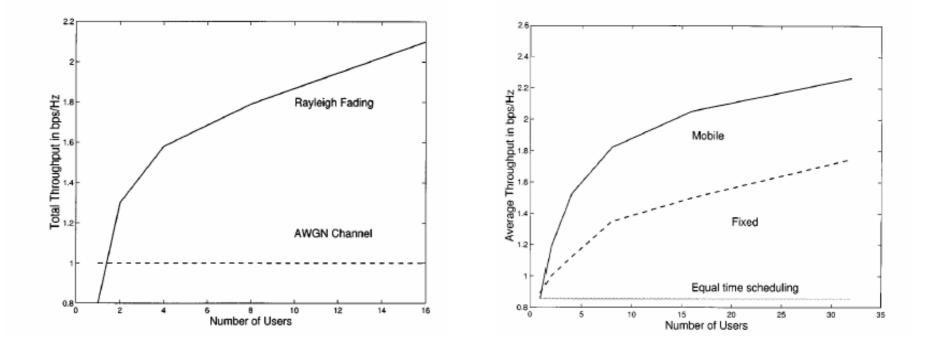
- MS measures the C/I from all the active BS→ determines the best sector and the supportable FL data rates → send the info through DRC channel.
- MS knows the available FL TX power \rightarrow can decide rate based on only C/I.
- DRC: Data Rate Control



EV-DO: FL Slot Structure

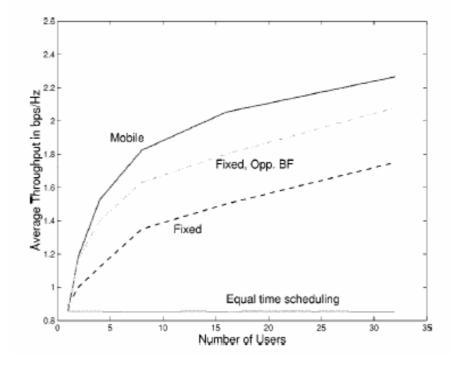
Proportional Fair Queuing (PFQ)

Packet for user *i* is transmitted if


where $DRC_{j}(t)$ is the current DRC, i.e., requested rate, from user *j* at time slot *t*, and $R_{j}(t)$ is the average rate (or throughput) of user *j* at time slot *t*.

 $R_{i}(t+1) = (1 - 1/t_{c})R_{i}(t) + 1/t_{c} * Current Tx Rate of User j$

Some notes


- PFQ achieves PF?
- Thouse mat Axod Thouse mat Axi Thouse mat Axi □ Think about the definition of PF.
- To achieve PF, $R_i(t)$ should be the received rate or throughput, NOT the average DRC!!!
- t_c is related to the maximum amount of time for which an individual can be starved.

Proportionally Fair Scheduling (Viswanath, Tse and R. Laroia,02)

Cf. Max C/R scheduling

Opportunistic Beamforming (Viswanath, Tse and R. Laroia, 02)

References

- A. Jalali, R. Padovani, and R. Pankaj, "Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system," in Proc. VTC'2000.
- P. Viswanath, D. N. C Tse and R. Laroia, "Opportunistic Beamforming Using Dumb Antennas," IEEE Transactions on Information Theory, Vol. 48 (6), pp. 1277–1294, 2002.