Outline

- Autocorrelation F.T power spectrum
 - Discrete and continuous
- Power spectrum density
 - > realization by time average

- Review
 - > Even function property of autocorrelation

7.1 Power Spectral Density

- The spectrum of the time function
 - : The weighting function of the Fourier series or transform
- A sample function of a random process
 - : selected from an ensemble of allowable time functions
- The weighting function or spectrum for a random process
 - The average rate of change of the ensemble of allowable time functions
 - The autocorrelation function $R_X(\tau)$ is an appropriate measure for the avg. rate of change of a random process
- Einstein-Wiener-Khinchin theorem
 - : the power spectral density of a wide-sense stationary random process is given by the Fourier transform of the autocorrelation function

Continuous-Time Random Processes

$\star X(t)$

- > a continuous-time WSS random process
- \triangleright mean = m_X
- \triangleright autocorrelation function = $R_X(\tau)$
- \triangleright power spectral density of X(t)

$$S_X(f) = \mathcal{F}\{R_X(\tau)\}$$
$$= \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau$$

 $R_X(\tau) = R_X(-\tau)$: an even function of τ with assumption of a real valued random process

$$\therefore S_X(f) = \int_{-\infty}^{\infty} R_X(\tau)(\cos 2\pi f \tau - j \sin 2\pi f \tau) d\tau$$
$$= \int_{-\infty}^{\infty} R_X(\tau) \cos 2\pi f \tau d\tau$$

- $\bullet S_X(f)$
 - > real-valued
 - \triangleright an even function of f
 - $ightharpoonup S_X(f) \ge 0$ for all f
- * The inverse Fourier transform of the power spectral density $R_X(\tau) = \mathcal{F}^{-1}\{S_X(f)\}$

$$= \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f\tau} df$$

 \bullet The average power of X(t)

$$E[X^{2}(t)] = R_{X}(0) = \int_{-\infty}^{\infty} S_{X}(f)df$$

$$R_X(\tau) = C_X(\tau) + m_X^2$$

$$S_X(f) = \mathcal{F}\{C_X(\tau) + m_X^2\}$$

$$= \mathcal{F}\{C_X(\tau)\} + m_X^2 \delta(f)$$

 $\Rightarrow m_X$: the "dc" component of X(t)

* Cross power spectral density $S_{X,Y}(f)$: two jointly wide-sense stationary processes

$$S_{X,Y}(f) = \mathcal{F}\{R_{X,Y}(\tau)\}$$
 where
$$R_{X,Y}(\tau) = E[X(t+\tau)Y(t)]$$

 $S_{X,Y}(f)$: a complex function of f even if X(t) and Y(t) are both real-valued.

❖ Ex. 7.1

Find the power spectral density of the random telegraph signal

sol)
$$R_X(\alpha) = e^{-2\alpha|\tau|}$$
,

 α : the average transition rate of the signal

$$S_X(f) = \int_{-\infty}^0 e^{2\alpha\tau} e^{-j2\pi f\tau} d\tau + \int_0^\infty e^{-2\alpha\tau} e^{-j2\pi f\tau} d\tau$$
$$= \frac{4\alpha}{4\alpha^2 + 4\pi^2 f^2}$$

❖ Ex. 7.2

Let $X(t) = a\cos(2\pi f_0 t + \Theta)$, where Θ is uniformly distributed in the interval $(0,2\pi)$. Find $S_x(f)$.

sol)
$$R_X(\tau) = \frac{a^2}{2} \cos 2\pi f_0 \tau$$

$$\therefore S_X(f) = \frac{a^2}{2} \mathcal{F}\{\cos 2\pi f_0 \tau\}$$

$$= \frac{a^2}{4} \delta(f - f_0) + \frac{a^2}{4} \delta(f + f_0)$$

❖ Note

> The average power of the signal

$$R_X(0) = \frac{a^2}{2}$$

 \triangleright All of this power is concentrated at the frequencies $\pm f_0$

Discrete-Time Random Processes

- * X_n : a discrete-time WSS random process with mean m_X and autocorrelation function $R_X(k)$
- \bullet Power spectral density of X_n

$$S_X(f) = \mathcal{F}\{R_X(k)\}$$

$$= \sum_{k=-\infty}^{\infty} R_X(k) e^{-j2\pi f k}$$

Note

- > Only consider frequencies in the range $-\frac{1}{2} \le f \le \frac{1}{2}$.
- $S_X(f)$ is periodic in f with period 1.
- \triangleright a real valued, nonnegative, even function of f.
- ***** The inverse Fourier transform of $S_X(f)$

$$R_X(k) = \int_{-\frac{1}{2}}^{\frac{1}{2}} S_X(f) e^{j2\pi fk} df$$

Note

 $R_X(k)$: the coefficients of the Fourier series of the periodic functions $S_X(f)$

* The cross-power spectral density $S_{X,Y}(f)$ of two jointly WSS discrete-time processes X_n and Y_n

$$S_{X,Y}(f) = \mathcal{F}\{R_{X,Y}(k)\}$$
 where $R_{X,Y}(k) = E[X_{n+k}Y_n]$

Let the process Y_n be defined by $Y_n - X_n + \alpha X_{n-1}$, where X_n is the white noise process Find $S_v(f)$.

sol)
$$E[Y_n] = 0$$

$$R(k) = E[Y_n Y_{n+k}] = \begin{cases} (1+\alpha^2)\sigma_X^2 & k = 0\\ \alpha \sigma_X^2 & k = \pm 1\\ 0 & \text{otherwise} \end{cases}$$

$$S_Y(f) = (1 + \alpha^2)\sigma_X^2 + \alpha\sigma_X^2 \{e^{j2\pi f} + e^{-j2\pi f}\}$$
$$= \sigma_X^2 \{(1 + \alpha^2) + 2\alpha\cos 2\pi f\}$$

Power Spectral Density as a Time Average

- * Let $X_0,...,X_{k-1}$ be k (time) observations from the discrete-time WSS process
- **Let** $\widetilde{x}_k(f)$: the discrete Fourier transform of this sequence

$$\widetilde{X}_k(f) = \sum_{m=0}^{k-1} X_m e^{-j2\pi fm}$$

Note

 $\widetilde{x}_k(f)$: a complex-valued random variable measure of the energy at f

- ***** The magnitude squared of $\widetilde{x}_k(f)$
 - : a measure of the energy at the frequency f
- \bullet The "power" at the frequency f

$$\widetilde{p}_k(f) = \frac{1}{k} |\widetilde{x}_k(f)|^2 \qquad \text{(time average)}$$

: the periodogram estimate for the power spectral density

> Note

Divide the energy by the total "time" k.

The expected value of the periodogram estimate

$$\begin{split} E[\widetilde{p}_{k}(f)] &= \frac{1}{k} E[\widetilde{x}_{k}(f) \widetilde{x}_{k}^{*}(f)] \\ &= \frac{1}{k} E\left[\sum_{m=0}^{k-1} X_{m} e^{-j2\pi f m} \sum_{i=0}^{k-1} X_{i} e^{-j2\pi f i}\right] \\ &= \frac{1}{k} \sum_{m=0}^{k-1} \sum_{i=0}^{k-1} E[X_{m} X_{i}] e^{-j2\pi f (m-i)} \\ &= \frac{1}{k} \sum_{m=0}^{k-1} \sum_{i=0}^{k-1} R_{X}(m-i) e^{-j2\pi f (m-i)} \end{split}$$

- $ightharpoonup R_X(m-i)$ is constant along the diagonal m'=m-i.
- $\rightarrow m'$ ranges from -(k-1) to k-1
- > k-|m'| terms along the diagonal m'=m-i

$$\therefore E[\widetilde{p}_{k}(f)] = \frac{1}{k} \sum_{m'=-(k-1)}^{k-1} \{k - |m'|\} R_{X}(m') e^{-j2\pi fm'}$$

$$= \sum_{m'=-(k-1)}^{k-1} \left\{1 - \frac{|m'|}{k}\right\} R_{X}(m') e^{-j2\pi fm'}$$

Note

$$E[\tilde{p}_k(f)] \neq S_X(f) = \sum_{k=-\infty}^{\infty} R_X(k)e^{-j2\pi fk}$$

Differences (replace 2T with k in Chap. 6.7)

1.
$$\left\{1-\frac{|m'|}{k}\right\}$$
 term

2. limits of Σ

❖ Note

- $ightharpoonup \widetilde{p}_k(f)$ is a "biased" estimator for $S_X(f)$
- As k goes infinite, $\left\{1 \frac{|m'|}{k}\right\}$ approaches 1
 - and limits of summation approaches $\pm \infty$.
- $ightharpoonup E[\widetilde{p}_k(f)]
 ightharpoonup S_X(f)$ as $k
 ightharpoonup \infty$
- $\triangleright S_X(f)$ is nonnegative for all f

$$\therefore \widetilde{p}_k(f) = \frac{1}{k} |\widetilde{x}_k(f)|^2 \text{ is nonnegative for all } f$$

The variance of the periodogram estimate should also approaches zero.

Homework

- Chapter 7
- **4**,8,12,14,16