Introduction

- <u>Visualization</u>: The use of computersupported, interactive, visual representations of data to amplify cognition
- <u>Scientific Visualization</u>
 - : visualization of physically based data
- Information Visualization
 - : visualization of abstract data

Scientific Visualization

Information Visualization

Why Visualize Data?

- Visualization Amplifies Cognition
 - Increased Resources
 - Reduced Search
 - Enhanced Recognition of Patterns
 - Perceptual Inference
 - Perceptual Monitoring
 - Manipulable Medium

Applications(1/4)

- Molecular Modeling
 - Gain insight into chemical complexity
 - Raster equipments to create realistic representation and animations
 - Vector equipments for real time display and interaction
- Medical Imaging
 - Diagnostic medicine, Surgical planning, Radiation treatment planning
 - 2D/3D visualizations of the body previously inaccessible to view

Applications(2/4)

- Brain Structure and Functions
 - Determine the positions and shape of difficult-to-identify organs
 - Obtain information about the anatomical position of the suspected lesions
- Mathematics

 Visualization helps mathematicians understand complex equations

Applications(3/4)

- Astrophysics
 - See the unseen and create visual paradigms for phenomena that have no known visual representation
 - Visualization numerical relativity equations
- Computational Fluid Dynamics
 - Describe the flow of a fluid or gas with magnetic fields
- Finite Element Analysis
 - Calculate stress/strain distribution

Applications(4/4)

- Geosciences (Meteorology)
 - Helps understand the atmospheric conditions that breed large and violent tornadoes

- Obtain information that cannot be safely observed
- Space Exploration
 - Integrate huge amount of observed phenomena and theory from other fields involved in planetary study

Visualization Process

Data Acquisition

- Scanned/Sampled data
- Computed/Simulated data
- Modeled/Synthetic data

Acquisition of Data

Scanned Data

15

Acquisition of Data (CT)

- Computed Tomography (CT)
 measures spacially varying X-ray attenuation coefficient
 - spiral CT: each slice 1–10mm thick
 - MDCT: 4, 16 slices , thickness
 - < 1mm
 - high resolution:512 x 512 pixels,
 - 0.5-2mm in size
 - Iow noise
 - consistent signal values
 - good for high density solids

CT Scanner

Reconstruction (CT)

Evolution of Spiral CT Scanner

Coverage: 80 cm

Detector row	1	4	16
Rotation/s	1	2	2.4
Pitch	2:1	2:1	2:1
Scan time (s) (2mm th.)	200	25	7
Recon. time (min) (1mm)	108	7	2

Acquisition of Data (MRI)

- Magnetic Resonance Imaging (MRI)
 measures distribution of mobile hydrogen nuclei by quantifying relaxation times
 - 256x256 pixels
 - voxels are small as 1mm, but variable
 - 5-10 minutes for one sequence
 - moderate noise
 - inconsistent signal values
 - works well with soft tissue

Acquisition of Data (UltraSound)

- Ultrasound
 - hand held probe
 - inexpensive, fast, and real-time
 - wedge shaped image
 - generally an analog device
 - high noise with moderate resolution

Types of Datasets

Structured Grids: topologically equivalent

Rectilinear (bricks)

curvilinear

uniform(cubes in 3D)

Unstructured Grids:

Regular (tetrahedron cell)

irregular

23

Structured Data Examples

3 mm Slice Thickness, 3mm Recon **3 mm Slice Thickness, 1mm Recon**

Unstructured Data Examples

