‘_L What we will cover

Contour Tracking

Surface Rendering

Direct Volume Rendering
Isosurface Rendering
Optimizing DVR

Pre-Integrated DVR

Splatting

Unstructured Volume Rendering
GPU-based Volume Rendering

i Splatting Algorithm

= Distributes volume data values across a region on

the rendered image in terms of a aistribution

function -typically Gaussian functions
= Object-order algorithm
= Front-To-Back or Back-To-Front

= Original method is fast, but quality is poor.

Many improvements since first publication

= Reading: Lee Westover, “Footprint Evaluation for

Volume Rendering”, Siggraph 1990

i Ray Casting vs. Splatting

R
~

= Rendering is expensive
(trilinear interpolation)
= Resampling might miss some
voxels and thus cause errors

Ray casting

Voxel kernels

2

2D footprints = splats

>

O T IIIIIT1T1111]

reen

Splatting

compositing

Splatting e

= Ray color for pixel p of image is
given by the integral along the ray

I(p) = j f(p+s)ds

where f(r) = f(+s) IS the density function,

ong the ray
ngt Y

sisavec
= Since rcan be anywhere in the 3D continuous
space, f(r)is not known and must be reconstructed
from discrete voxels.

L rrrrrrrrriu
LY

i Splatting PR

= The reconstruction can be done through
f(r)=> w(r—r,) f (r,)

K
Where f(r,) Is the density value at sample pointr,
w(r-r,) is the reconstruction kernel,
such as a Gaussian functions

Thus 1(p) = j f(r)ds
— j > w(p+s—r)f(r)ds

i Splatting e
(p) = | > w(p+s—r,)f(r,)ds

footprint(x, y) = jw(x, y,2)dz

Splat footprint

i Splatting
The ray color is given by

1(x,y) =" f(r,) footprint(x — X, y — ¥,

(X,y) 1s the pixel's location
(X,.,Y,)Is the image plane location of the sample

The final value of pixel (x,y) will be a total sum of the
contributions from its surrounding voxel projections

i Splatting

1(x,y) = f(r,) footprint(x — X,, y — y,)

= footprint(x—x,,y—Y,) defines the weight of
a voxel’s contribution to the rendered image

= Splat footprint, a function of x and y, can be pre-
computed and stored

= Rendering just needs to traverse all voxels

‘L Reconstruction Kernel

= Splat footprint is integral
of reconstruction kernel w

s For Gaussian
reconstruction kernel, x2 y? Z°
splat footprint has elliptic R A= eXp(_(aZ " b2 " Cz))
shape

= In particular if Gaussian
reconstruction kernel is
spherical (a=b=c), splat
footprint is isotropic

footprint(x, y) = Iw(x, Yy, 2)dz

Gaussian example

f(X, y) _ je—0.5(x2+y2+22)dz

10

Splatting

= Footprint table per view requires too much
computation time

= For a reqular grid (uniform sample intervals),
In orthographic projections, the footprint of
each sample is the same except for an image
plane offset.

Use a generic footprint table
Generate a view-transformed
footprint table

)

11

Spherical Kernels
‘L (generic footprint table)

For orthographic view
- projection of reconstruction kernel
- mapping to generic footprint table

Figure 3, Spherical Kemel

12

i View Transformed Footprint

= A spherical reconstruction kernel would be
transformed to an ellipsoid if there is a difference In
the scaling factors between the axis. This ellipsoid
would always mapped to an elliptic footprint function.

= The ellipsoid is more general then the spherical case.

I'?l
!

)
Al
.é‘-‘:ﬂ':ﬂ
ri?
d

)
W
Wl

L7
0
t.-gfglullm
t"in.
e
A

1‘
E
It

ASEA\
A TR
L]

1] !p '
LA/

It
l
i)

===

View transformed
footprint

Reconstruction
kernel

Generic footprint
13

i Results

the size of the footprint tables and the resultant
artifacts in the images.

5x9 11x11

14

i Effects of Kernel Si

s If the kernel size Is too

A

TE L ¥
R

i e

small, image has gaps : it
= Larger footprint =» larger : i
spatial kernel extent =» |
lower frequency r
components = more %
blurring
g
| m

Graphic pipeline

i The

Generic footprint kernel(preprocess
stage)

Find offset of the data point into the screen

n

Ind all pixels in the extent of that

ootprint

=

For every pixel get the reverse
mapping into the generic table

Accumulate the contributions to every pixel

16

i Examples

= The examples show the
result of splatting algorithm
with Gaussian reconstruction
kernel , the radii of the

kernel vary from 0.01 to 0.5.

= The kernel was rendered
using coloring and opacity
adjustment.

17

~AlAaddi A ~

Splatting
Algorithm

Efficient by keeping only relevant voxels

Rendering image quality is similar to ray casting but
smoother

Good for large volume

Ray casting is faster than splatting for data sets with
a high number of contributing samples. But rendering
IS expensive (particularly trilinear interpolation)

= Interpolation task of splatting: O(r7¥) in image plane parallel
space

= Interpolation of ray casting: O(r°) in volume space
Applicable to both regular and irregular datasets

Good for parallel computing
18

oEY

piatting
fe ri':hm

> N

= Disadvantage

= The use of pre-integrated footprints
— Visibility incorrect
— compositing not accurate

= The use of Gaussian filter (large, symmetric)
— blurring effect

= Perspective projection is slow
= The splats must be scaled according to distance

19

Early Implementation
i - Axis Aligned Splatting

= Sheets are volume slices most parallel to image plane
= Voxel kernels are added within sheets
= Sheets are composited front-to-back

= Reduce color bleeding artifacts
volume slices volume slices

‘/y

/ X

image plane at 30° mage plane at 70"

i Axis Aligned Splatting

e

= Volume

(color, opacity)

Sheet buffer

Image plane —~ Compositing buffer

21

‘L Axis Aligned Splatting

= Volume

—
as

=
s

a8 iy
e Es

C.q =C.a +C,a,

Sheet buffer

Image plane

— Compositing buffer

22

‘L Axis Aligned Splatting

= Volume

Image plane

—
R

=
e

Sheet buffer

— Compositing buffer

23

‘L Axis Aligned Splatting

= Volume

composition

Iout — Iin +(1_ain)aici

Aoyt = Ay T G (1_ ain)

24

‘L Axis Aligned Splatting

= Volume

Sheet buffer

Image plane —~ Compositing buffer

25

i Axis Aligned Splatting

= Volume

Sheet buffer

Image plane —~ Compositing buffer

26

i Axis Aligned Splatting

= Volume

R (R

LY LTI N

Sheet buffer

Image plane

— Compositing buffer

i UNC Head: 208x256x225

#Rendered splats:
2,955,242

2.86 fps
8.5M splats / sec

28

Problems of Axis Aligned

i Splatting

= Color bleeding

If opacity of Composite(1&2) < 1

Then add color 5
=>» (color bleeding)

If opacity of Composite(1&6) > 1
Then no contribution of color 5

29

Problems of Axis Aligned
i Splatting

= Popping artifacts ey 4

copmpo sited footprints fp,

b
|||||||

Coq =Ci0ls +C,, > [B =a,C, (1-a.) + ¢

rayl ray2

composte

30

i Image-Aligned Sheet-Buffer

= Slicing slab cuts kernels
Into sections

s Kernel sections are added
Into sheet-buffer

s Sheet-buffers are
composited

sheet buffer
image plane —
\ - =
compositing buffer

31

‘L Image-Aligned Sheet-Buffer

= Slicing slab cuts kernels
Into sections

s Kernel sections are added
Into sheet-buffer

s Sheet-buffers are
composited

sheet buffer
image plane —
\A - .-
compositing buffer

32

i Image-Aligned Sheet-Buffer

= Slicing slab cuts kernels
Into sections

s Kernel sections are added
Into sheet-buffer

s Sheet-buffers are
composited

sheet buffer
image plane —
\ - -
compositing buffer

33

& Image-Aligned Sheet-Buffer

= Slicing slab cuts kernels
Into sections

s Kernel sections are added
Into sheet-buffer

s Sheet-buffers are
composited

sheet buffer
image plane —
\ T
compositing buffer

34

‘L Image-Aligned Sheet-Buffer

= Slicing slab cuts kernels
Into sections

s Kernel sections are adde
Into sheet-buffer

s Sheet-buffers are
composited

sheet buffer
image plane —
\ - .-
compositing buffer

35

& Image-Aligned Sheet-Buffer

= Slicing slab cuts kernels
Into sections

s Kernel sections are adde
Into sheet-buffer

s Sheet-buffers are
composited

sheet buffer
image plane —
\ T
compositing buffer

36

i Image-Aligned Splatting

= Note: We need an array of footprint tables now.

A separate footprint table for each slice of the
3D reconstruction kernel.

current sheet-buffer / slicing slab

37

i IASB Splatting

= NO popping or color bleeding
= Sharp, noise—free images

38

i Occlusion Culling

= A voxel is only visible if the volume material in
front is not opaque

screen

occluded voxel: does __— ‘
not pass visibility test

occlusion map = opacity imag

wall of occluding voxels

39

I |r'\ v/ Toct Racad
VIOIMI y 1ICOoOlL DAoOoCT U

Occlusmn Buffer

= Compute occlusion map after each sheet

= Cull both individual voxel and voxel sets with a
summed area table of occlusion map

NN CAT
Vil I

Do not project———__

. - Project

[opacity > threshold

[opacity < threshold

occlusion map — opacity = 0

40

i Occlusion Culling

Build a summed area table (SAT) from the
opacity buffer

= To test whether a rectangular region is opague

or not, check the four corners
(Our - Oul - O!r + O!/)

= Can cull voxel sets directly

41

Surface Rendering with

i Splatting

= Splatting can also be used in
surface rendering

= The surface is represented with
set of points on surface

= The right is taken from Stanford

= The project (called Qsplat) uses
splatting to render scanned object

= The image shows Moses sculpture
which was scanned as part of the
Digital Michelangelo project

42

GPU Features for Splatting

= Vertex Arrays
= OpenGL : DrawArrays / DrawElements

= DirectX : DrawPrimitive / DrawlndexedPrimitive
= Point Sprites extension

= Only one vertex is needed for each voxel
= Nvidia boards after GeForce4
= ATI Radeon 8500 and betters

= Early Z-rejection Test
= Does depth test before the fragment is processed

s N.Neophytou & K.Mueller , “GPU Accelerated Image
Aligned Splatting”

43

Overall Process

= Splatting Phase

= Copying Phase

= Compositing Phase

Intersecting kernel sections

B S 10
G 01 W0)0

@) RZ 7200 0700 % 7000 ,%
Rk 7/

Final image buffer

Y
\\.

2%

44

Splatting Phase

= Voxels are arranged into arrays according to the first
Image aligned slab that they intersect

= Every voxel is splatted into the active density buffers

= Use RGBA channel as four separate density slices

= Assume each voxel to be rasterized four times
= Post-shaded volume rendering

current

sheet-buffer /slicing slab Intereccting kernel sections

------------------ﬂl"--lﬁ

Active density buffers

45

Copying Phase

= Completed slice is copied to the copy buffer
= Copy buffer holds the last four completed slices

s Gradients for the last slice but one are calculated on
the fly, using its front and back sliced on the buffer

Intersecting kernel sections
B s 10

Bf_ﬁﬁ;; . /ﬂf RJ’
S -;i:c-t ;i:j-[i-ﬁ:l: 1t; h“ﬁ;g Temporary copy buffer

46

i Compositing Phase

= Shaded result is composited to the final
Image buffer

RN NNAYY 5

Final image buffer .

47

i Avoiding Shading of Empty Regions

= Early Z-rejection Is used

= Prepare a depth buffer that all of the drawing
surfaces share, and clear it to 1

= Let sliceDepth(n)=(1023-n)/1024
= Splat to current slices with depth writing turned on

= Perform depth test with
LESS OR EQUAL THAN sliceDepth(n)

48

i Avoiding Shading of Empty Regions

= Only touched pixels is copied
= Only touched pixels are composited

Surface

et 1.0 m“:":ax‘v Copying Compositing

nonempty VO xel . 45

i Skipping Opaque Regions

= Write opaque region data on the depth buffer

Read the image plane as a texture on compositing
phase

Compare alpha value with predefined threshold
For opaque pixel, write 0 on the depth buffer

During splatting phase, perform depth test with NOT
EQUALTOO

50

Skipping Opaque Regions

= All the pixels with depth O will be excluded even from
the splatting phase

= Copying and compositing phase ignores them by
depth bound test or alternative process

=N \
M
(<) \ '

-‘
|
e
J !
L ¥

Slice just Result
copied composited

Depth Buffer

Just splatted

Splatting Copying Compositing
51

Effective
Data set Size Splats FPS |Fig.6
Vortex 128° 479K 52 |1
Jet simul. 256° 648K |40 |ii
Turbulant 104x129% |95K 6.1 | iii
Foot Isosurf. | 128° 191K |72 |iv
Foot semiTran. | 1287 184K 6.4 v
Foot semi-2 | 128° 181K [7.6 |vi
Lobster 3207 x 34 |219K 10.2 | vii
Aneurism 1283 17K 9.1 |wvi
Bonsai 256 1.3M 4.9 |ix
BonsaiBCC 181%x362 |955K 25 | xu
CT Head semi |128° 526K 4.9 |x
CT Head BCC |912x182 379K 3.1 Xi
Engine Semi 256°x128 |1.2M 2.1 | xii
Engine ISO 2562x128 |1.3M 5.1 | xiv
Engine BCC 181°x182 |963K 53 |xv

52

i Really use GPU for I1ASB

Good for only for small volumes
= Iso-Surface rendering

= Capabillity of vertex shader (whether it can holds
whole voxel list or not)

= Each vertex needs at least 12byes for (x,y,z) and 2
Bytes for density.

s Calculation of distance between the voxel and
view-aligned sheet plane
= Preprocessing and view dependent
= Making View-aligned Voxel List
= How to sort? € Heavy computation

= Reordering must be performed whenever viewpoint
changes

53

