Quantum Theory

Wave-particle duality Schrödinger equation Born interpretation: normalization, quantization

Reading: Atkins, Ch. 8 (p. 249)

Wave-particle duality

electromagnetic radiation $\underline{C.M.}$ $\underline{Exp.}$ electron"wave" \rightarrow also "particle" characteristics"particle" \rightarrow also "wave" characteristics

(1) Particle characteristics of electromagnetic radiation

- spectrum: electromagnetic radiation of frequency v possesses the energies of 0, hv, $2hv \rightarrow 0$, 1, 2 particles, each particle having hv energy: "**Photon**"

e.g., yellow light (560 nm) of 100 W lamp in 0.1 s (efficiency 100 %) \rightarrow number of photons: N = E/hv = Pt/h(c/ λ) = 2.8 x 10²⁰ (40 min \rightarrow 1 mol photons)

- photoelectric effect: light energy = $nh\nu \rightarrow particle$ -like collisions of light

(2) Wave characteristics of particles

- electron diffraction (Davisson & Germer Exp. (1925)): a characteristic property of waves

 \rightarrow waves interfere constructively and destructively in different directions: wave-like property of electron, molecular hydrogen

de Broglie relation

- particle \rightarrow wave-like wave \rightarrow particle-like \Rightarrow "wave-particle duality"

- 1924, de Broglie (France) suggested that any particle travelling with a linear momentum p (=mv) should have a wavelength of

 $\lambda = h/p$: de Broglie relation

- particle with high momentum \rightarrow short wavelength Macroscopic body: high momentum \rightarrow wavelength are undetectably small: wave-like properties can not be observed

e.g., golf ball, 45 g, velocity 30 m/s $\rightarrow \lambda = 4.9 \text{ x } 10^{-22} \text{ pm}$ (no wave-like)

- wave-particle duality & quantized energy \Rightarrow **new mechanics** needed (cf. Classical mechanics treated particles abd waves as entirely separate entities)

- wave in new mechanics replaces classical concept of trajectory: rather than travelling along a definite path, a particle is distributed through space like a wave \Rightarrow "wavefunction" (Ψ , psi)

Schrödinger equation

- Schrödinger equation (1926): Austrian physicist

- He proposed an equation for finding the wavefunction of any system
- time-independent Schrödinger equation particle mass <u>m</u> moving in 1-dimensional with energy E

V(x): potential energy of the particle at point x E: total energy \hbar (h-cross or h-bar) = $h/2\pi = 1.05457 \times 10^{-34} \text{ Js}$ 3-D

In general case, Schrödinger equation

 $\mathbf{H}\boldsymbol{\Psi}=\mathbf{E}\boldsymbol{\Psi}$

H: hamiltonian operator

Time-dependent Schrödinger equation

cf) Derive Schrödinger equation

Born interpretation of the wavefunction

- "wavefunction" contains all the dynamic information about the system

- Max Born: interpretation of the wavefunction in terms of the location of the particle

cf: the wave theory of light: square of amplitude of electromagnetic wave = intensity: probability of finding a photon in the region

1**-**D

- if particle has Ψ at x, the probability of finding the particle between x and x + dx is proportional to $|\Psi|^2 dx$

 $|\Psi|^2 dx = \Psi^* \Psi$ if Ψ is complex: $|\Psi|^2$ "probability density" Ψ : probability amplitude

3-D

 Ψ at r \rightarrow probability of finding the particle in $d\tau = dxdydz \Rightarrow |\Psi|^2 d\tau$

(a) Normalization

Schrodinger equation $\rightarrow N\Psi$: all probability of the particle must be 1 \rightarrow possible to find "normalization constant" N

probability: $(N\Psi^*)(N\Psi)dx$ $\Rightarrow N^2 \int \Psi^* \Psi dx = 1 \Rightarrow N = 1/[\int \Psi^* \Psi dx]^{1/2}$

where the integral is over all the space (from $-\infty$ to $+\infty$)

We can find N and 'normalize' the wavefunction \rightarrow normalized wavefunction: $\int \Psi^* \Psi dx = 1$ or $\int \Psi^* \Psi d\tau = 1$

 $d\tau = dxdydz$

in spherical polar coordinates, r, θ , ϕ x = rsin θ cos ϕ , y = r sin θ sin ϕ , z = rcos θ d τ = r²sin θ drd θ d ϕ , r: 0 $\rightarrow \infty$, θ : 0 $\rightarrow \pi$, ϕ : 0 $\rightarrow 2\pi$

(b) Quantization

 $\int \Psi^* \Psi d\tau = 1 \Rightarrow$ severe restrictions on the acceptability of wavefunctions (i) Ψ must not be infinite anywhere if it were $\Rightarrow N \int \Psi^* \Psi = \infty = 1 \Rightarrow N \infty = 1 \Rightarrow N = 0$ (x)

cf: acceptable: infinite Ψ over infinitesimal since $\int \Psi^* \Psi$ is finite (infinitely high x infinetely narrow = finite area) e.g., a particle at a single, precise point

(ii) $|\Psi|^2 = \Psi^*\Psi$: probability of finding the particle \Rightarrow wavefunction (Ψ) must be single-valued

(iii) Ψ : 2nd-order differential equation \Rightarrow 2nd derivative should exist: Ψ should be continuous

1st derivative (slope) should also be continuous

- $\therefore \Psi$ must be coninuous, have a continuous slope, be single-valued, and be finite everywhere, cannot be zero everywhere (particle must be somewhere)
- \Rightarrow the energy of a particle is quantized (acceptable solutions of the Schrödinger equation for these severe restrictions at <u>only certain energies</u>)