Chapter 2

Chain Conformations



Structure of polymers

0 Chemical Structure
= atomic structure
= jsomers ~ configurations
= architecture

a Physical Structure
= single chain structure ~ conformations

= aggregation structure
» amorphous state
» semicrystalline state
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Single chain structure ~ Conformation

a Configuration ~ breaking single bond
= |somers, copolymers, branches

Conformation ~ rotation about single bond
= syn-anti, trans-gauche, staggered-eclipsed

a Misnomers by Flory
= gpatial configuration
= rotational isomers
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A polymer chain

an+ 1atoms

a n bonds (length 1)

a n -1 bond angles (r = 180 - 0)
Qa n - 2 rotational angles (angle ¢)
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Degree of freedom of a polymer chain

an+ 1atoms - 3(n+1) DOF
= restricted by bonding - — n DOF
= restricted by bond angle - — (n — 1) DOF
= remaining DOF=n+4

a n + 4 DOF of a polymer chain
= 3 translational DOF ~ position of CG
= 3 orientational DOF
= n— 2 rotational DOF ~n -2 ¢’s

Ch 2 #5



Size of a chain

0 end-to-end distance, r
= distance betw the two chain ends

r= y T, (2.11)
r=1

r=(r-r)”

A=Y Ty =3 42 Z 3 oy (2.12) ~ for 1 conform’n
=1 f==] i=1 =1 J=141

<r‘>——zrk—):<r2>+32 2 (6f> ~ avg of N conform’ns

E—I i=1 p=s+1

<E1E1> + (B + 0+ LRy +
ey + {6y + 0+ ARy +

(Eu;l> + <Eni-1> + T + <EHEH> ]
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Size of a chain (2)

0 end-to-end distance (cont’d)

(Fy=ni? 4+ 2 i Y (6D

=1 =+

" <r2>“2 ~ root-mean-square end-to-end distance
» a measure of chain dimension
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Size of a chain (3)

a radius of gyration, s
= another measure of chain dimension
" <s2>"2 ~ root-mean-square distance to the atoms
from CG
QA <re>g =<s>>,/6
= for (infinitely) long chain (very large n)
= in unperturbed state (0)

/’_\——’_\

\ N

S

See Appendix A of Flory /

I
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Exp’tal determ’n of chain dimension

0 size depends on solvent

= good or poor solvent
= theta solvent (theta condition) ~ unperturbed state

Fig 2.7

a In dilute soln
= viscometry
= |ight scattering

Q In conc. solution, melt, or solid state
= SANS
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Parameters expressing chain characteristics

Q characteristic ratio
" Crpy = <r*>¢, / n |2 ~ definition
= a3 measure of chain stiffness

Table 2.1

a temperature coefficient
" d[ln <r>>,] / dT (- thermal expansion)

= change in chain dimension with increasing temp due
to conformational change

Table 2.2
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Modeling of polymer chain

- from artificial to real chain
- with reducing artificiality

Q
Q
Q
Q
Q

Freely jointed chain (I fixed)

Freely rotating chain (I, 6 fixed)

Chain with hindered rotation (I, 6 fixed; ¢ restricted)
Chain with excluded volume effect

Gaussian chain or ‘random coil’
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Freely Jointed Chalin

a bond length (I) only fixed
a chain dimension

{Fy=nf* +2 i Z {f,f‘?>

I=1 r=3+1

rry = Hdcos B>

{ry=nl* + 2/ Hil i (cos )

rm ] j=t+ 1

" For FJC, cos 8,2 =0 for i#]
» random disposition of bond vectors
» For every cos 0, there is cos (0+7) = — cos 6.

= MS e-t-e distance, ¢+ = ni-
= C_ =1

Ch 2 #12



Freely Rotating Chain

a bond length (l) and bond angle (r = 180 - 6) fixed

= reduced artificiality from FJC
a chain dimension

(Fy = nf? 42 i Y (AR

I=1 =341
{er, > =1 cos(180 — 1)
(Er, 0 = 1 cos (180 — 1)

(Rt = Plcost 130 — 7))~

me H

(Fr=nltt 20 Y ¥ [cost1i80 — I

i=1 j=i¥1l

J — 1=Kk and cos(180-1) = a
1 2 L IR}
Criynes r:fl\‘l + - Z (- i‘}iii] 12.18)

ki k=1
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For infinitely

D

ni*l 1 +

14 - z {n—.i:}:c"J

| P ok

[~ ar-- 1 zn—i

1+2 Y ot —- % ka“]*
| k=1 Mooy

poy 2 2 =2 (ﬁ‘! L7 o)
I 1 — n A\ (1 — 2y

e

leng chains (n = o0):

nl?

wi?

(1 + cos{I180 — 1) |

| 1 — cos{180 — 1) |

2 2 {1l — 2"

1 — n {1 — x)*

- . =
I+ ——- | = ni
1 —« B

1 +

1 —

a For t = 110°, <> = 2al*

0 Fort>90% C_ rre > Cyric

]

(2.19)
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Chain with Hindered Rotations

0 Bond length and bond angle fixed

2 Not all rotational angles between
0° < ¢ < 360° are allowed.

a Only some discrete states are allowed
— rotational isomeric states (RIS)
Q Due to the interactions
= intrinsic rotational potential ~ eclipsed-staggered

=" non-bonded interaction (dispersion) ~ trans-gauche
= dipole interaction ~ when dipoles present
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13
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6

Energy (kJ mol'1)

VA

60

120 180 240

Torsion angle (degrees)

o E(eclipsed) ~ 11.8 kJ/mol
o thermal E at RT — kT — 8.314 x 300 J/mol — 2.5 kJ/mol

a Only staggered conform’n stable (present)

360

Conformational energy map for ethane

/\N

. . 4

Staggered position Eclipsed po Itermd ate posit;
(most stable) (least tabl ) of torsion a 1 e (¢)

S e
KT
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Energy map for n-butane

eclipsed %
A /\ Trans (T) Gauche (G} GCauche (G)
{.l' T

0 | | \/ | \—\\—/\*\

I -
0 60 120 180 240 300 360

s
o

—
*‘.':I

=

Energy (kd mol™l)

Torsion angle {degrees)

o E(gauche) ~ 2.1 kJ/mol
o thermal E at RT — 2.5 kJ/mol

a Only T, G, and G’ conform’ns stable (present)
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for n-alkane (PE) chains

a At very high temperatures
= All ¢ allowed - FRC

0 At lower temperatures
= Only 0, 120, and -120 are allowed for each bond.

= T G, and G’ are the three discrete rotational isomeric
states (RIS).

a For a PE chain with n bonds,
" n-2 ¢'s 2 3"2 RIS (conform’ns)
= actually, fewer conform’ns allowed
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Short-range interaction

a for n-pentane
= 2 ¢'s =2 9 RIS; 6 distinguishable

= TT, TG, TG', GG, GG', G'G’ )
= GG'is of high E (~ 14 ki/mol) ~ > > o

» GG’ not likely present

‘pentane interaction’

‘pentane effect’

» ‘2nd-order interaction’
‘shot-range interaction’

» common in chain molecules
reduces the # of conformations
» must be considered in analysis

>

v

>

v

>

\4

>

v
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Distribution of ¢

a Distribution (probability) of ¢ is determined by
= Boltzmann distribution
= Frequency of occurrence depends on exp[-E/kT]

= P()dd = U/Z = exp[-E(6)/KT]dd / | exp[-E(¢)/KT]do

» U(¢p) — statistical weight ~ relative probability ~ = exp[-E(¢)/KT]
» Z ~ rotational partition function ~ X U(¢)
» for n-butane at 400 K

e UM=1<ET=0

¢ U(G) = U(G’) = exp[-E(G)/kT] = exp[-2.1/3.3] — .5

¢ E(cis,eclipsed) >> kT > U ~0

e Leaves 3RISof T, G, G’

¢ Z=UM +UG) +UG)=1+5+5=2

¢ P(G) = U(G)/Z = .5/1+.5+.5 = .25
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» for n-pentane at 400 K
¢« E(TT) =0
¢ E(TG, GT, TG, GT) = 2.1

¢ E(GG, GG') = 4.2 \> Q Q
+ E(GG',G'G) = 14.5
- U(GG’) = exp[-14.5/kT] = .01
— P(GG’) = .01/Z ~ 0 ~ prohibited
a short-range interaction (2nd-order interaction)
= common in chain molecules (not only in alkanes or PE)
= ¢ depends on ¢.,, — interdependent ¢

= Bond rotation must be considered pairwise.
= higher-order interactions?

W\

» Higher energy conformations like GGG'G must have at least one GG’
or G'G.

» pairwise potential is enough
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Conformational energy

a conformational energy of a chain

m=—[ ,n_';. .
ol =Y Ed_ . )= Y E,. (235 ¢ ~ state of a bond i-1
1=2 n ~ state of a bond |

Ex=0fory =T, G, G . . :
tentatively putting bond i+1 trans

Eyg = b = Eqo = £ = 2.1 kf mol ™ (considered at the next term)
Fee = Ece = 124 k] mol !

= for n-pentane (for bond 2 and 3), E{¢}

E = E E:rll.- = 'EFF-’ + E‘:"?-j'

TLE=F,+F.,=0+0=20

TG E=E, +E,., =0+ 21=21

TG E=Er, 0, =04 21 =121

CGuFi=Epmit Fopn = 2014 2ilv= 432
CGHEZ Foog v b =431 78 Ii= 15

CG E=F, b Erpy =21+ 124 = 145 Ch 2-2 #3





Statistical weight

e = expl—£., /RT) (2.36) E., not E{¢}

a statistical weight matrix, U
Eqx=0for =T G G

L-fr — ;lﬂcqi: {2,3 ?] ETG — ET['.-’ == E'L_-C . E{_;.:' = 2.1 I(} I"I"IFC",'I_J

Eeor = Ece = 124 kI mol !
= for n-alkane

n (bond i-1)
} T G G &n(bondi)
U - T|1T a «a
Gil e 0 o = exp[-Erg 16 oo oc/KT] = .5
Gl 0 @
I exp[-Ege ¢e/KT] ~ 0

exp[-E,/KT] = 1
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= U generalized for 3-fold, symmetric chain
» 3-fold ~ T, G, G’ = 3x3 matrix
» symmetric ~ no asymmetric carbon ~ Ug = U,
¢ PE, POM are symmetric
+ vinyl polymers are asymmetric

1

—

g G
o aw
ow oy |

where @y describes the GG {or G'G") interaction
and ooy describes the GG’ {or G'G) interaction,
The symmetry of the chain requires that:

Wy; = Hpgo Wy == Hyq) My = Hyy, Hpy = iy,

= Stat wt for a certain conformation (combination of ¢’s)

r—1
9. #) = ﬂ Mrm.i

Jom ]

(2.40)

= partition function for a chain (all possible conformations)

Z—ZQW}—Z H"

{@1

¢ i=1

{241}
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Homework #1 (Due on 25 Sept 06)

Q1. For TGTG'G'TG'TTG conformation of 7-C,;H,¢ with bond angle of
120° and bond length of 1 cm,

(1) Find the end-to-end distance.
(2) C?

Q2. Using the energy values given so far, estimate the probability of GG’
conformations in n-pentane at 350 K

(1) for independent ¢'s
(2) for interdependent ¢'’s

Q3. For n-octane,

(1) how many conformations?

(2) Express the probability of TTTTT.
(3) Express the probability of TGG'TG.
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Calculation of Z

0 matrix expression . [ \ 0 ‘
= chain with 2-fold RIS, o and f ” i
U for 2nd bond ~ U(a), U(B) i . L fJ
U for 3rd, --- — U(aa), U(aB), U(Ba), U(BPR)
for n=4
» £ = U(a)U(aa)+U(a)U(ap)+U(B)U(Ba)+U(B) U(BP)

» = sum of the elements of U,U
for n=5, Z = sum of the elements of U,UU

= 1
for n n, Z plac I]r l]Uzuri—i[I] EE'I-”

The same result is obtained if U is rewritten as
M, W
U, = [ 3] (2 45)
4 ()

|
Zi=[L UJUEU”*[I] (2.36}

and
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Simplifying by U, = U

1
Fi=[1 D[U”_E[I]

general form _

s " 1
Z . Ia[ rl Ur]] [243} =11 o ... 0Ol and ] = : {2.49)

=]

for simple chain (symmetric and with one type of bond like PE)

Z=]"U""1 (2.50)

for PE

n-2
1 o F 1
» Z=[100]|1 oy ow 1
1 dw oy 1
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0 algebraic expression
= simplify by transforming U to a diagonal tensor with eigenvalues
A, of U as elements

i o0 0 1 0 ©
ATUA=|0 4, 0]|=A=BUA B=A1 AB=|0 1 0!l=EFE
0 0 4, 0 0 1
If eq. {2.52) is premultiplied by A
ABUA = AA
EUA = AA (2.54
UA = AA
The latter can be separated into three vector
egquations:
where A, are the column eigenvectors of U:
rﬁAIk
A =] Ay k=123 (2.56)
Ay Ch 2-2 #9





If eq. (2.52} is postmultiplied by B:

BUAB = AB
BUE = AB (2.57}
BU = AB

which can be written in the form
BiU = A, B} (2.58)

where Bf = [8,, B,,. B;;] are the eigenrows of U.

Since AB = E, we can write:

where J;; is the Kronecker delta {equal to I forj = &

and equal to O for j # K, Equation {2.55) can be
rewritten as:

which has solution

U — 4LE|=0 (2.61)
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= using U = AAB

L= AN

L

T Tw— 2 ot
£ = A4 Ay 2]

The partition function can be written;

2

T TS

where

_BJ

Ay

)

(2.63)

BUA = A
ABUABLU = AAB

EUE = AAB
; ] UJ = AAB
< for v-fold RIS
B, for 3-fold, to A ;A,"?and B,
(2.62)

which for large values of n can be approximated by
P BV (2.64)

where A, is the largest eigenvalue.
At even larger n values, eq. i2.04) simplifies to:

Lo (2.45)
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= for simple, 3-fold, symmetric chain like PE

1 G g
U—-A4E|=0 With b=]1 oy oo gives
1

oW oW

A =31+ aly + o + \/Il — oy + m]l];" + 84}
Ay = ol — o)

~ 6=.5, y=1, ®=.01 at 400 K = A, A,, A,
P(G) = U(G)/Z = .18 at 400 K ~ with interdependent ¢

>

v

>

A4

compared with P(G) with independent ¢ of .25
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Size of RIS chain

(D=r 42 Y Y (i

I=1 r=3+1

0 0

I I
r = (a) in coordinate i, r; = (0) In coordinate j

[
rr, = (L0.0) (a) =r,"r. if in the same coordinate
Q

If NOT, r,r, = r,T Tr, — needs coordinate transformation
transformation matrix, T; (i+1 = 1)

cos 8, sin &, 0
T,=|sinGcos¢h, —cosB.cos¢p, sing,
sinf,sind;, —cosB.sind, —cos,
(2.21) Yoel
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I
e F, = (1. T OF TR T (3)
i.l.-r = ;liTr . aw Tf*-*'E}”
<i.|.-||.>-:' I{iTr ' aw Tf‘-* 'E}|>

= for simple chain with independent ¢, <T, ---- T; ;>= <T>/"

Py =nf +2 Zl E {r,r,)

P=1k1

, ]
= nl* + 241, 0, D}[ Y n—= Ic}]'f‘] [0}
k-1 0

(2.26)
~ T LE~ (D

e =]
!

(=
(=
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= for FRC, <cos¢,> = <sing> =0

cos, sinf), 0
T = b, 0 0
0 0 0

e = .[I:[T: . .T;_|}“ — II{CC’E 9}"-_;

= for FJC, <cos¢,> = <sing> = <cosH,> = <sin6,> = 0
T=0

{H} = nj-
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= for simple symmetric chain with hindered rotation
<sing> = 0 € G and G’ are of the same population.

T
cos i 1AL 0
sintl{cos ) —costi{cos ) 0
0 0 —{cos ¢
{2.25)
1 + 180 — 1) || 1 + (cos @
B ] [ acd
| —cos{180 — 1) || 1 — {cos >

(2.29)
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= for, n-alkane (PE)

Y u,cos @,
(cos P = 7 _ 1+ ffmsﬂlpﬂ_] + Uc_crs{i 1207 _ I__-ii
z l1+o+0o I+ 2a
1 (180 — 2
(P = ni:[ o ﬂ][-._'.'.'. "] (2.34)
I=icoal1B0 —arhll e o= U(G) = exp[-2.1/3.3] ~.5
at 400 K
‘ FOUE L N
G Nl ] | B QDL ¢ = J.4H
) & 3 %054

» exp'tal C = 6.7; difference due to
+ wrong E(G)?
— For C=3.4, E(G) be 4.5 kJ/mol (too high)
o wrong ¢(G)?
— Actual $(G)~110 - not that much different

o interdependent ¢ ~ major contributor
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Size of RIS chain with interdependent ¢

{ry =nf* + 2 i Z {f,ﬁ_,)

<i.'|.';>':' I{(T, . —Tfu'E}I>

= with independent ¢, <T, ---- T, ;>= <T>J"
= with interdependent ¢, <T, ---- T, ;>= <TI"> Flory Chpater 4

Yy =nit 42 i PN

I=1 r=3+1

=27Z1J*G"J
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Size of chain

a <r?> = C(U) nl?
"= ClU >C,asn—> >

Ce =1 for FIC
Ce = 2-3 for FRC due to q

C. = 4-10 for RIS chain due to short range interaction

C. for different polymers?
» measure of chain stiffness

» In unperturbed state (® condition), melt, bulk
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		Distribution of f

		Conformational energy

		Statistical weight

		Homework #1 (Due on 25 Sept 06)

		Calculation of Z

		Size of RIS chain

		Size of RIS chain with interdependent f

		Size of chain




Excluded volume effect

a Intrachain volume exclusion S S
" ‘long-range interaction’
= gives larger dimension

A <re>gy = o <r*>pg
= in good solvent
» Repulsion(polymer-polymer) > Repulsion(polymer-solvent)
» chain expands, o > 1
» by Flory-Krigbaum, o® - a2=C n”2 y (1 - 6/T)
— C ~ const, y ~ entropy factor, 6 ~ theta temp
e a®>>02 2> aocnll;<rz>,  =C,nl?

P <r2> oc n0.6 ex ’t <r2> oc n0.59
EV (exp ) Ch 2 #1





2 — 2 <2
Q <I"Zgy = 0% <I“Zpg
= in poor solvent

» Repulsion(polymer-polymer) < Repulsion(polymer-solvent)
» chain shrinks, o < 1

= |n a condition between good and poor solvent
» where oo =1
» Repulsion(polymer-polymer) = Repulsion(polymer-solvent)
» chain neither expands nor shrinks
» ‘phantom’ or ‘ghost’ chain
» ‘theta (®) condition’
¢ in a theta solvent/temperature
» polymer is in ‘unperturbed state’
+ unperturbed by environment (solvent)
» <[>, = <r2>p = <r?>g

» In Flory-Krigbhaum eqgn, o = 1 =2 <r?> oc n05
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Real chain in bulk — ‘random coil’

a In bulk amorphous state
= polymer chain instead of solvent

= Repulsion(polymer-polymer, intra)

= Repulsion(polymer-polymer, inter)
= Chains are in unperturbed state S S
" <r2> = <r2> =1 = <r?>g .
= proposed by Flory; proved by SANS exp'’t
= also in the melt state

= also in the semicrystalline state (dimension)

a RIS model describes the state of single chain in bulk
(melt, amorphous, semicrystalline).
> crystal structure ~ conformation with the lowest energy
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Distribution of r

Q r, e-t-e distance

" average = <r?>" j\
= distribution? probability of finding the chain end

a random-flight analysis X
= random flight (3-D) = random walk (2-D)

2rlisin i d
2l '.‘2._? =sing dy  (277)
2l

1)”‘ (2t
25 ki

o = fffﬁflid?r = J [* cos® v} sin o dyf

]

A, =

i

{2.78)

By substitution in eq. (2.78) of = cos\{ and
df = —sin iy dyr

3

IJ
(i =1 j —F dt ==

o

/
= (2.79) Ch 2 #4
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= distance walked along x-axis

!
x={n, ~n) \_/ = (I/4/3) m m=n,—n
3

= probability of a (n,/n.)

S t 1" !
M, .n_) = () & Pln, mp = (—) PV . VO (2.82)
2/ n tn_t 2 (;1_+ m)l(n = m)j

= Stirling’s approximation
» for large n, n>>m, m/n<<1
» NI = NN eN (2nx)”2 and following (2.83) through (2.88)
»orusingInN!'=NINN-N+%Y21In2t+ %2 InN

2
Pln, m) = \/ " expl — mE/ Zn) (2.89)
n
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= P(m,n) 2> P(X)Ax ~ probability of x betw x and x+dx
» m = (V3/)x
» m changes by 2 = x changes by 2 /43 > Ax = 2 I//3

340 : o
Poyde = ( ->exp{—3ﬁfznr~’}dr (290)  —~ Gaussian distribution

N 2 ‘

,Jnf
= for 3-D, probability of finding the chain end in dxdydz (vol)

32
Pla,y 2z dy &= = ( _.“}_'_) expl — 32 + > + 22 2nldr dy dz

3 3z
Plry zidrdy d- = ( —-——) expl — 37/ 2nl"}dx dy dz

2ant?

Xz, v. z)dx dy dz = (

b

3 3]
) exp{ —3r'/2{r*> Jdr dy dz

2ndry;
»<r2> = n |2 for FJC or Kuhn chain
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0.u10

= P(X,y,2) 0008 |
» P at the origin < random flight

0.006

Play,z) (A
P (Al

1004

» fast decreasing

0.002

= P(x,y,z) = P(r) ~ prob of r betw r and r+dr T T w0 w0 a0 o

End-to-end distance (A)

» radial distribution of r

H }d = f 4 } ( ) rz( 1 )

» P, not at the origin
» P at r=(2/3)"n 12 = .82<r2>*2 (of FJC or Kuhn chain)

s <rz> = [r2p(ndr / [P(dr = n I2
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Kuhn chain

0 Kuhn chain = statistical segment
= (statistically) equivalent (freely jointed) chain
a Kuhn (chain) length, I’
" 2=<r> =r2=C_nl
" n'I'=r.,, (Max or contour length) = f nl
'=r2/r_ . = (CJUI
= a measure of axial correlation length

for PE
» C,=6.7,r,,=(os35)nl=.83nl ’
» '=8.21,nN"=0.1n
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Persistence length

a Persistence length, a
= average projection of r to a bond
= |length over the chain persists in one direction
» a=<(r/l)zr>
» <re>p=nlk+2<x2xrn>=C nk
»a=(C_+1)1/2 \ ~
= a measure of axial correlation length also

= for PE,a -4 |
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RIS Application to polymers

Q Interactions
= conformation-dependent interactions
—> potential (conformational) energies - structure, size
Inherent torsional potential
» ecliped — staggered
» E.,, = (E%/2) (1 — cos 3¢)
o EO for eclipsed
= nonbonded interaction
» London dispersion force ..zhd-order
» Lennard-Jones potential
* £, = a,exp[-bry] —c,/rko
= dipole interaction
» By = et[2qq;/r;]

" Ey =2 Ep + 2B+ 2 Ey

H H H H
Y/ = H z,

Energy (kd mol'l)

1st-order
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Polyethylene

1. geometric parameters
= from exp’'t with model comp’d (ralkane)

= \WAXS, ED, etc

2. choose interaction parameters
= r(HH), r(CH), r(CC)
= a(HH), a(CH), a(CC)
| EO
= to give best fit to exp’t results of model comp’d

Ch 2 #11





PE (2)

3. draw conformational energy map
= for n-butane — 1st-order interaction

= for n-pentane — 2nd-order interaction
180

120 [~

180

la--._-l—-—..-_._z 69A

4. establish chain molecule \Taﬁﬂ/?:f,
" (I)(T) — OO, (I)(TG) ~ 4° \/ / ‘\fi ’

= §(G) ~ 112°, (GG) ~ 110° \/\5\/@/
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PE (3)

5. determine statistical weights 1 0 0 1 1 1]
= 1st-order interaction, D D=0 ¢ 0f V=0 v o
= 2nd-order interaction, V ] _ -(3 0 o 0 o vy
= U=VD l o o l1 o o

U=10 oyon =|0 o 0| (y~1, 0~0)
0 cooy |0 0 o

6. do RIS calculation
" <>, =272t G"g
=with U, |, 0, ¢

7. adjust U to fit exp’tal values of <r?>, and d[In <r>>,]/dT
= with E?, a, c, ¢

Ch 2 #13





PE (4)

Q results
" <r?>,=6.7nl? at 400 K
c = u(G)/u(T) =0.5, ® = u(GG)/u(TT) = 0.01
P(T) =0.62, P(G) = P(G’) =0.19
= temperature coefficient
d[in <r>_]1/dT <0

a preferred conformation
= all-trans ~ TTTTTTTT---
= of the lowest energy
= planar zigzag in crystal

Ch 2 #14





PTFE

a geometry and interaction

EAF E4F
= R(F) > R(H) > a(FF) > a(HH) /,\ L
= do have dipole ~E; >0

a conf map and stat wt F

TI'“\

= ¢&(T) ~ +17° and -17° with very shallow barrier
= $(G) = ¢(G) ~ 120° with high E(G) = low ¢ ~ .2
0 RIS

= ARISwWith T, T, G, G - C, ~ 30

» closer to exp’t and explain helix inversion
= 3RISwithT,G,G > C, ~ 11

= much stiffer than PE ~ high melting, high viscosity

Ch 2 #15
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Solution to HW #1

Q1. For TGTG'GTG'TTG conformation of /7-C,;H,g with bond angle of 120°
and bond length of 1 cm,

(1) Find the end-to-end distance. ~ 7 cm
(2) C? 7%/12

Q2. Using the energy values given so far, estimate the probability of GG’
conformations in n-pentane at 350 K

(1) for independent ¢’s
Uu(tn=(1)(1)=1, U(TG,TG',GT,G'T)=(1)(oc)=0,
U(GG,GG',G'G,G'G)=(0)(0c)= c?, o=exp(-2.1/kT)~.49
P(GG) = U(GG")/Z = 6?/(1+4c+40%) = .06

(2) for interdependent ¢’s
U(TT)=1, U(TG,TG",GT,G'T)=0c, U(GG,G'G")=(c)(cy)=exp(-4.2/KT)=.24,
U(GG',G’G)=(oc)(cw)=exp(-14.5/kT)=.007,

N — ) —_ 2 2 2 —
P(GG’) = U(GG')/Z = c?w/(1+4c+2c%y+26%w) = .002 Ch 2 #1





Solution to HW #1

Q3. For n-octane,

(1) how many conformations? 3°

(2) Express the probability of TTTTT.
Q=11U,=UMUTnNUTnUATU(T) =1
Z=2XIU, =1+ -----
P=1/Z

(3) Express the probability of TGG'TG.
Q=11U, = UMUTG)U(GG)U(GT)U(TG)

= (1)(c)(cw)(1)(c) = c°w

P=oc%n/Z

(1 o o]

1 oy cw

|1 cow oY

Ch 2 #2





Polyoxymethylene

Q geometry and interactions

= one type 6 and | - a simple chain > one T
= 3-bond interaction o o o
» D(C-0) < D(C-C) of PE > larger E(G) -~ 110™07 " S0ag’A” ™
» attractive C---O interaction - E,(G) <O
» Ey(G) < E4(G) > E(G) < 0> 0o >1 attractive”” \
0 stat wt D=

0O _©
0
O]

= Istorder, D ~ witho > 1 ©

= two 2"-order matrices ~ V, for C---C, V, for O---O

= U, =DV, U, =DV, O/ \O <O>

~ OO
Ch 2 #3
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POM (2)

Q results
= C_=8
with o = 10, ® = 0.05
experiment difficult ~ high melting and low solubility
" dlln<r’>]1/dT <0
TT>cd>C_1{
c ¥ 2 P(T) I ~ More trans gives lower dimension?

a preferred conformation
= GGGG---- or GG'G'G’----
= 2, helix (¢(G)=117°) or 9 helix (¢(G)=102°) in crystal

Ch 2 #4





Polyoxyethylene

Q geometry and interactions
= one 6 and two | > one T? \llo%MA Ao
= R(O) <R(C)
= do have dipole
» but no attractive interaction, all repulsive

a stat wt /\/0\/\ _
= Three U's |a|| HC'
= 1st-order
» D, =D, (C---C) ~witho < .5 \ o)
» D, (0---0) ~ o' <1 ~_© O\)

= 2nd_grder matrices

» V, =V, (C---0) ~ witho >0 2\ O
» V, (C---C) ~o=0 </O < 7

Ch 2 #5





PEO (2)

Q results
= C_ =4
with e = .26, ® = 0.6, ¢’ = 1.9 (E(c’) = -1.7 kd/mol)
best fit to exp'’t
why ¢’ > 1?
reason not clear, maybe related to very large o in POM
Oxygen lower the energy of gauche (preferred over trans)

= TC = 2.3E4
TT2>0c,0T,cd>C_1T

a preferred conformation \O/YOWO/
o TTGTTG--— | R
= 7, helix (¢(G)= -8°, $(G)=115°) in crystal

Ch 2 #6





Poly(dimethyl siloxane)

Q geometry and interactions
" two 0's 2> two T's
= |large D(SI-0O), D(Si-C)
> large r,, = low E,, and E°
- low E(G) = RIS not well-defined

O stat wt

= two U's € one D and two V's
" 0>0

" 0'~0

%
Py

Si Si

Si Si

O\Si/O
O results

» C_=6.2, TC = 7.8E-4
withe = .29, ® = 0.2

Ch 2 #7





Polyamides

Q nylon 6 0
- U, =1 RSN
" U,=[1o,0,] o °°0  o=o(PE)

= U;---U,~3Xx3
" g,=0cg~cIiNnPE~.5
= otherc’'s> .5, w's>0
» R(O, N) < R(C)
» NH favors gauche like O
= use avg length
= C_—6

Ch 2 #8





Polyesters

a PET

, (@)
6 U's ‘virtual bond’ ~ 5.74 A
=0
U, =1[1v] \

~ ¥~ 1 < long virtual bond

U,=1 e
U,=[10,0,] °=% 6>1
Us, Ug — 3 X3

6, =05 ~0cINPE~.5
o ~cinPEO>1
two o’s and one ®
C,—4

Ch 2 #9
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Polymers with C=C

Qa frans-1,4-polybutadiene
= Ais not of the lowest energy, B is.
= 4 U'’s
= U, =1
U, =[1 a 1] ~ [60° 180° -60°]
» b<a<l
= U,,U,~3x3
~ 6 > .5 (CH---CH)
Q frans-1,4-polyisoprene
= similar to PBD
= U,=[101] ~ [60° 180° -60°]
a comparing PBD and PIP
= C_(PBD) ~5.8<C_(PIP)~7.4
= TC(PBD) ~ -6E-4 > TC(PIP) ~ -3E-4

Ch 2 #1





a c/s-1,4-polybutadiene virtual bond ~ 2.7 A
= 3U’s a

= U,=[111]~[0 60°-60°]
0 C (]
" U= c 11
& 1 1
" U =[loo]

QO comparing trans- and cis-PBD
= C_(trans) ~ 5.8 > C_(cis) —~
» small difference due to no cis conf for cis-PBD
= TC(PBD) ~ -6E-4 < TC(cis) ~ +4E-4

Ch 2 #2





Vinyl polymers

Q asymmetric
= due to chiral centers

= G and G’ with different popularity
> different interactions (F;

d I
bond lengths th
gtns esame \—mJ\—rJ
bond angle can be different

Q 6 stat wt's per repeat unit € 2 types of bond
» CHR-CH, ~ i ~ ¢’
» CH,-CHR ~ i+1 ~ ¢”

Ch 2 #3





1st-order interaction

o d-i
= o for G (CH,---CH)
= onforT
» if R(R) > R(CH,) > n <1
¢ like Ph
» if R(R) ~R(CH,) > n ~1
o like alkyl
= ot for G

~1<oc<1(t~.1-.4) < two-way interaction

| Dd’:

oS O 35

0 0]
1 0

0 7.

Ch 2 #4





1st-order interaction

ad-i+l :
= ot for G OT ™..§
G’C\
= onforT
" 5 for G
n 0 0
] Dd1’: O T 0
0 o 1
. 'n 0
D I-I Dl’: O T 0 :Dd”
0 1
n o0
0O 0 =

Ch 2 #5





2nd-order interaction

ai-1&i
= the same to PE (CH,---CH,)
1 1 17 [1 1
"Va=VIT oy et
1 o VY. |1 Q)
Qi&i+l

"= CH,---CH,, CH,---R, R---R
= |et all stat wt's be o (o ~ 0)

o o 1]

.Vddzl(o())

L ® 2 Ol

Ch 2 #6





2nd-order Iinteraction
Q V)", Vig', Vg

= obtained by permutation of G and G’

\\\\““"EE
R R ﬁs rf R §
TTVyg) TT(V,) GG(Vy") G'G'(V,")
@

"= »—~0
= for PVC, R(CI)<R(CH,)

~ ®(Cl---Cl) > ®(CH,—--Cl) > 0
= for PVA, R(OH)<R(CH.,)

~ ®(OH--OH) > 1
~ o(CH,---OH) > 0

Ch 2 #7





Calculation

a 6 U's

" Uy =V Dy .
m Udd” —_ Vdd” Dd” s i U
" Uy" = Vy DY Y b* D
plermbtation of G and G’
" Uy =V, Dy /\(\(\s/\(
Uy Ugg” U’ Uy
U, @ u®

Q partition function, Z
= Z=J*[ITU]J (for i from 2 to n-1)

=J* [ITU’ U,,”] J (for i/2 from 1 to x-1, x=n/2)
= J* [IT U, @] J (for k from 1 to x-1, x=n/2)
U® =U_®@ or U®
Ch 2 #8
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Preferred conformation

0 o<l to<l, n—1 Mo o 1]
U =|n o o
- dd /\(\(\( | na 0 ©.
R R R ‘ntxl T ]
Uy Ugg” Uy Ugg Ud’ = n 1 o
T G T G — left-handed
i LN o T
G T G T~ right-handd

= || NN

s
S
>

Q
S
<

I” Uy
G

//// h,

U,/

~ right-handed

i Uii
G
T ~ left-handd

U
T G
G T ’
v isotactic ~ all left or right handed
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Preferred conformation

= dl, Id

v’ syndiotactic U = Mo 0 o
» TTGG preferred L N0 1o 1.
» TTTT less preferred (dep on t*) T

Ch 2 #10





stereo-regular and irregular chains

a stereoregular chains
= isotactic ~ succession of G,®
= syndiotactic ~ succession of G,

Q stereoirregular chains

= mixture of m and r ~ random not block
» total of x-1 pairs with x-y-1 meso and y racemic
» Not [G,,@]x-y-1 [G,@]y
= Monte-Carlo simulation
~ p(iso) ~ probability of iso (d-d or I-I)
generating x-1 random numbers between 0 and 1
¢ number < p(iso) ~ iso dyad ~ G,
¢ number > p(iso) ~ iso dyad ~ G,
» calculate dimension
» repeat

>

\'2

Ch 2 #11
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