Chapter 2

Chain Conformations
Structure of polymers

- **Chemical Structure**
 - atomic structure
 - isomers ~ configurations
 - architecture

- **Physical Structure**
 - single chain structure ~ conformations
 - aggregation structure
 - amorphous state
 - semicrystalline state
Single chain structure ~ Conformation

- Configuration ~ breaking single bond
 - isomers, copolymers, branches

Conformation ~ rotation about single bond
 - syn-anti, trans-gauche, staggered-eclipsed

- Misnomers by Flory
 - spatial configuration
 - rotational isomers

Ch 2 #3
A polymer chain

- $n + 1$ atoms
- n bonds (length l)
- $n - 1$ bond angles ($\tau = 180 - \theta$)
- $n - 2$ rotational angles (angle ϕ)
Degree of freedom of a polymer chain

- $n + 1$ atoms \Rightarrow $3(n+1)$ DOF
 - restricted by bonding \Rightarrow $- n$ DOF
 - restricted by bond angle \Rightarrow $- (n - 1)$ DOF
 - remaining DOF $= n + 4$

- $n + 4$ DOF of a polymer chain
 - 3 translational DOF \sim position of CG
 - 3 orientational DOF
 - $n - 2$ rotational DOF \sim $n - 2 \phi$’s
Size of a chain

- end-to-end distance, r
 - distance between the two chain ends

$$\bar{r} = \sum_{i=1}^{n} \bar{r}_i$$

(2.11)\

$$r = (\mathbf{r} \cdot \mathbf{r})^{1/2}$$

$$r^2 = \sum_{i=1}^{n} \bar{r}_i^2 + \sum_{j=1}^{n} \bar{r}_j^2 = \sum_{i=1}^{n} \bar{r}_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \bar{r}_i \bar{r}_j$$

(2.12) \[\sim \text{for } 1 \text{ conform'n} \]

$$\langle r^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} \bar{r}_i^2 = \sum_{i=1}^{n} \langle \bar{r}_i^2 \rangle + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \bar{r}_i \bar{r}_j \rangle$$

~ avg of N conform'ns

\[
\begin{bmatrix}
 \langle \bar{r}_1 \bar{r}_1 \rangle + \langle \bar{r}_1 \bar{r}_2 \rangle + \cdots + \langle \bar{r}_1 \bar{r}_n \rangle + \\
 \langle \bar{r}_2 \bar{r}_1 \rangle + \langle \bar{r}_2 \bar{r}_2 \rangle + \cdots + \langle \bar{r}_2 \bar{r}_n \rangle + \\
 \cdots \cdots \cdots \cdots \cdots \cdots \cdots + \\
 \langle \bar{r}_n \bar{r}_1 \rangle + \langle \bar{r}_n \bar{r}_2 \rangle + \cdots + \langle \bar{r}_n \bar{r}_n \rangle
\end{bmatrix}
\]

(2.13)
Size of a chain (2)

- end-to-end distance (cont’d)

\[\langle r^2 \rangle = n l^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle r_i r_j \rangle \]

- \(\langle r^2 \rangle^{1/2} \sim \) root-mean-square end-to-end distance
 » a measure of chain dimension
Size of a chain (3)

- radius of gyration, s
 - another measure of chain dimension
 - $\langle s^2 \rangle^{1/2} \sim$ root-mean-square distance to the atoms from CG
- $\langle r^2 \rangle_{(0)} = \langle s^2 \rangle_{(0)} / 6$
 - for (infinitely) long chain (very large n)
 - in unperturbed state (0)

See Appendix A of Flory
Exp’tal determ’n of chain dimension

- size depends on solvent
 - good or poor solvent
 - theta solvent (theta condition) ~ unperturbed state

📖 Fig 2.7

- in dilute soln
 - viscometry
 - light scattering

- in conc. solution, melt, or solid state
 - SANS
Parameters expressing chain characteristics

- **characteristic ratio**
 - $C_{(\infty)} = \frac{\langle r^2 \rangle_{(0)}}{n l^2} \sim \text{definition}$
 - a measure of chain stiffness
 - Table 2.1

- **temperature coefficient**
 - $\frac{d[\ln \langle r^2 \rangle_0]}{dT}$ (thermal expansion)
 - change in chain dimension with increasing temp due to conformational change
 - Table 2.2
Modeling of polymer chain

- from artificial to real chain
- with reducing artificiality
 - Freely jointed chain (l fixed)
 - Freely rotating chain (l, \(\theta \) fixed)
 - Chain with hindered rotation (l, \(\theta \) fixed; \(\phi \) restricted)
 - Chain with excluded volume effect
 - Gaussian chain or ‘random coil’
Freely Jointed Chain

- bond length \((l)\) only fixed
- chain dimension

\[
\langle \mathbf{r}^2 \rangle = n l^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \mathbf{r}_i \mathbf{r}_j \rangle
\]

\[
\langle \mathbf{r}_i \mathbf{r}_j \rangle = l^2 \langle \cos \theta_{ij} \rangle
\]

\[
\langle \mathbf{r}^2 \rangle = n l^2 + 2 l^2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \cos \theta_{ij} \rangle
\]

- For FJC, \(\langle \cos \theta_{ij} \rangle = 0\) for \(i \neq j\)
 - random disposition of bond vectors
 - For every \(\cos \theta\), there is \(\cos (\theta+\pi) = -\cos \theta\).
- MS e-t-e distance, \(\langle \mathbf{r}^2 \rangle = n l^2\)
- \(C_\infty = 1\)
Freely Rotating Chain

- bond length \((l)\) and bond angle \((\tau = 180 - \theta)\) fixed
 - reduced artificiality from FJC

- chain dimension

\[
\langle \mathbf{r}^2 \rangle = nl^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \mathbf{r}_i, \mathbf{r}_j \rangle
\]

\[
\langle \mathbf{r}_i, \mathbf{r}_{i+1} \rangle = l^2 \cos(180 - \tau)
\]

\[
\langle \mathbf{r}_i, \mathbf{r}_{i+2} \rangle = l^2 \cos^2(180 - \tau)
\]

\[
\langle \mathbf{r}_i, \mathbf{r}_j \rangle = l^2 |\cos(180 - \tau)|^{j-i}
\]

\[
\langle \mathbf{r}^2 \rangle = nl^2 + 2l^2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} |\cos(180 - \tau)|^{j-i}
\]

\[
\text{j - i = k and } \cos(180 - \tau) = \alpha
\]

\[
\langle \mathbf{r}^2 \rangle = nl^2 \left[1 + \frac{2}{n} \sum_{k=1}^{n-1} (n - k) x^k \right] \quad (2.18)
\]
FRC (2)

\[
\langle r^2 \rangle = n l^2 \left[1 + \frac{2}{n} \sum_{k=1}^{n-1} (n-k) x^k \right]
\]

\[
= n l^2 \left[1 + 2 \sum_{k=1}^{n-1} x^k - \frac{2}{n} \sum_{k=1}^{n-1} k x^k \right]
\]

\[
= n l^2 \left[1 + \frac{2(x - x^n)}{1-x} - \frac{2}{n} \left(\frac{x(1-x)^n}{(1-x)^2} - 1-x \right) \right]
\]

\[
= n l^2 \left[1 + \frac{2x}{1-x} - \frac{2x(1-x)^n}{n(1-x)^2} \right]
\]

For infinitely long chains \((n = \infty)\):

\[
\langle r^2 \rangle = n l^2 \left[1 + \frac{2x}{1-x} \right] = n l^2 \left[\frac{1+x}{1-x} \right]
\]

\[
= n l^2 \left[\frac{1 + \cos(180 - \tau)}{1 - \cos(180 - \tau)} \right]
\]

\((2.19)\)

\(\square\) For \(\tau = 110^\circ\), \(\langle r^2 \rangle \approx 2n l^2\)

\(\square\) For \(\tau > 90^\circ\), \(C_{\infty,FRC} > C_{\infty,FJC}\).
Chain with Hindered Rotations

- Bond length and bond angle fixed
- Not all rotational angles between $0^\circ < \phi < 360^\circ$ are allowed.
- Only some discrete states are allowed
 \rightarrow rotational isomeric states (RIS)
- Due to the interactions
 - intrinsic rotational potential \sim eclipsed-staggered
 - non-bonded interaction (dispersion) \sim trans-gauche
 - dipole interaction \sim when dipoles present
Conformational energy map for ethane

- E(eclipsed) ~ 11.8 kJ/mol
- thermal E at RT ~ kT ~ 8.314 x 300 J/mol ~ 2.5 kJ/mol
- Only staggered conform’n stable (present)
Energy map for \(n \)-butane

- \(E(\text{gauche}) \sim 2.1 \text{ kJ/mol} \)
- Thermal energy at RT \(\sim 2.5 \text{ kJ/mol} \)
- Only T, G, and G’ conformers stable (present)
for \(n \)-alkane (PE) chains

- At very high temperatures
 - All \(\phi \) allowed \(\rightarrow \) FRC

- At lower temperatures
 - Only 0, 120, and -120 are allowed for each bond.
 - T, G, and G’ are the three discrete rotational isomeric states (RIS).

- For a PE chain with \(n \) bonds,
 - \(n-2 \) \(\phi \)’s \(\rightarrow \) \(3^{n-2} \) RIS (conform’ns)
 - actually, fewer conform’ns allowed
Short-range interaction

- for \(n \)-pentane
 - 2 \(\phi \)’s \(\rightarrow \) 9 RIS; 6 distinguishable
 - TT, TG, TG’, GG, GG’, G’G’
 - GG’ is of high E (~ 14 kJ/mol)
 - GG’ not likely present
 - ‘pentane interaction’
 - ‘pentane effect’
 - ‘2nd-order interaction’
 - ‘shot-range interaction’
 - common in chain molecules
 - reduces the # of conformations
 - must be considered in analysis