
Chapter 2

Chain Conformations



Ch 2 #2

Structure of polymers
Chemical Structure

atomic structure
isomers ~ configurations
architecture

Physical Structure
single chain structure ~ conformations
aggregation structure

» amorphous state
» semicrystalline state
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Single chain structure ~ Conformation
Configuration ~ breaking single bond

isomers, copolymers, branches 

Conformation ~ rotation about single bond
syn-anti, trans-gauche, staggered-eclipsed

Misnomers by Flory
spatial configuration
rotational isomers
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A polymer chain
n + 1 atoms
n bonds (length l)
n - 1 bond angles (τ = 180 - θ)
n - 2 rotational angles (angle φ)

θ

φ

l

A0

An
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Degree of freedom of a polymer chain
n + 1 atoms 3(n+1) DOF

restricted by bonding – n DOF
restricted by bond angle – (n – 1) DOF
remaining DOF = n + 4

n + 4 DOF of a polymer chain
3 translational DOF ~ position of CG
3 orientational DOF
n – 2 rotational DOF ~ n – 2 φ’s
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Size of a chain
end-to-end distance, r

distance betw the two chain ends

r = (r · r)½

~ for 1 conform’n

~ avg of N conform’ns
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Size of a chain (2)
end-to-end distance (cont’d)

<r2>½ ~ root-mean-square end-to-end distance
» a measure of chain dimension 
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Size of a chain (3)
radius of gyration, s

another measure of chain dimension
<s2>½ ~ root-mean-square distance to the atoms 
from CG

<r2>(0) = <s2>(0) / 6
for (infinitely) long chain (very large n)
in unperturbed state (0)

r

s

See Appendix A of Flory 
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Exp’tal determ’n of chain dimension
size depends on solvent

good or poor solvent
theta solvent (theta condition) ~ unperturbed state

in dilute soln
viscometry
light scattering

in conc. solution, melt, or solid state
SANS

Fig 2.7 
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Parameters expressing chain characteristics

characteristic ratio
C(∞) = <r2>(0) / n l2 ~ definition
a measure of chain stiffness

temperature coefficient
d[ln <r2>0] / dT (– thermal expansion)
change in chain dimension with increasing temp due 
to conformational change

Table 2.1 

Table 2.2 
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Modeling of polymer chain
- from artificial to real chain
- with reducing artificiality

Freely jointed chain (l fixed)
Freely rotating chain (l, θ fixed)
Chain with hindered rotation (l, θ fixed; φ restricted)
Chain with excluded volume effect
Gaussian chain or ‘random coil’

θ

φ
l
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Freely Jointed Chain
bond length (l) only fixed
chain dimension

For FJC, 
» random disposition of bond vectors
» For every cos θ, there is cos (θ+π) = – cos θ.

MS e-t-e distance, 

C∞ = 1

θ

φ
l
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Freely Rotating Chain
bond length (l) and bond angle (τ = 180 - θ) fixed

reduced artificiality from FJC

chain dimension

j – i = k and cos(180-τ) = α
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FRC (2)

For τ = 110°, 
For τ > 90°, C∞,FRC > C∞,FJC.
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Chain with Hindered Rotations
Bond length and bond angle fixed
Not all rotational angles between 
0o < φ < 360o are allowed.
Only some discrete states are allowed
→ rotational isomeric states (RIS)
Due to the interactions

intrinsic rotational potential ~ eclipsed-staggered
non-bonded interaction (dispersion) ~ trans-gauche
dipole interaction ~ when dipoles present
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Conformational energy map for ethane

s

e

E(eclipsed) ~ 11.8 kJ/mol
thermal E at RT ~ kT ~ 8.314 x 300 J/mol ~ 2.5 kJ/mol
Only staggered conform’n stable (present)

es
kT
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Energy map for n-butane

E(gauche) ~ 2.1 kJ/mol
thermal E at RT ~ 2.5 kJ/mol
Only T, G, and G’ conform’ns stable (present)

eclipsed cis

kT
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for n-alkane (PE) chains
At very high temperatures

All φ allowed FRC

At lower temperatures
Only 0, 120, and -120 are allowed for each bond. 
T, G, and G’ are the three discrete rotational isomeric 
states (RIS).

For a PE chain with n bonds,
n-2 φ’s 3n-2 RIS (conform’ns)
actually, fewer conform’ns allowed
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Short-range interaction
for n-pentane

2 φ’s 9 RIS; 6 distinguishable
TT, TG, TG’, GG, GG’, G’G’
GG’ is of high E (~ 14 kJ/mol)

» GG’ not likely present
» ‘pentane interaction’
» ‘pentane effect’
» ‘2nd-order interaction’
» ‘shot-range interaction’
» common in chain molecules
» reduces the # of conformations
» must be considered in analysis
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Distribution of φ
Distribution (probability) of φ is determined by 


Boltzmann distribution
Frequency of occurrence depends on exp[-E/kT]


P(φ)dφ = U/Z = exp[-E(φ)/kT]dφ / ∫exp[-E(φ)/kT]dφ


» U(φ) ~ statistical weight ~ relative probability ~ = exp[-E(φ)/kT]
» Z ~ rotational partition function ~ Σ U(φ)
» for n-butane at 400 K


U(T) = 1 E(T) = 0
U(G) = U(G’) = exp[-E(G)/kT] = exp[-2.1/3.3] ~ .5
E(cis,eclipsed) >> kT U ~ 0
Leaves 3 RIS of T, G, G’
Z = U(T) + U(G) + U(G’) = 1+.5+.5 = 2
P(G) = U(G)/Z = .5/1+.5+.5 = .25
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» for n-pentane at 400 K
E(TT) = 0
E(TG, GT, TG’, G’T) = 2.1
E(GG, G’G’) = 4.2
E(GG’,G’G) = 14.5


– U(GG’) = exp[-14.5/kT] = .01
– P(GG’) = .01/Z ~ 0 ~ prohibited


short-range interaction (2nd-order interaction)
common in chain molecules (not only in alkanes or PE)
φi depends on φi+1 ~ interdependent φ
Bond rotation must be considered pairwise.
higher-order interactions?


» Higher energy conformations like GGG’G must have at least one GG’
or G’G.


» pairwise potential is enough







Ch 2-2 #3


Conformational energy
conformational energy of a chain


for n-pentane (for bond 2 and 3), E{φ}


ζ ∼ state of a bond i-1
η ∼ state of a bond i


tentatively putting bond i+1 trans
(considered at the next term)


n-1
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Statistical weight


statistical weight matrix, U


for n-alkane


η (bond i)


η (bond i-1)


exp[-EζT/kT] = 1


σ = exp[-ETG,TG’, GG, G’G’/kT] = .5


Eζη not E{φ}


exp[-EGG’, G’G/kT] ~ 0
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U generalized for 3-fold, symmetric chain
» 3-fold ~ T, G, G’ 3x3 matrix
» symmetric ~ no asymmetric carbon ~ UG = UG’


PE, POM are symmetric
vinyl polymers are asymmetric


Stat wt for a certain conformation (combination of φ’s)


partition function for a chain (all possible conformations)
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Homework #1 (Due on 25 Sept 06)
Q1. For TGTG’G’TG’TTG conformation of n-C13H28 with bond angle of 


120° and bond length of 1 cm, 
(1) Find the end-to-end distance.
(2) C? 


Q2. Using the energy values given so far, estimate the probability of GG’
conformations in n-pentane at 350 K


(1) for independent φ’s
(2) for interdependent φ’s


Q3. For n-octane, 
(1) how many conformations? 
(2) Express the probability of TTTTT.
(3) Express the probability of TGG’TG.
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Calculation of Z
matrix expression


chain with 2-fold RIS, α and β
U for 2nd bond ~ U(α), U(β)
U for 3rd, --- ~ U(αα), U(αβ), U(βα), U(ββ)
for n=4


» Z = U(α)U(αα)+U(α)U(αβ)+U(β)U(βα)+U(β) U(ββ)
» = sum of the elements of U2U


for n=5, Z = sum of the elements of U2UU
for n=n, 
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Simplifying by U2 = U


general form


for simple chain (symmetric and with one type of bond like PE)


for PE


» Z = [1 0 0]                     


n-2
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algebraic expression
simplify by transforming U to a diagonal tensor with eigenvalues
λη of U as elements


= BUA B=A-1
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using U = AΛB


for ν-fold RIS
for 3-fold, to A13λ3


n-2 and B33
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for simple, 3-fold, symmetric chain like PE


≈ σ=.5, ψ=1, ω=.01 at 400 K λ1, λ2, λ3


» P(G) = U(G)/Z = .18 at 400 K ~ with interdependent φ


» compared with P(G) with independent φ of .25


with gives
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ri =       in coordinate i, rj =       in coordinate j


ri ri =                = ri
T ri if in the same coordinate


if NOT, ri ri = ri
T T ri ~ needs coordinate transformation


transformation matrix, Ti (i+1 i)


Size of RIS chain
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for simple chain with independent φ, <Ti ---- Tj-1>= <T>j-i
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for FRC, <cosφi> = <sinφi> = 0


for FJC, <cosφi> = <sinφi> = <cosθi> = <sinθi> = 0
T = O
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for simple symmetric chain with hindered rotation
<sinφi> = 0 G and G’ are of the same population.
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for, n-alkane (PE)


» exp’tal C = 6.7; difference due to
wrong E(G)? 


– For C=3.4, E(G) be 4.5 kJ/mol (too high)


wrong φ(G)? 


– Actual φ(G)~110 not that much different


interdependent φ ~ major contributor


σ= U(G) = exp[-2.1/3.3] ~.5
at 400 K
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Size of RIS chain with interdependent φ


with independent φ, <Ti ---- Tj-1>= <T>j-I


with interdependent φ, <Ti ---- Tj-1>= <Tj-i> Flory Chpater 4


= 2 Z-1 J* Gn J
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Size of chain


<r2> = C(U) nl2
C(U) C∞ as n ∞


C∞ = 1 for FJC


C∞ = 2-3 for FRC due to q


C∞ = 4-10 for RIS chain due to short range interaction


C∞ for different polymers?
» measure of chain stiffness


» in unperturbed state (Θ condition), melt, bulk





		Distribution of f

		Conformational energy
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		Homework #1 (Due on 25 Sept 06)
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		Size of RIS chain

		Size of RIS chain with interdependent f

		Size of chain
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Excluded volume effect


intrachain volume exclusion
‘long-range interaction’
gives larger dimension


<r2>EV = α2 <r2>RIS
in good solvent


» Repulsion(polymer-polymer) > Repulsion(polymer-solvent)
» chain expands, α > 1
» by Flory-Krigbaum, α5 - α3 = C n½ ψ (1 - θ/T)


– C ~ const, ψ ~ entropy factor, θ ~ theta temp


α5 >> α3 α ∝ n0.1; <r2>RIS = C∞ n l2


<r2>EV ∝ n0.6 (exp’t <r2> ∝ n0.59)
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<r2>EV = α2 <r2>RIS
in poor solvent


» Repulsion(polymer-polymer) < Repulsion(polymer-solvent)
» chain shrinks, α < 1


in a condition between good and poor solvent
» where α = 1
» Repulsion(polymer-polymer) = Repulsion(polymer-solvent)
» chain neither expands nor shrinks
» ‘phantom’ or ‘ghost’ chain 
» ‘theta (Θ) condition’


in a theta solvent/temperature


» polymer is in ‘unperturbed state’
unperturbed by environment (solvent)


» <r2>EV = <r2>RIS = <r2>0


» in Flory-Krigbaum eqn, α = 1 <r2> ∝ n0.5
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Real chain in bulk ~ ‘random coil’
In bulk amorphous state


polymer chain instead of solvent 
Repulsion(polymer-polymer, intra) 
= Repulsion(polymer-polymer, inter)
Chains are in unperturbed state
<r2> = <r2>0 = rθ


2 = <r2>RIS


proposed by Flory; proved by SANS exp’t
also in the melt state
also in the semicrystalline state (dimension)


RIS model describes the state of single chain in bulk 
(melt, amorphous, semicrystalline).
8crystal structure ~ conformation with the lowest energy
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Distribution of r
r, e-t-e distance


average = <r2>½


distribution? probability of finding the chain end


random-flight analysis
random flight (3-D) random walk (2-D)


r
x
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distance walked along x-axis


probability of a (n+/n-)


Stirling’s approximation
» for large n, n>>m, m/n<<1
» N! = NN eN (2πx)½ and following (2.83) through (2.88)
» or using ln N! = N ln N – N + ½ ln 2π + ½ ln N


= (l/√3) m         m = n+ – n-
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P(m,n) P(x)Δx ~ probability of x betw x and x+dx
» m = (√3/l)x
» m changes by 2 x changes by 2 l/√3 Δx = 2 l/√3


for 3-D, probability of finding the chain end in dxdydz (vol)


~ Gaussian distribution


»<r2> = n l2 for FJC or Kuhn chain 
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P(x,y,z)
» Pmax at the origin random flight


» fast decreasing


P(x,y,z) P(r) ~ prob of r betw r and r+dr
» radial distribution of r


» Pmax not at the origin


» Pmax at r= (2/3)½n l2 = .82<r2>½ (of FJC or Kuhn chain)


<r2> = ∫r2P(r)dr / ∫P(r)dr = n l2
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Kuhn chain = statistical segment 
= (statistically) equivalent (freely jointed) chain


Kuhn (chain) length, l’
n’ l’2 = <r2>0 = rθ


2 = C∞ n l2


n’ l’ = rmax (max or contour length) = f nl


l’ = rθ
2 / rmax = (C∞/f) l


a measure of axial correlation length


for PE
» C∞ = 6.7, rmax= (cos 35) n l = .83 n l


» l’ = 8.2 l, n’= 0.1 n


Kuhn chain


l’
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Persistence length
Persistence length, a


average projection of r to a bond


length over the chain persists in one direction


» a = <(ri/l) Σ rj>


» <r2>0 = n l2 + 2 < Σ Σ ri rj > = C∞ n l2


» a = (C∞ + 1) l / 2


a measure of axial correlation length also


for PE, a ~ 4 l


a


r
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interactions
conformation-dependent interactions 


potential (conformational) energies structure, size
inherent torsional potential


» ecliped – staggered 
» Etor = (E0/2) (1 – cos 3φ)


E0 for eclipsed


nonbonded interaction
» London dispersion force
» Lennard-Jones potential


Ekl = akl exp[-b rkl] – ckl/rk
l6


dipole interaction
» Ed = e-1[Σqiqj/rij]


E{φ} = Σ Etor + Σ Ekl + Σ Ed


RIS Application to polymers


H


HH


HH
H


H
H


1st-order


2nd-order
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Polyethylene
1. geometric parameters


from exp’t with model comp’d (n-alkane)
WAXS, ED, etc


2. choose interaction parameters
r(HH), r(CH), r(CC)
a(HH), a(CH), a(CC)
E0


to give best fit to exp’t results of model comp’d


1.53 A112°


1.10


109
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PE (2)
3. draw conformational energy map


for n-butane ~ 1st-order interaction
for n-pentane ~ 2nd-order interaction


4. establish chain molecule
φ(T) ~ 0°, φ(TG) ~ 4°
φ(G) ~ 112°, φ(GG) ~ 110°


TTTG’ TG


GTGG’ GG
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PE (3)
5. determine statistical weights


1st-order interaction, D
2nd-order interaction, V
U = V D


6. do RIS calculation


7. adjust U to fit exp’tal values of <r2>0 and d[ln <r2>0]/dT


1
0
0


0 0
0σ


0 σ


D =
1
0
0


1 1
ωψ


ω ψ


V =


(ψ ~ 1, ω~ 0)


1
0
0


σ σ


σωσψ


σω σψ


U = =
1
0
0


σ σ


0σ


0 σ


<r2>0 = 2 Z-1 J* Gn J


with U, l, θ, φ


with E0, a, c, φ
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PE (4)
results


<r2>0 = 6.7 n l2  at 400 K
σ =  u(G)/u(T) = 0.5, ω = u(GG’)/u(TT) = 0.01
P(T) = 0.62, P(G) = P(G’) = 0.19


temperature coefficient
d[ln <r2>o] / dT < 0


preferred conformation
all-trans ~ TTTTTTTT---
of the lowest energy
planar zigzag in crystal
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PTFE
geometry and interaction


R(F) > R(H) a(FF) > a(HH)
do have dipole ~ Ed > 0


conf map and stat wt
φ(T) ~ +17° and -17° with very shallow barrier
φ(G) = φ(G’) ~ 120° with high E(G) low σ ~ .2


RIS
4 RIS with T, T’, G, G’ C∞ ~ 30


» closer to exp’t and explain helix inversion


3 RIS with T, G, G’ C∞ ~ 11
much stiffer than PE ~ high melting, high viscosity


F F


F


F F


F
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Solution to HW #1
Q1. For TGTG’G’TG’TTG conformation of n-C13H28 with bond angle of 120°


and bond length of 1 cm, 
(1) Find the end-to-end distance. ~ 7 cm
(2) C? 72/12


Q2. Using the energy values given so far, estimate the probability of GG’
conformations in n-pentane at 350 K


(1) for independent φ’s
U(TT)=(1)(1)=1, U(TG,TG’,GT,G’T)=(1)(σ)=σ, 
U(GG,GG’,G’G,G’G’)=(σ)(σ)= σ2, σ=exp(-2.1/kT)~.49
P(GG’) = U(GG’)/Z = σ2/(1+4σ+4σ2) = .06


(2) for interdependent φ’s
U(TT)=1, U(TG,TG’,GT,G’T)=σ, U(GG,G’G’)=(σ)(σψ)=exp(-4.2/kT)=.24, 
U(GG’,G’G)=(σ)(σω)=exp(-14.5/kT)=.007, 
P(GG’) = U(GG’)/Z = σ2ω/(1+4σ+2σ2ψ+2σ2ω) = .002
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Solution to HW #1
Q3. For n-octane, 
(1) how many conformations? 35


(2) Express the probability of TTTTT.
Ω = Π Uζη= U(T)U(TT)U(TT)U(TT)U(TT) = 1
Z = Σ Π Uζη = 1 + -----
P = 1/Z


(3) Express the probability of TGG’TG.
Ω = Π Uζη= U(T)U(TG)U(GG’)U(G’T)U(TG) 


= (1)(σ)(σω)(1)(σ) = σ3ω
P = σ3ω/Z


1
1
1


σ
σψ


σ
σω


σψσω


U =
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Polyoxymethylene
geometry and interactions


one type θ and l a simple chain one T
3-bond interaction


» D(C-O) < D(C-C) of PE larger Ekl(G)
» attractive C---O interaction Ed(G) <0


» Ekl(G) < Ed(G) Etot(G) < 0 σ >1


stat wt
1st-order, D ~ with σ > 1
two 2nd-order matrices ~ Va for C---C, Vb for O---O
Ua = D Va, Ub = D Vb


1
0
0


0 0
0σ


0 σ


D =


O O O
110° 110° 1.43 Å


O O
attractive


O


O O
O O
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POM (2)
results


C∞ = 8
with σ =  10, ω = 0.05
experiment difficult ~ high melting and low solubility


d[ln <r2>o] / dT < 0
T σ C∞


σ P(T) ~ More trans gives lower dimension?


preferred conformation
GGGG---- or G’G’G’G’----
21 helix (φ(G)=117°) or 95 helix (φ(G)=102°) in crystal
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O
O


O
110° 110° 1.43 Å 1.53 Å


geometry and interactions
one θ and two l one T?
R(O) < R(C)
do have dipole


» but no attractive interaction, all repulsive


stat wt
Three U’s
1st-order


» Da = Db (C---C) ~ with σ < .5
» Dc (O---O) ~ σ’ < 1


2nd-order matrices
» Va = Vc (C---O) ~ with ω > 0
» Vb (C---C) ~ ω ≈ 0


Polyoxyethylene


O
O


O


a   b   c  


O O


O


O


O O
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PEO (2)
results


C∞ = 4
with σ = .26, ω = 0.6, σ’ = 1.9 (E(σ’) = -1.7 kJ/mol)
best fit to exp’t
why σ’ > 1?


reason not clear, maybe related to very large σ in POM
Oxygen lower the energy of gauche (preferred over trans)


TC = 2.3E-4
T σ, ω , σ’ C∞


preferred conformation
TTGTTG---
72 helix (φ(G)= -8°, φ(G)=115°) in crystal


O
O


O


T   T   G  
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Poly(dimethyl siloxane)


Si O
Si


O Si


Me
Me


Me


Me


Me
Me


geometry and interactions
two θ’s two T’s
large D(Si-O), D(Si-C) 


large rkl low Ekl and E0 


low E(G) RIS not well-defined


stat wt
two U’s one D and two V’s
ω > 0
ω’ ≈ 0


results
C∞ = 6.2, TC = 7.8E-4


with σ = .29, ω = 0.2


110°
1.64 Å


1.90 Å


143°


Si
O


Si


OO


O
Si


O


Si Si
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H
N


O


O


Polyamides
nylon 6


7 U’s


U1 = 1


U2 = [1 σ2 σ2] 


U3 --- U7 ~ 3 x 3
σ4 = σ5 ~ σ in PE ~ .5


other σ’s > .5; ω’s > 0
» R(O, N) < R(C)


» NH favors gauche like O


use avg length


C∞ ~ 6


σ=0 σ = σ(PE)
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O


O
O


O


O


Polyesters
PET


6 U’s
U1 = 1
U2 = [1 γ]


≈ γ ~ 1 long virtual bond


U3 = 1
U4 = [1 σ4 σ4] 
U5, U6 ~ 3 x 3
σ4 = σ6 ~ σ in PE ~ .5
σ5 ~ σ in PEO > 1
two σ’s and one ω
C∞ ~ 4


‘virtual bond’ ~ 5.74 Å


σ > 1σ = 0


σ = σ(PE)


σ = 0
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Polymers with C=C
trans-1,4-polybutadiene


A is not of the lowest energy, B is.
4 U’s
U1 = 1
U2 = [1 α 1] ~ [60° 180° -60°]


» .5 < α < 1


U3, U4 ~ 3 x 3
≈ σ > .5 (CH---CH) 


trans-1,4-polyisoprene
similar to PBD
U2 = [1 0 1] ~ [60° 180° -60°]


comparing PBD and PIP
C∞(PBD) ~ 5.8 < C∞(PIP) ~ 7.4
TC(PBD) ~ -6E-4 > TC(PIP) ~ -3E-4 


H


H HH


eclipsed


A


B


H


H H


H


CH3


H


H


H
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cis-1,4-polybutadiene
3 U’s
Ua = [1 1 1] ~ [0  60° -60°]


Ub =


Uc = [1 σ σ]


comparing trans- and cis-PBD
C∞(trans) ~ 5.8 > C∞(cis) ~ 4.9


» small difference due to no cis conf for cis-PBD
TC(PBD) ~ -6E-4 < TC(cis) ~ +4E-4 


H H


HH HH


HH


virtual bond ~ 2.7 Å


a b


c0
ζ


ζ


ζ ζ
1


1


1


1
H


H2
C


H


H2
C


HH


HH H


H2
C


H2
C


H
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Vinyl polymers 
asymmetric


due to chiral centers
G and G’ with different popularity 


different interactions
bond lengths the same
bond angle can be different


6 stat wt’s per repeat unit 2 types of bond
» CHR-CH2 ~ i ~ φ’
» CH2-CHR ~ i+1 ~ φ”


R R R
d         d       l


m r


∗ ∗ ∗
i i+1







Ch 2 #4


1st-order interaction


d - i
σ for G (CH2---CH)
ση for T


» if R(R) > R(CH2) η < 1 
like Ph


» if R(R) ~ R(CH2) η ~ 1
like alkyl


στ for G’
≈ τ < σ < 1 (τ ~ .1 - .4) two-way interaction


Dd’ = 


R


R


σ


ση


R


R


στ


στ


η


0


0


0 0
0


τ


1


0







Ch 2 #5


d - i+1
στ for G
ση for T
σ for G’


Dd” =


l - i Dl’ =                = Dd”


l – i+1   Dl” =                = Dd’


R


1st-order interaction


στ
στ


η


0


0


0 0
0τ


0 1


η


0


0


0 0
0τ


0 1


η


0


0


0 0
01


0 τ







Ch 2 #6


2nd-order interaction


i-1 & i
the same to PE (CH2---CH2)


Vd’ = Vl’ =                 =


i & i+1
CH2---CH2, CH2---R, R---R
let all stat wt’s be ω (ω ~ 0)


Vdd” =


1


1


1


1 1
ωψ


ω ψ


R


R R R


∗ ∗ ∗
i i+1i-1


1


1


1


1 1
ω1


ω 1


R R


ω


1
ω


ω 1
ωω


ω2 ω







Ch 2 #7


2nd-order interaction


Vll”, Vld”, Vdl”
obtained by permutation of G and G’


ω
ω ~ 0
for PVC, R(Cl)<R(CH2)


≈ ω(Cl---Cl) > ω(CH2---Cl) > 0


for PVA, R(OH)<R(CH2)
≈ ω(OH--OH) > 1 
≈ ω(CH2---OH) > 0


R


RR


R


R R R R


TT(Vdd”)                 TT(Vll”)                     GG(Vdd”)        G’G’(Vll”) 







Ch 2 #8


Calculation


6 U’s
Ud’ = V’ Dd’


Udd” = Vdd” Dd”


Udl” = Vdl” Dl”


Uld” = Vld” Dd”


partition function, Z
Z = J* [Π Ui] J (for i from 2 to n-1) 


= J* [Π Ui’ Ui+1”] J (for i/2 from 1 to x-1, x=n/2)
= J* [Π Uk


(2)] J (for k from 1 to x-1, x=n/2)
Uk


(2) = Um
(2) or Ur


(2)


chain dimension
<r2>0 = 2 Z-1 J* G1 (Gk


(2))x-1 Gn J


R R R


φ’
i i+1i-1


permutation of G and G’


φ”


V’ V”
D’ D”U’ U”


Ud’ Udd” Ul’ Uld”


Um
(2) Ur


(2)







Ch 2 #9


Preferred conformation


ω<1, τω<1, η~1


dd


ll


isotactic ~ all left or right handed


R R R
Ud’ Udd” Ud’ Udd”


T    G’ T    G’ ~ left-handed


G    T    G    T ~ right-handd


Udd” =
ηω


η


ηω 0


τω 1
ω


ω


τω


Ud’ =
ητ∗ 1


η


η


τ
τω


τ


1


ω


Ul’ Ull” Ui’ Uii”


T   G    T   G ~ right-handed


G’ T    G’ T ~ left-handd







Ch 2 #10


Preferred conformation
dl, ld


syndiotactic
» TTGG preferred
» TTTT less preferred (dep on τ*)


Ud’ Udl” Ul’ Uld” Ud’


T    T   G’ G’ T    η2


G    G   T    T   G     η2


T    T   T    T     η4τ∗2


Udl” =
η


ηω


ηω ω


ω τω
τω


0


1


Ul’ =
ητ∗ τ


η


η


1
ω


1


τ


τω


Uld” =
η


ηω


ηω τω


τω ω
ω


1


0


Ud’ =
ητ∗ 1


η


η


τ
τω


τ


τ


ω
R τ∗







Ch 2 #11


stereo-regular and irregular chains
stereoregular chains


isotactic ~ succession of Gm
(2)


syndiotactic ~ succession of Gr
(2)


stereoirregular chains
mixture of m and r ~ random not block


» total of x-1 pairs with x-y-1 meso and y racemic
» Not [Gm


(2)]x-y-1 [Gr
(2)]y


Monte-Carlo simulation
≈ ρ(iso) ~ probability of iso (d-d or l-l)
» generating x-1 random numbers between 0 and 1


number < ρ(iso) ~ iso dyad ~ Gm
(2)


number > ρ(iso) ~ iso dyad ~ Gr
(2)


» calculate dimension
» repeat
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