Chapter 2

Chain Conformations

Structure of polymers

Chemical Structure

- atomic structure
- isomers ~ configurations
- architecture

Physical Structure

- single chain structure ~ conformations
- aggregation structure
 - » amorphous state
 - » semicrystalline state

Single chain structure ~ Conformation

- □ Configuration ~ breaking single bond
 - isomers, copolymers, branches
 - Conformation ~ rotation about single bond
 - syn-anti, trans-gauche, staggered-eclipsed
- Misnomers by Flory
 - spatial configuration
 - rotational isomers

A polymer chain

- \Box n + 1 atoms
- n bonds (length I)
- \Box n 1 bond angles (τ = 180 θ)
- \Box n 2 rotational angles (angle ϕ)

Degree of freedom of a polymer chain

- \Box n + 1 atoms \rightarrow 3(n+1) DOF
 - restricted by bonding \rightarrow n DOF
 - restricted by bond angle \rightarrow (n 1) DOF
 - remaining DOF = n + 4
- □ n + 4 DOF of a polymer chain
 - 3 translational DOF ~ position of CG
 - 3 orientational DOF
 - n 2 rotational DOF ~ n 2 ϕ 's

Size of a chain

Size of a chain (2)

end-to-end distance (cont'd)

$$\langle \hat{r} \rangle = n l^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \hat{r}_i \hat{r}_j \rangle$$

<r²>^{1/2} ~ root-mean-square end-to-end distance
 » a measure of chain dimension

Size of a chain (3)

□ radius of gyration, s

- another measure of chain dimension
- <s²>^{1/2} ~ root-mean-square distance to the atoms from CG

 $\Box < r^2 >_{(0)} = < s^2 >_{(0)} / 6$

- for (infinitely) long chain (very large n)
- in unperturbed state (0)

Exp'tal determ'n of chain dimension

□ size depends on solvent

- good or poor solvent
- theta solvent (theta condition) ~ unperturbed state
 Fig 2.7

□ in dilute soln

- viscometry
- light scattering
- □ in conc. solution, melt, or solid state
 - SANS

Parameters expressing chain characteristics

□ characteristic ratio

- $C_{(\infty)} = \langle r^2 \rangle_{(0)} / n l^2 \sim definition$
- a measure of chain stiffness

Table 2.1

- □ temperature coefficient
 - d[ln <r²>₀] / dT (– thermal expansion)
 - change in chain dimension with increasing temp due to conformational change

Table 2.2

Modeling of polymer chain

- from artificial to real chain
- with reducing artificiality
- □ Freely jointed chain (I fixed)
- **\Box** Freely rotating chain (I, θ fixed)
- **\Box** Chain with hindered rotation (I, θ fixed; ϕ restricted)
- Chain with excluded volume effect
- Gaussian chain or 'random coil'

Freely Jointed Chain

bond length (I) only fixedchain dimension

$$\langle \hat{\mathbf{r}}^2 \rangle = n l^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \hat{\mathbf{r}}_i \hat{\hat{\mathbf{r}}}_j \rangle$$
$$\langle \bar{\mathbf{r}}_i \bar{\mathbf{r}}_j \rangle = l^2 \langle \cos \theta_{ij} \rangle$$
$$\langle \hat{\mathbf{r}}^2 \rangle = n l^2 + 2 l^2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \cos \theta_{ij} \rangle$$

- For FJC, $\langle \cos \theta_{ij} \rangle = 0$ for $i \neq j$
 - » random disposition of bond vectors
 - » For every $\cos \theta$, there is $\cos (\theta + \pi) = -\cos \theta$.
- MS e-t-e distance, $\langle r^2 \rangle = m^2$
- C_∞ = 1

Freely Rotating Chain

- bond length (I) and bond angle (τ = 180 θ) fixed
 reduced artificiality from FJC
- chain dimension
 - $\langle \hat{r} \rangle = n l^2 + 2 \sum_{j=1}^{n-1} \sum_{j=1}^{n} \langle \hat{r}_j \rangle$ $\langle \bar{\mathbf{r}}_i \bar{\mathbf{r}}_{i+1} \rangle = l^2 \cos(180 - \tau)$ $\langle \dot{\mathbf{r}}_i \dot{\mathbf{r}}_{i+2} \rangle = l^2 \cos^2(180 - \tau)$ $\langle \dot{\mathbf{r}}_i \bar{\mathbf{r}}_i \rangle = l^2 [\cos(180 - \tau)]^{j-i}$ $\langle r^2 \rangle = n l^2 + 2 l^2 \sum_{i=1}^{n-1} \sum_{i=1}^{n} [\cos(180 - \tau)]^{j-i}$ 1=1 1=1+1 j - i = k and $cos(180-\tau) = \alpha$ $\langle r^2 \rangle = n l^2 \left[1 + \frac{2}{n} \sum_{k=1}^{n-1} (n-k) x^k \right]$ (2.18)

Ch 2 #13

FRC (2)

$$\langle r^{2} \rangle = nl^{2} \left[1 + \frac{2}{n} \sum_{k=1}^{n-1} (n-k) \alpha^{k} \right]$$

= $nl^{2} \left[1 + 2 \sum_{k=1}^{n-1} \alpha^{k} - \frac{2}{n} \sum_{k=1}^{n-1} k \alpha^{k} \right]^{2}$
= $nl^{2} \left[1 + \frac{2(\alpha - \alpha^{n})}{1 - \alpha} - \frac{2}{n} \left(\frac{\alpha(1 - \alpha)^{n}}{(1 - \alpha)^{2}} - \frac{n \alpha^{n}}{1 - \alpha} \right) \right]$
= $nl^{2} \left[1 + \frac{2\alpha}{1 - \alpha} - \frac{2\alpha}{n} \frac{(1 - \alpha)^{n}}{(1 - \alpha)^{2}} \right]$

For infinitely long chains $(n = \infty)$:

$$\langle r^2 \rangle = n l^2 \left[1 + \frac{2\alpha}{1 - \alpha} \right] = n l^2 \left[\frac{1 + \alpha}{1 - \alpha} \right]$$
$$= n l^2 \left[\frac{1 + \cos(180 - \tau)}{1 - \cos(180 - \tau)} \right] \qquad (2.19)$$

□ For $\tau = 110^{\circ}$, $\langle r^2 \rangle \approx 2nl^2$ □ For $\tau > 90^{\circ}$, $C_{\infty,FRC} > C_{\infty,FJC}$.

Chain with Hindered Rotations

- Bond length and bond angle fixed
- □ Not all rotational angles between $0^{\circ} < \phi < 360^{\circ}$ are allowed.
- □ Only some discrete states are allowed → rotational isomeric states (RIS)
- Due to the interactions
 - Intrinsic rotational potential ~ eclipsed-staggered
 - non-bonded interaction (dispersion) ~ trans-gauche
 - dipole interaction ~ when dipoles present

Conformational energy map for ethane

- □ E(eclipsed) ~ 11.8 kJ/mol
- □ thermal E at RT ~ kT ~ 8.314 x 300 J/mol ~ 2.5 kJ/mol
- Only staggered conform'n stable (present)

Energy map for *n*-butane

- □ E(gauche) ~ 2.1 kJ/mol
- □ thermal E at RT ~ 2.5 kJ/mol
- □ Only T, G, and G' conform'ns stable (present)

for *n*-alkane (PE) chains

- □ At very high temperatures
 - All ϕ allowed \rightarrow FRC
- □ At lower temperatures
 - Only 0, 120, and -120 are allowed for each bond.
 - T, G, and G' are the three discrete rotational isomeric states (RIS).
- □ For a PE chain with n bonds,
 - n-2 ϕ 's \rightarrow 3ⁿ⁻² RIS (conform'ns)
 - actually, fewer conform'ns allowed

Short-range interaction

□ for *n*-pentane

- 2 ϕ 's \rightarrow 9 RIS; 6 distinguishable
- TT, TG, TG', GG, GG', G'G'
- GG' is of high E (~ 14 kJ/mol)
 - » GG' not likely present
 - » 'pentane interaction'
 - » 'pentane effect'
 - » '2nd-order interaction'
 - » 'shot-range interaction'
 - » common in chain molecules
 - » reduces the # of conformations
 - » must be considered in analysis

