Chapter 6 Molten State

Rheology (流變學)

- study of flow and deformation of (liquid) fluids
- constitutive (stress-strain) relation of fluids
- shear flow
 - □ shear rate ~ $d\gamma/dt$ ~ velocity gradient

$$\frac{\mathrm{d}v_1}{\mathrm{d}x_2} = \dot{\gamma} \tag{6.6}$$

- $dv_1 = dx_1/dt$
- $\gamma = dx_1/dx_2$

shear flow

stress state in this flow case

$$\mathbf{\sigma} = \begin{cases} \sigma_{11} & \sigma_{12} & 0\\ \sigma_{21} & \sigma_{22} & 0\\ 0 & 0 & \sigma_{33} \end{cases}$$
(6.9)

- simple shear ~ σ_{12} only, all others = 0
- $\sigma_1, \sigma_2, \sigma_3$? ~ normal stress by shear flow
- relations in shear flow

$$\eta = \frac{\sigma_{21}}{\dot{\gamma}} ~~ \text{Newton's law}$$

$$\psi_1 = \frac{\sigma_{11} - \sigma_{22}}{\dot{\gamma}^2} ~~ 1^{\text{st}} \text{ normal stress coeff} \leftarrow N_1$$

$$\psi_2 = \frac{\sigma_{22} - \sigma_{33}}{\dot{\gamma}^2} ~~ 2^{\text{nd}} \text{ normal stress coeff} \leftarrow N_2$$

Normal stress difference

normal stress caused by shear flow

- □ $\sigma_1 \sigma_2 = N_1 > 0 \sim 1$ st normal stress difference □ $\sigma_2 - \sigma_3 = N_2 \approx 0 \sim 2$ nd normal stress difference
- results of NSD
 - Weisenberg effect
 - rod-climbing
 - die swell

Elongational flow

$$v_i = a_i x_i$$
 (i = 1, 2, 3) (6.13)
 $\Box V = dx/dt$, $a = d\epsilon/dt = dx/xdt$

• uniaxial elongational flow • σ_1 only, all other stresses = 0 $a_1 = \dot{\epsilon}$ (6.15) $a_2 = -\frac{\dot{\epsilon}}{2}$ (6.16) • $\epsilon \sum_{i=1}^{3} a_i = 0$ for incompressible fluid ($\Delta V = 0$) $a_3 = -\frac{\dot{\epsilon}}{2}$ (6.17) • elongational viscosity, $\bar{\eta} = \frac{\sigma_{11} - \sigma_{22}^{*}}{\dot{\epsilon}}^{0}$ (6.18) $\eta_E = \sigma/(d\epsilon/dt)$

• spinning, contraction flow

(balanced) biaxial elongation

• $\sigma_1 = \sigma_2$, all other stresses = 0

$$a_1 = a_2 = \dot{\varepsilon}_{\rm B}$$
$$a_3 = -2\dot{\varepsilon}_{\rm B}$$

$$\rightarrow$$
 3^{2}

biaxial elongational viscosity

$$\eta_{\rm B} = \frac{\sigma_{11} - \sigma_{33}^{*}}{\dot{\varepsilon}_{\rm B}}^{0} = \frac{\sigma_{22} - \sigma_{33}^{*}}{\dot{\varepsilon}_{\rm B}}^{0} \approx 2 \eta_{\rm E}$$

ballooning, film blowing

Dynamic viscosity

from dynamic mechanical measurements

$$\gamma = \gamma_0 \cos \omega t$$
 $\sigma = \sigma_0 \cos(\omega t + \delta)$

$$\gamma^{*} = \gamma_{0}(\cos \omega t + i \sin \omega t)$$

$$= \gamma_{0} \exp(i\omega t) = \gamma' + i\gamma'' \qquad (6.24)$$

$$\sigma^{*} = \sigma_{0}(\cos(\omega t + \delta) + i \sin(\omega t + \delta))$$

$$= \sigma_{0} \exp[i(\omega t + \delta)] \qquad (6.25)$$

$$G^{*} = \frac{\sigma^{*}}{\gamma^{*}} = \frac{\sigma_{0}}{\gamma_{0}} \cos \delta + i \frac{\sigma_{0}}{\gamma_{0}} \sin \delta = G' + iG'' (6.26)$$

$$\eta^{*} = \frac{\sigma^{*}}{\dot{\gamma}^{*}} = \frac{\sigma^{*}}{i\omega\gamma^{*}} = \frac{\sigma_{0}}{\gamma_{0}} \sin \delta \cdot \frac{1}{\omega} - i \frac{\sigma_{0}}{\gamma_{0}} \cos \delta \cdot \frac{1}{\omega} \qquad \eta^{*} \sim \text{complex viscosity}$$

$$= \frac{G''}{\omega} - \frac{iG'}{\omega} = \eta' - i\eta'' \qquad (6.27)$$

Non-Newtonian behavior

$$\eta = \frac{\sigma_{21}}{\dot{\gamma}}$$

- Newtonian ~ constant viscosity
 - many solutions and melts
- non-Newtonian
 - dilatant ~ shear thickening
 - suspensions
 - pseudoplastic ~ shear-thinning
 - polymer melts
 - chains aligned to shear direction
 - zero-shear-rate viscosity, η₀
 - at $d\gamma/dt = 0$, $N_1 \rightarrow N_{1,0}$
 - Bingham plastic ~ yielding
 - slurries, margarine

Shear rate

power-law expression

time-dependence

- thixotropic
 - decrease in η with shearing time
 - polymer melts, inks
 - seldom in polymers, more in colloids
 - thixotropic is pseudoplastic; PP is not necessarily thixo
- rheopectic (anti-thixotropic)
 - gypsum and soils
 - rheopectic is dilatant; dilatant is not necessarily rheo

measurement of rheological properties

- shear flow
 - Couette flow
 - parallel-plate, cone-and-plate, two-cylinder
 - η by velocity and torgue
 - N by plate-separating force
 - η* by oscillation
 - Poiseuille flow
 - capillary, slit
 - η by pressure drop and flow rate
 - N by non-zero exit pressure
- elongational flow
 - difficult to perform expt
 - possible only at small strain rate

- melt index (MI) or melt flow index (MFI)
 - melt indexer ~ a simple capillary viscometer

- M(F)I = g of resin/10 min
 - at specified weight and temperature
 - high MI ~ low η ~ low MW of a polymer

Viscoelastic fluid

linear viscoelasticity only at small strain and shear rate

- little use in polymer processing condition
- useful for comparison of materials and molecular factors (MW, MWD)
- Boltzmann superposition principle

$$\begin{aligned} \sigma(t) &= \sum_{i=1}^{N} G(t-t_{i}) \delta \gamma(t_{i}) \\ \sigma(t) &= \int_{-\infty}^{t} G(t-t') \, d \gamma(t') & \text{for smooth strain history} \\ \sigma(t) &= \int_{-\infty}^{t} G(t-t') \, \dot{\gamma}(t') \, dt' \\ \sigma(t) &= \int_{0}^{t} G(t-t') \, d \gamma(t') & \text{starting expt at time 0} \\ \sigma &= \dot{\gamma} \int_{0}^{\infty} G(s) \, ds & t-t' = s, \text{ for steady flow (d} \gamma/dt = \text{const)} \\ \eta_{0} &= \int_{0}^{\infty} G(s) \, ds & \eta = \sigma/(d\gamma/dt), \eta_{0} \text{ at low shear rate limit} \end{aligned}$$

(stress) relaxation modulus

 $G(t) = \sigma(t) / \gamma_0$

- glassy ~ solid
- rubbery plateau region
 - due to entanglement
 - physical crosslink
 - plateau modulus

 $G_N^0 = \rho RT/M_e$

- M_e ~ entanglement mol wt
 - avg mol wt betw entanglements
- □ terminal zone ~ flow ~ liquid

A ~ monodisperse, $M_w < M_C$ B ~ monodisperse, $M_w > M_C$ C ~ polydisperse, $M_w > M_C$ ($M_C \sim 2 - 3 M_e$)

creep compliance

 $J(t) = \gamma(t)/\sigma_0$

- \square steady-state compliance, J_e⁰
 - constant shear rate at long times

$$J(t) = J_e^0 + t/\eta_0$$

1/t

- recovery compliance
 - recovery test

□ recoil function or recovery compliance, R(t) = γ_r(t)/ σ₀
 □ lim_(t=∞) [R(t)] = J_e⁰ ~ steady-state recovery compliance

dynamic η and VE

$$\eta^* = \frac{G''}{\omega} - \frac{\mathrm{i}G'}{\omega} = \eta' - \mathrm{i}\eta''$$

- □ as $\omega \rightarrow 0$ (large t, small d γ /dt)
 - $G' = \omega \eta'' \rightarrow 0, G'' = \omega \eta' \rightarrow 0$
 - $\eta' = G''/\omega \rightarrow \eta_0$
 - Newtonian
- □ as $\omega \rightarrow \infty$ (small t, large d γ /dt)
 - $\eta' \rightarrow \eta_{\infty}$
 - $G' \rightarrow \omega \eta_{\infty}$
 - Hookean

log t, log ω , or log (d γ /dt)

rheometric and VE functions

- rheometric ftns
 - η, Ν₁ (← η₀, Ν_{1,0})
 - linear (Newtonian) → non-linear (non-Newtonian) as $d\gamma/dt$ ↑
- viscoelastic ftns
 - η', η*
 - viscous \rightarrow elastic as $\omega \uparrow$
- stress ratio
 - N_1/τ (>1)
 - a measure of elasticity

Behavior of polymeric liquids

- polymeric liquids
 - □ dilute solution ~ as conc'n \rightarrow 0, Newtonian
 - concentrated sol'n ~ behaves as melt
 - melt ~ Newtonian as shear rate \rightarrow 0
- η and N₁
 - shear thinning
 - $\eta = K (d\gamma/dt)^{n-1}$ (n < 1)
 - $N_1 > 0$
 - $N_1 > \tau$
 - $\ \ \, \ \ \, \ \ \, \ \ \, \eta_{\text{E}} \ \ \, \text{not much dep on } d\epsilon/dt$
 - at d ϵ /dt \rightarrow 0, $\eta_E \approx 3 \eta_0$

effect of temp

- □ at $T_g < T < T_g + 100$ K ~ WLF eqn
 - $\log \eta = \log \eta_{Tg} C_1(T-T_g)/(C_2+T-T_g)$
- at T > T_q + 100 K ~ Arrhenius relation
 - $\eta = A \exp[E/RT]$
- effect of pressure
 - $\Box \quad \eta = A exp[BP]$
 - > conversion factor, $-(\Delta T/\Delta P)_h$
 - example p107

effect of mol wt

□ η

- at $M_w < M_c$, $\eta_0 \propto M$
- at $M_w > M_c$, $\eta_0 \propto M^{3.4}$
- $M_c \sim 2 3 M_e$

$$M_{\rm e} = \frac{\rho RT}{G_{\rm e}^0} \tag{6.36}$$

M_e depends on chemical structure of chain

- chain stiffness and interactions
- PE ~1200, PS ~20000, PC ~2500

$$\Box$$
 J_e^0

• at
$$M_w < M'_{c'} J_e^0 = (0.4) M_w / \rho RT$$

• at
$$M_w > M'_c$$
, $J_e^0 = (0.4)M'_c/\rho RT$

>
$$G_N^0 J_e^0$$
 = constant ~ 3

branching

- when $M_b < M_c$
 - smaller $\langle s^2 \rangle_0$
 - lower η_0 , J_e^0
- when $M_b > M_c$
 - smaller $\langle s^2 \rangle_0$, but larger reptation time

• higher
$$\eta_0$$
, J_e^0

$$\Box \quad \eta_0 = (M_w)^k, \ k > 6$$

Macromolecular Dynamics

- Motions in polymers
 - Defomation in bond angle and length ~ elastic
 - □ Change in conformation ~ segmental motion ~ viscoelastic
 - Translational motion ~ viscous

Models for macromolecular dynamics

- Rouse (– Bueche Zimm) model
 - bead (friction) and spring (elastic)
 - single chain with completely flexible repeat units moving in a medium
 - three forces ~ friction, elastic, and Brownian

$$\eta_{o} = \left(\frac{\zeta_{o} N_{A} K_{\theta} \rho}{6 M_{rep}}\right) M \qquad (6.41)$$
$$J_{e}^{o} = \left(\frac{2}{5 \rho RT}\right) M \qquad (6.42)$$

- not for $M_w > M_c$
- for $M_w < M_c$
 - correctly describes η_0 , J_e^0
 - does not describe shear thinning

Reptation (de Gennes (– Doi – Edwards)) model

- chain and obstacles (entanglements)
 - chain reptates between obstacles
 - friction \propto M
- chain in a tube
 - tube disappears and regenerated
 - diffusion of tube $\propto M^2$

 $\eta_0 \propto M^3$ (6.49) $J_e^0 \propto M^0$ (6.50)

(b)

• Oi

- successfully describes
 - effect of entanglement
 - effect of branching
- $\hfill \hfill \hfill$
 - other mechanism should exist

Rheology of liquid crytals

