Chapter 7 Semicrystalline State

Contents

- ♦ crystal structure
- lamella
- spherulite
- ♦ crystallinity

♦ crystallization ~ Chapter 8

Polymer crystallography

- (semi)crystalline = crystal + amorphous
- ♦ crystal = regular repeating 3-D array of atoms
 - unit cell = smallest volume of repeating structure
 - depending on a, b, c, and α , β , γ

Systems	Axes	Axial angles	Minimum symmetry
Triclinic	$a \neq b \neq c$	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	None
Monoclinic	$a \neq b \neq c$	$\alpha = \gamma = 90^\circ; \beta \neq 90^\circ$	One two-fold rotation axis
Orthorhombic	$a \neq b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	Three perpendicular two-fold rotation axes
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	One four-fold rotation axis
Hexagonal	$a = b \neq c$	$\alpha = \gamma = 90^\circ; \beta = 120^\circ$	One six-fold rotation axis
Rhombohedral	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	One three-fold rotation axis
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	Three four-fold rotation axes

Table 7.1 Crystal systems

polymer crystal

- monoclinic, orthorhombic (orthogonal) popular
- c axis is chain axis

c a

 $\alpha = \angle bc$ $\beta = \angle ac$ $\gamma = \angle ab$

Polymer crystal

- Chains are of their preferred conformation given by RIS.
 - conformation of the lowest energy
 - ◆ PE ~ TTTT--- → planar zigzag
 - POM ~ GGGG--- or G'G'G'G'--- \rightarrow 2₁ helix
 - iPP ~ TGTG--- or TG'TG'--- \rightarrow 3₁ helix
 - ◆ PVA, PVF ~ TTTT--- → planar zigzag
 - Nylon ~ hydrogen bonding \rightarrow planar zigzag

Chains arranged to pack better.

- planar zigzags
 - orthorhombic
 - not circular X-section
 - not very far from hexagonal

- iPP ~ left- and right-handed helices pairing
- POM ~ left- and right-handed helices in different crystals

anisotropic.

- chain molecule
- covalent bonding in c axis
- E(c) >> E(a,b)
 - 300 >> 5 GPa for PE
 - E(Spectra®) ~ 60 GPa
- birefringent

polymorphic

- depending on T and P
- PE ~ orthogonal, monoclinic, hexagonal
- iPP ~ α (monoclinic), β (hexagonal), γ (trigonal), smectic
 - different arrangement of left, right, up, and down

Miller index

♦ The plane passing (a/h, b/k, c/l) is (hkl) plane.

Semicrystalline state

- Iringed micelle model
 - intuitive and historical view
 - A chain passes through crystallites.
 - switchboard lamellar re-entry

- modern view
- suggested in single crystal lamella from dilute solution
 - Chains are perpendicular to the surface of lamella of 10-nm thick.
 - Chains got to be folded.
- adjacent lamellar re-entry

Lamella

- formed as single crystal from solution or as part of spherulite from melt
- growth of PE lamella
 on {110} fold plane

(110

11

110

110

growth of PE lamella (cont'd)

- at higher temp ~ on {110} and {100} planes
 - crystals grown along {100} is of low T_m

shape of fold surface depends on crystal structure

Polymer	Shape/comments		· · · · · · · · · · · · ·
Polyoxymethylene	Six-sided (hexagonal hollow pyramids)	\bigcirc	
Poly(4-methyl-1-pentene) (isotactic form)	Square-based hollow pyramid		

(orthorhombic)

POM (hexagonal) poly-4-methyl-1-pentene (tetragonal)

- multi-layer lamella
 screw dislocation
- hollow pyramid
 lattice mismatch

hollow pyramid

- thickness/width ~ .01 .001
- equilibrium crystal
 - dimension L₁, L₂, L₃
 - surface energy σ_1 , σ_2 , σ_3
 - free energy of crystal w/rt melt, ΔG

$$\Delta G = V \Delta g^{\circ} + 2L_{1}L_{2}\sigma_{3} + 2L_{1}L_{3}\sigma_{2} + 2L_{2}L_{3}\sigma_{1} \quad (7.7)$$

$$\Delta G = V \Delta g^{\circ} + \underbrace{\frac{2V}{L_{3}} \cdot \sigma_{3} + 2L_{1}L_{3}\sigma_{2} + \frac{2V}{L_{1}} \cdot \sigma_{1}}_{\text{free energy melting}} \quad (7.9) \quad \leftarrow L_{2} = \frac{V}{L_{1}L_{3}} \quad \leftarrow \text{ const vol}$$

for minimum free E of Xtal

$$\frac{\partial(\Delta G)}{\partial L_1} = L_3 \sigma_2 - \frac{V}{L_1^2} \sigma_1 = 0 \Rightarrow \frac{L_1}{\sigma_1} = \frac{L_2}{\sigma_2} \quad (7.10)$$
$$\frac{\partial(\Delta G)}{\partial L_3} = L_1 \sigma_2 - \frac{V}{L_3^2} \sigma_3 = 0 \Rightarrow \frac{L_2}{\sigma_2} = \frac{L_3}{\sigma_3} \quad (7.11)$$

- σ_2 , σ_3 ~ lateral surface
 - trans ~ lower energy ~ 15 mJ/m²
- $\sigma_1 \sim \text{fold surface}$
 - gauche ~ higher energy ~ 90 mJ/m²
- $\sigma_1 \approx 7 \sigma_2 \text{ or } \sigma_3$
- $L_1 \approx 7 L_2$ or L_3 for equilibrium Xtal
- observed, $L_1 \approx (.01-.001) L_2$ or L_3
- Polymer crystals are not in equilibrium.
- thickening by 'annealing'

\diamond annealing ~ heat treatment betw T_g and T_m

- by annealing
 - L₁ increases
 - T_m increases
 - w_c (X_c) increases
- L₁ increases with annealing time and Temp
 - L₁ vs log t linear

thick crystal formed at high T and P

- PE ~ μ m-thick crystals at 5 kbar
- extended-chain crystal with hexagonal array

thickness dep on supercooling

Keller

$$L_{\rm c}^* = \frac{C_1}{\Delta T} + \delta L \tag{7.13}$$

- $\Delta T \sim supercooling \sim T_m^0 T_c$
- T_m⁰ ~ equili melting temp
 - T_m of perfect Xtal with M = ∞

Lauritzen-Hoffman

$$L_{\rm c}^* = \frac{2\sigma T_{\rm m}^0}{\Delta h^0 \rho_{\rm c} \Delta T} + \delta L \qquad (7.14)$$

$\, \diamond \,$ thickness and $\rm T_m$

- Thompson-Gibbs eqn
- free energy of melting, $\Delta G = \Delta G(bulk) + \Delta G(surface)$

$$\Delta G = \Delta G^* + \sum_{i=1}^n A_i \sigma_i \tag{7.15}$$

$$\Delta G = 0 \Rightarrow \Delta G^* = \sum_{i=1}^n A_i \sigma_i \approx 2\sigma A$$

$$\Delta G^* = \Delta g^* A L_c \rho_c \tag{7.17}$$

$$\Delta g^* = \Delta h^0 - T_m \Delta s^0 = \Delta h^0 \left(1 - \frac{T_m}{T_m^0}\right) = \Delta h^0 \left(\frac{T_m^0 - T_m}{T_m^0}\right)$$

$$\Delta G^* = \Delta h^0 (T_m^0 - T_m) \frac{A L_c \rho_c}{T_m^0}$$
(7.19)

$$T_{\rm m} = T_{\rm m}^{\rm o} \left(1 - \frac{2\sigma}{L_{\rm c}\rho_{\rm c}\Delta h^{\rm o}} \right) \tag{7.21}$$

A(fold) >> A(lateral)

(Crystal thickness)⁻¹

Lc

Area = A

at equili, $\Delta g^0 = 0$ $\Delta s^0 = \Delta h^0 / T_m^0$

Fold surface free energy = σ

lamella re-entry

- 2 (original) models
 - ◆ adjacent reentry → folding
 - IR of mixed crystal
 - switchboard → fringed micelle
 - density, etching experiment
 - (sol'n grown) single crystal lamellae
 - super-folding for intermediate MW
 - $< r^2 > ^{1/2} \propto M^{0.1}$ by SANS
 - 75% adjacent
 - mixed or partial non-adjacent for high MW
 - melt crystallized lamellae
 - switchboard + some folding
 - $< r^2 > ^{1/2} \propto M^{0.5}$ by SANS
 - 3 phases
 - crystal + interface + amorphous

Lamella grown from melt

- crystallization from melt
 - ✤ in dilute solution ~ single chain
 - Many chains compete on crystal surface.
 - Chains are entangled.
 - Chain dimension preserved.
 - Local lamellar structure similar to that from solution.

Iamellae stack

- linear, low MW
 - large stack
 - straight or roof-shaped

- branched, high MW
 - separated lamellae
 - defects (branches, low MW) between lamellae
 - linear, high MW crystallize first ~ 'molecular fractionation'
 - C- or S-shaped
 - defects on the fold surface

♦ tie-molecule

- between lamellae
- high MW
 - 90% of chain-end in amorphous
- branches
 - branches longer than C2 in amorphous
- can help strength and ductility

- spherical crystal from melt
 - μm mm
- melt-crystallized
 - at high temperature \rightarrow axialite (sheaf-like)
 - at low temperature \rightarrow spherulite (dendritic growth)

radial growth

- radius parallel to b axis
- molecular fractionation
 - high MW first
 - low MW subsidiary or repelled
- banded spherulite
 - lamellar twisting
 - due to screw dislocation or curvature of lamellae

Branch

Growth direction

Crystallinity

- orystallinity = degree of crystallinity = % crystallinity
 - X_c (w_c) = volume (weight) of Xtal / total volume (weight)
 - 30 ~ 70% for polymers

♦ measuring X_c

- volumetric
 - density gradient column
 - dynamic density measurement
- crystallographic ~ WAX
- thermal ~ DSC
- spectroscopic ~ IR, Raman
- crystal + interface + amorphous
- ➤ 100% crystal data ← unit cell structure

- ♦ X_c depends on
 - repeat unit structure
 - $X_c(PE) > X_c(PEster)$
 - MW
 - entanglements lowers X_c
 - branches
 - expansion of unit cell
 - decrease in X_c ٠
 - thermal history
 - T_c ٠
 - cooling rate

Mass fraction of L2.5 (%)

♦ X_c and properties

- stiffness (modulus)
 - increases with increasing X_c
 - dep on temp (below or above T_q)
- permeability
 - transport through amorphous only
- weatherability
 - degradation, oxidation on amorphous

Volume crystallinity

Relaxations in semiXtalline polymers

- ♦ complex
 - 2 (or 3) phases
 - X_c
 - orientation of Xtals
- secondary relaxations
 - in crystal, amorphous, or both
 - assigned through expt with varying X_c
 - glass transition
 - only in amorphous
 - broader in semiXtalline
 - weak in high-X_c polymers

crystalline relaxation

- additional relaxation at above T_q
- mechanical
 - sliding of lamellae
 - needs amorphous region
 - not found in single crystals
- dielectric
 - twisting and c/2 translating of chain
 - found in single crystals
 - found in linear polymers with high X_c
 - in PE, iPP, POM
 - not in PET, PA
 - intensity proportional to lamellar thickness
 - peak temp Arrhenius dependent with $E_a \propto X_c$

