Electromagnetics

<Chap. 9> Transmission Lines
Section 9.6 ~ 9.7

(1st of week 12)

Jaesang Lee
Dept. of Electrical and Computer Engineering
Seoul National University
(email: jsanglee@snu.ac.kr)

Chap. 9 Contents for 1st class of week 11

Sec 6. The Smith Chart

- Arbitrary impedance termination
- Introduction, construction and interpretation
- Examples

Chap. 9 Arbitrary termination of TR-line (1/2)

- "Resistive" termination $(Z_L = R_L)$
 - Voltage minima ($R_L < R_0$) or maxima ($R_L > R_0$) at the load end
- "Arbitrary" termination $(Z_L = R_L + jX_L)$
 - Voltage minima or maxima shifted by d from the load end
 - If, additional line extended by I_m with resistive termination (R_m)
 - \rightarrow voltage shape does not change! \rightarrow Circuit I = Circuit II (Equivalent)
- How do we identify Z_L experimentally?
 - Given condition: we measured S (SWR) and knew R_0
 - Step 1) Express Z_L in terms of R_0 and Γ

$$Z_{L} = \frac{V(z')}{I(z')} \bigg|_{z'=0} = R_{0} \frac{1 + |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')}}{1 - |\Gamma| e^{j(\theta_{\Gamma} - 2\beta z')}} \bigg|_{z'=0}$$

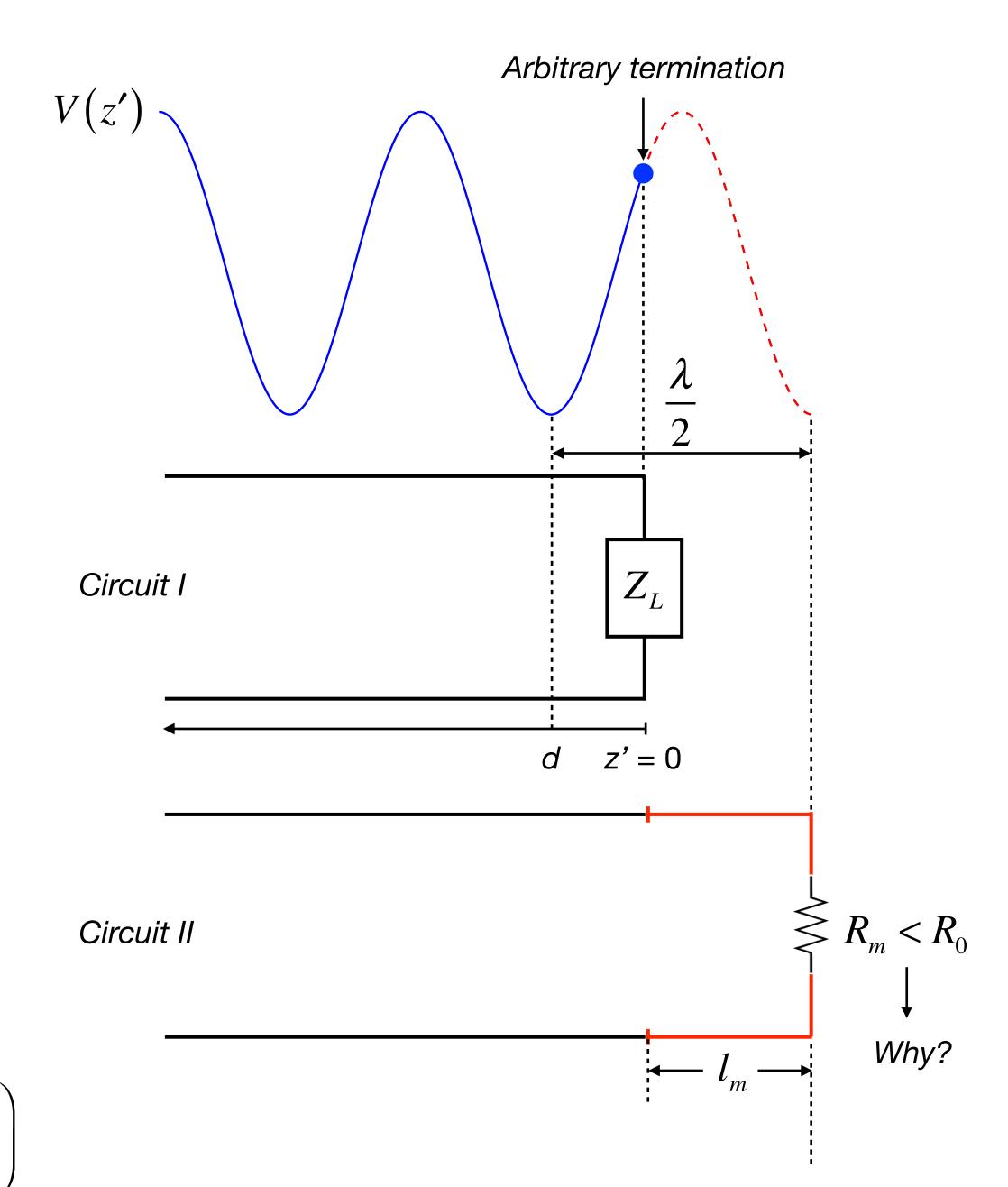
We have to obtain $\Gamma = |\Gamma| \, e^{-j\theta_\Gamma}$

through step 2), 3)

- Step 2) At z' = d, we should have *first voltage minima* as

$$\theta_{\Gamma} - 2\beta d = -(2n+1)\pi \Big|_{n=0}$$
 $\Theta_{\Gamma} = 2\beta d - \pi$

- Step 3) By measuring S, we can get $|\Gamma|$ as $\left|\Gamma\right| = \frac{S-1}{S+1}$



Chap. 9 Arbitrary termination of TR-line (2/2)

Engineering example We measured S = 3 for lossless TR-line of $R_0 = 50$ (Ω). d = 5 (cm) of the first voltage minima for arbitrary terminated TRline. Distance between successive voltage minima = 20 (cm). What is an arbitrary load impedance Z_L ? What is R_m and I_m for equivalent Circuit II?

- Step 1) Step 1) Express Z_L in terms of R_0 and Γ

$$Z_{L} = \frac{V(z')}{I(z')} \bigg|_{z'=0} = R_{0} \frac{1 + |\Gamma| e^{j\theta_{\Gamma}}}{1 - |\Gamma| e^{j\theta_{\Gamma}}}$$

- Step 2) At z' = d, we should have *first voltage minima* as

$$\theta_{\Gamma} - 2\beta d = -(2n+1)\pi\Big|_{n=0} \rightarrow \theta_{\Gamma} = 2\beta d - \pi$$
 Here, $\beta = \frac{2\pi}{\lambda}$ where $\frac{\lambda}{2} = 20$ (cm)
$$= \frac{2\pi}{0.4} = 5\pi \text{ (rad/m)} \rightarrow \theta_{\Gamma} = 2 \times 5\pi \times 0.05 - \pi = -0.5\pi \text{ (rad)}$$

- Step 3) By measuring S, we can get $|\Gamma|$ as

$$|\Gamma| = \frac{S-1}{S+1} = \frac{1}{2}$$

$$\therefore Z_L = R_0 \frac{1 + |\Gamma| e^{j\theta_{\Gamma}}}{1 - |\Gamma| e^{j\theta_{\Gamma}}} = 50 \frac{1 - j0.5}{1 + j0.5} = 30 - j40 \ (\Omega)$$

Distance between successive voltage minima

- Recall previous slides that if $R_{\rm m} < R_0$,

- From the relation as below (see voltage graph in previous slide)

$$R_m = \frac{R_0}{S} = \frac{50}{3} = 16.7 \ (\Omega)$$
 $l_m + d = \frac{\lambda}{2} \rightarrow l_m = \frac{\lambda}{2} - d = 0.2 - 0.05 = 0.15 \ (m)$

Chap. 9 The Smith Chart: Introduction

Discussion so far

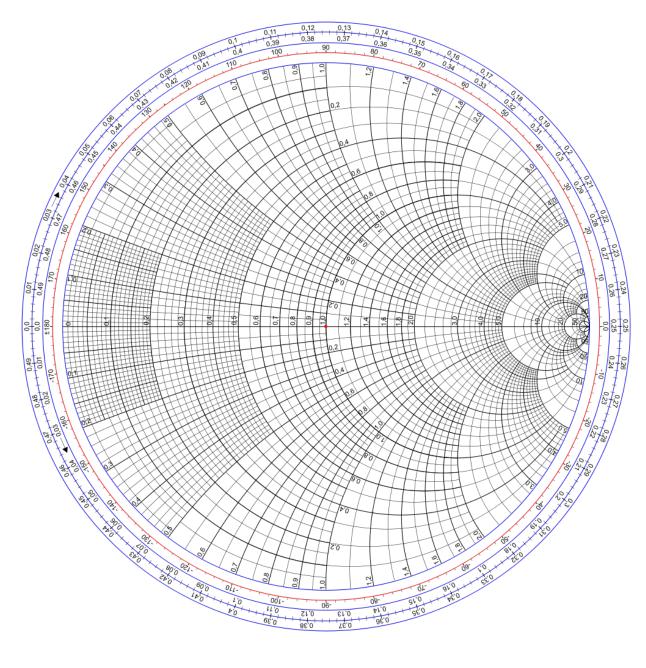
- Tedious TR-line calculations involving Z_i (input impedance), Γ (reflection coefficient), Z_L (load impedance)

$$Z_i = R_0 \frac{Z_L + jR_0 \tan \beta z'}{R_0 + jZ_L \tan \beta z'}$$

$$Z_L = R_0 \frac{1 + \Gamma}{1 - \Gamma} \text{ where } \Gamma = \frac{Z_L - R_0}{Z_L + R_0} = |\Gamma| e^{j\Theta_{\Gamma}}$$

The Smith Chart

- A graphical representation of Z_i , Z_L and Γ
- "Easy" to visualize complex-valued quantities and obtain them
- Commonly used to identify *load characteristics*
 - Check how capacitive or inductive a load is
 - Check How well impedance-matched a load is
 - and many more in RF engineering



<The Smith Chart>

Philip Hagar Smith (1905-1987) At Bell lab

Chap. 9 Construction of Smith Chart (1/3)

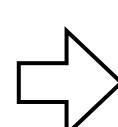
- How Smith Chart constructed for lossless TR-line?
 - Starting with reflection coefficient as

$$\Gamma = \frac{Z_L - R_0}{Z_L + R_0} = \frac{\frac{Z_L}{R_0} - 1}{\frac{Z_L}{R_0} + 1} = \frac{z_L - 1}{z_L + 1} \quad \text{where} \quad z_L \triangleq \frac{Z_L}{R_0} = \frac{R_L + jX_L}{R_0} = r + jx \quad \text{: Normalized load impedance w.r.t. } R_0$$

- Conversely, $z_{\rm L}$ expressed in terms of Γ as $\left(\because \Gamma = \Gamma_r + j\Gamma_i\right)$

$$z_{L} = \frac{1+\Gamma}{1-\Gamma} \rightarrow \text{(lhs)} \ z_{L} = r+jx, \quad \text{(rhs)} \ \frac{1+\Gamma}{1-\Gamma} = \frac{1+\left(\Gamma_{r}+j\Gamma_{i}\right)}{1-\left(\Gamma_{r}+j\Gamma_{i}\right)} = \frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}+j2\Gamma_{i}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}}$$

$$\begin{cases} r = \frac{1 - \Gamma_r^2 - \Gamma_i^2}{\left(1 - \Gamma_r\right)^2 + \Gamma_i^2} & \cdots & \text{Load impedance (r, x)} \\ x = \frac{2\Gamma_i}{\left(1 - \Gamma_r\right)^2 + \Gamma_i^2} & \cdots & \text{Reflection coefficients (Γ_r, Γ_i)} \end{cases}$$



:.The Smith Chart

Determining load impedance (r, x) in Reflection coefficient plane (Γ_r, Γ_i)

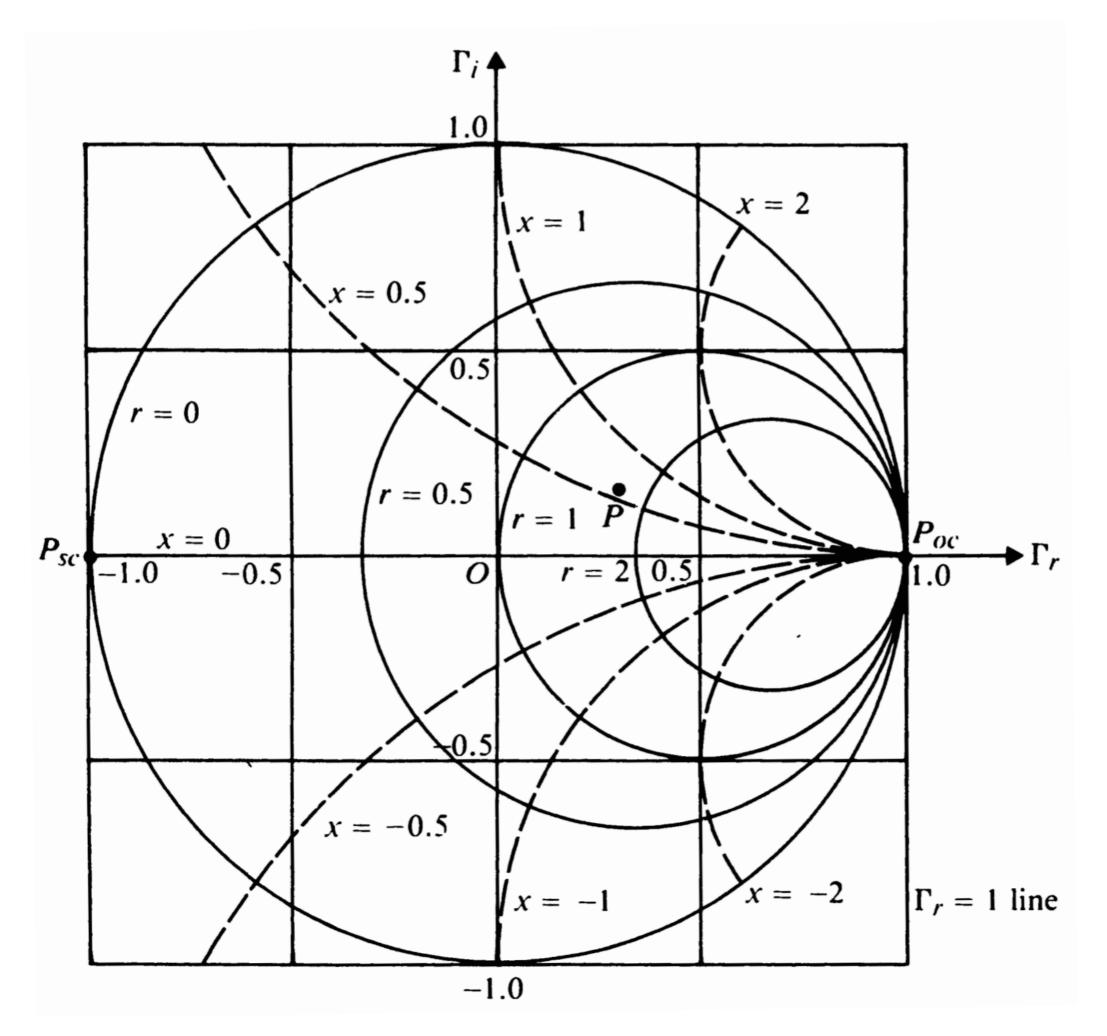
$$\left(\Gamma_r - \frac{r}{1+r}\right)^2 + \Gamma_i^2 = \left(\frac{1}{1+r}\right)^2 \cdots (1)'$$

Circle of radius 1/(1+r) and centered at (r/(1+r), 0)

$$\left(\Gamma_r - 1\right)^2 + \left(\Gamma_i - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2 \quad \cdots (2)'$$

Circle of radius 1/|x| and centered at (1,1/x)

Chap. 9 Construction of Smith Chart (2/3)



<Smith Chart in reflection coefficient plane>

$$\left(z_L \triangleq \frac{Z_L}{R_0} = \frac{R_L}{R_0} + j \frac{X_L}{R_0} = r + jx \quad \leftrightarrow \quad \Gamma = \Gamma_r + j\Gamma_i \right)$$

Circles with solid-lines

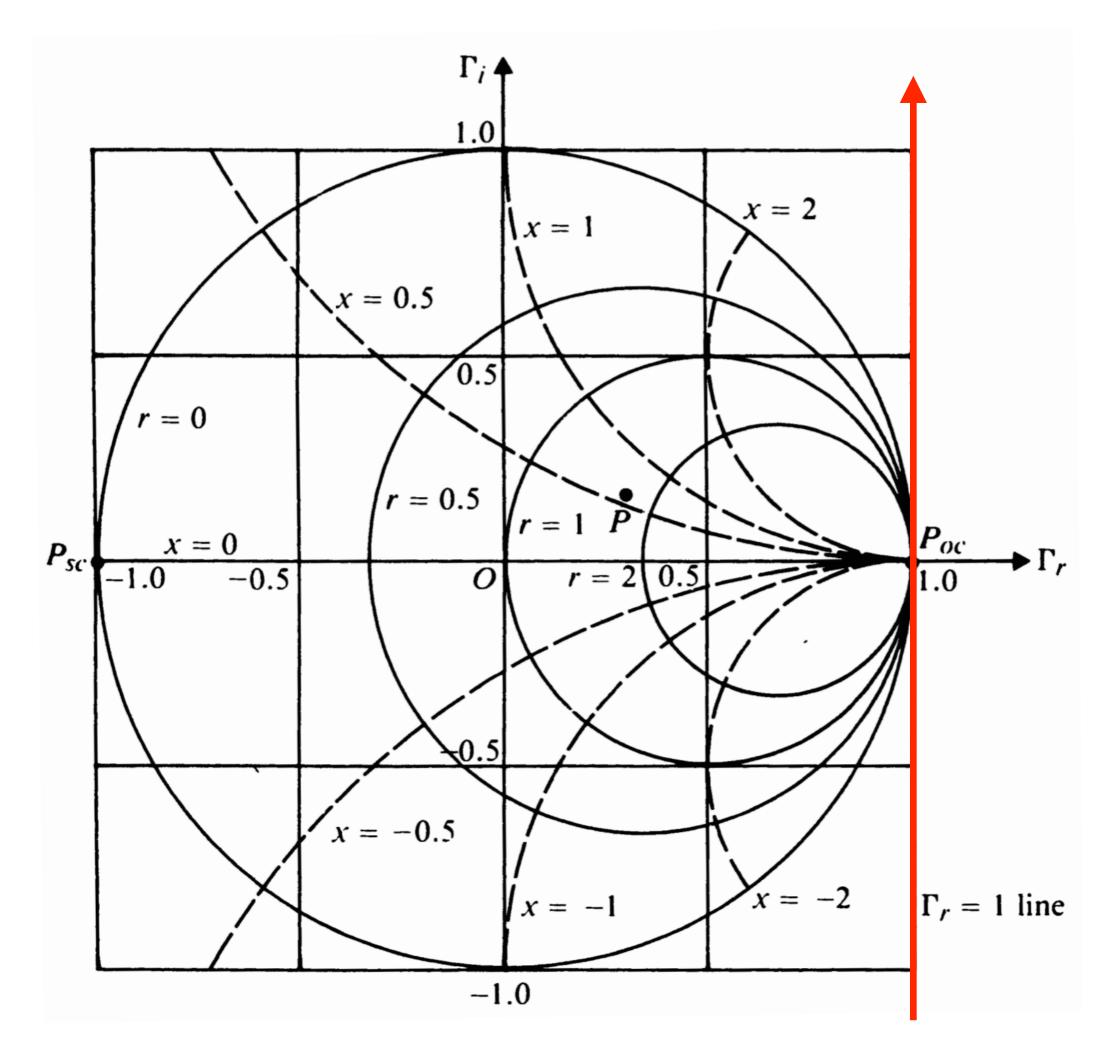
$$\left(\Gamma_{r} - \frac{r}{1+r}\right)^{2} + \Gamma_{i}^{2} = \left(\frac{1}{1+r}\right)^{2}$$
 center: $\left(\Gamma_{r}, \Gamma_{i}\right) = \left(\frac{r}{1+r}, 0\right)$ radius: $\frac{1}{1+r}$

- Different *r* values → circles of *different radii centered at different* positions (r/(1+r), 0) on Γ_r axis
- Since $|\Gamma| \le 1$, only those within a unit box meaningful
 - ► All circles passing through $(\Gamma_r, \Gamma_i) = (1, 0) \rightarrow (:.\Gamma = 1)$ What condition?

Hint:
$$\Gamma = \frac{Z_L - R_0}{Z_L + R_0}$$
 es vs. r value

- Circles vs. r value
 - At r = 0: a circle, centered at origin, is largest
 - ► As *r* increases, circle gets smaller
 - ► As $r \rightarrow \infty$, circle ends at $(\Gamma_r, \Gamma_i) = (1, 0)$

Chap. 9 Construction of Smith Chart (3/3)



<Smith Chart in reflection coefficient plane>

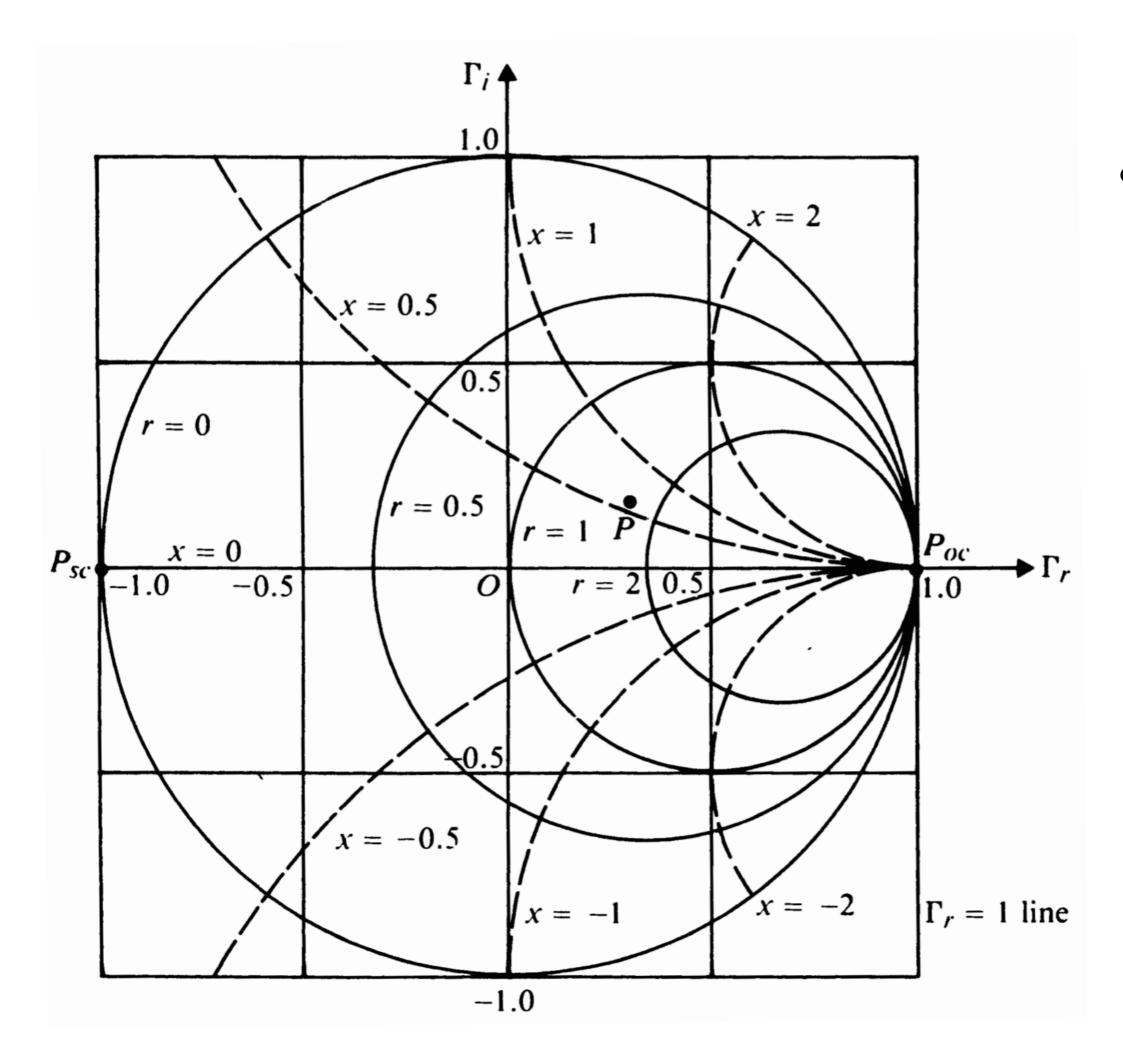
$$\begin{cases} z_L \triangleq \frac{Z_L}{R_0} = \frac{R_L}{R_0} + j\frac{X_L}{R_0} = r + jx & \longleftrightarrow & \Gamma = \Gamma_r + j\Gamma_i \end{cases}$$

Circles with dashed-lines

$$(\Gamma_r - 1)^2 + \left(\Gamma_i - \frac{1}{x}\right)^2 = \left(\frac{1}{x}\right)^2$$
 center: $(\Gamma_r, \Gamma_i) = \left(1, \frac{1}{x}\right)$ radius: $\frac{1}{|x|}$

- Different x values \rightarrow circles of different radii 1/|x| centered at different positions (1, 1/x) on $\Gamma_r = 1$ line (red line)
 - Centers of all the circles lie on $\Gamma_r = 1$ line
- Since $|\Gamma| \le 1$, only those lying within a unit box meaningful
- Circles vs. x value
 - If x > 0 (inductive), circles lie above Γ_r axis
 - If x < 0 (capacitive), circles lie below Γ_r axis
 - At x = 0, circles become Γ_r axis itself
 - As |x| increases, circles progressively become smaller
 - ► As $|x| \to \infty$, circles end at $(\Gamma_r, \Gamma_i) = (1, 0)$ What condition?

Chap. 9 Interpretation of Smith Chart



<Smith Chart in reflection coefficient plane>

$$\left(z_L \triangleq \frac{Z_L}{R_0} = \frac{R_L}{R_0} + j \frac{X_L}{R_0} = r + jx \quad \leftrightarrow \quad \Gamma = \Gamma_r + j\Gamma_i \right)$$

How to read it then?

- Intersection of r- and x-circles = Normalized load impedance, $z_L = r + jx$
- \therefore Actual impedance $Z_L = R_0 \cdot (r + jx)$
- Point P
 - Intersections of [r = 1.7] circle and [x = 0.6] circle
 - $z_L = 1.7 + j0.6$
- Point P_{sc} : $(\Gamma_r, \Gamma_i) = (-1, 0)$
 - Intersections of [r = 0] circle and [x = 0] circle
 - ► $z_L = 0$ (\rightarrow short-circuit)
- Point Poc: $(\Gamma_r, \Gamma_i) = (1, 0)$
 - Represents infinite impedance (why?) Hint: $\Gamma = \frac{Z_L R_0}{Z_L + R_0}$
 - ► $z_L = \infty$ (\rightarrow Open-circuit)

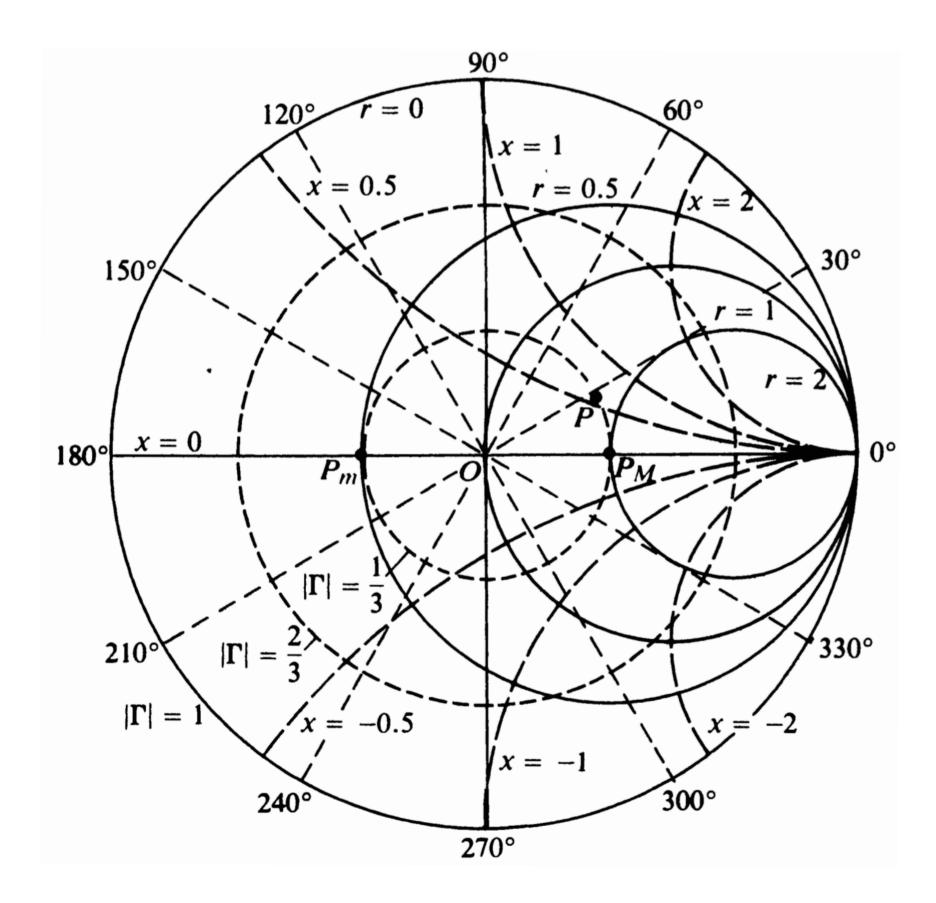
Chap. 9 Smith Chart in Polar Coordinate

Smith Chart in Polar coordinate

- All the points in Γ plane can be represented as

$$\Gamma = \Gamma_r + j\Gamma_i \triangleq |\Gamma| e^{j\Theta_{\Gamma}}$$

- Centered at origin (O) with radius of $0 \le |\Gamma| \le 1$ & phase angle θ_{Γ}
- e.g.) At P with a load $z_L = r + jx$, we can obtain Γ for that load



$$\left(z_L \triangleq \frac{Z_L}{R_0} = \frac{R_L}{R_0} + j \frac{X_L}{R_0} = r + jx \quad \leftrightarrow \quad \Gamma = \Gamma_r + j\Gamma_i \right)$$

- Two intersections with Γ_r axis (P_M and P_m)
 - P_M : *Positive* real $\Gamma > 0$

→ Purely resistive load
$$Z_L = R_L$$
 $\left(\because \Gamma = \frac{R_L - R_0}{R_L + R_0}\right)$
→ $R_L > R_0$ or $r = R_L / R_0 > 1$

Previously, $R_L / R_0 = S$ if $R_L > R_0$ (see slide 13-2)

$$\therefore r = S$$

The value of r-circle passing through P_M

= Standing-wave ratio, S

- P_m : Negative real $\Gamma < 0$
 - \rightarrow Purely resistive load $Z_L = R_L$
- $\rightarrow R_L < R_0 \text{ or } r = R_L / R_0 < 1$

Previously, $R_0 / R_L = S$ if $R_L < R_0$ (see slide 13-2)

$$\therefore r = 1/S$$

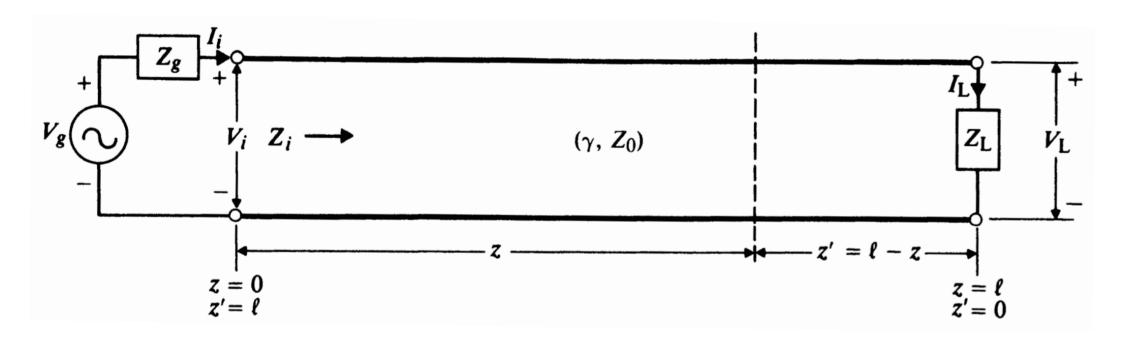
Chap. 9 Input impedance in Smith Chart (1/2)

- Smith Chart for input impedance Z_i
 - Input impedance Z_i looking toward the load at z'

$$Z_{i}(z') = \frac{V(z')}{I(z')} = Z_{0} \left[\frac{1 + \Gamma e^{-j2\beta z'}}{1 - \Gamma e^{-j2\beta z'}} \right]$$

- Normalized input impedance z_i given as

$$z_{i}(z') = \frac{Z_{i}(z')}{Z_{0}} = \frac{1 + \Gamma e^{-j2\beta z'}}{1 - \Gamma e^{-j2\beta z'}} = \frac{1 + |\Gamma| e^{j(\Theta_{\Gamma} - 2\beta z')}}{1 - |\Gamma| e^{j(\Theta_{\Gamma} - 2\beta z')}}$$



 \therefore Our previous discussion is a special case of $z_i(z')$ where z'=0

$$z_i(0) = z_L = \frac{1 + |\Gamma| e^{j\Theta_{\Gamma}}}{1 - |\Gamma| e^{j\Theta_{\Gamma}}}$$

- Magnitude $|\Gamma|$ and S independent of z', but only phase angle $(\theta_{\Gamma} 2\beta z')$ varies!
- When calculating $z_i(z')$
 - Find the point **A** with $|\Gamma|$ and θ_{Γ} for a given z_{\perp} [= z_{i} (0)]
 - Rotate **OA** by an angle $-2\beta z$ ' (i.e. clockwise direction)
 - New point B represents z_i(z')
- What is $2\beta z$ '?

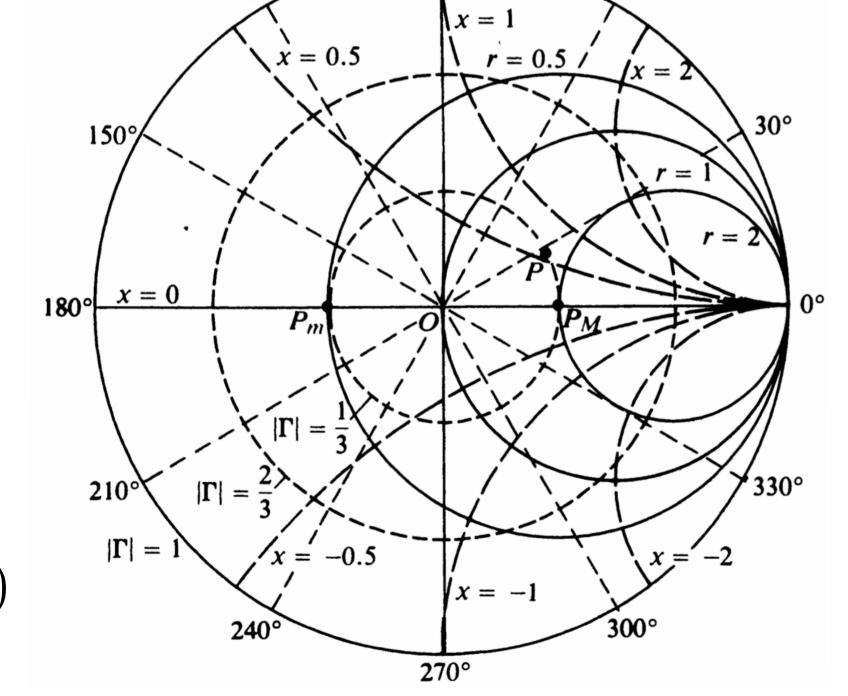
 $z' \rightarrow Half$ -wave length $z' \rightarrow Quarter$ -wave length

$$2\beta z' = 2\frac{2\pi}{\lambda}z' = 4\pi\frac{z'}{\lambda}$$

$$z' = \frac{\lambda}{2}n \rightarrow 2\pi n$$

$$2\beta z' = 2\frac{2\pi}{\lambda}z' = 4\pi\frac{z'}{\lambda} \qquad z' = \frac{\lambda}{2}n \quad \Rightarrow \quad 2\pi n \qquad z' = \frac{\lambda}{4}(2n-1) \quad \Rightarrow \quad \pi(2n-1)$$

Full-turns Half-turns



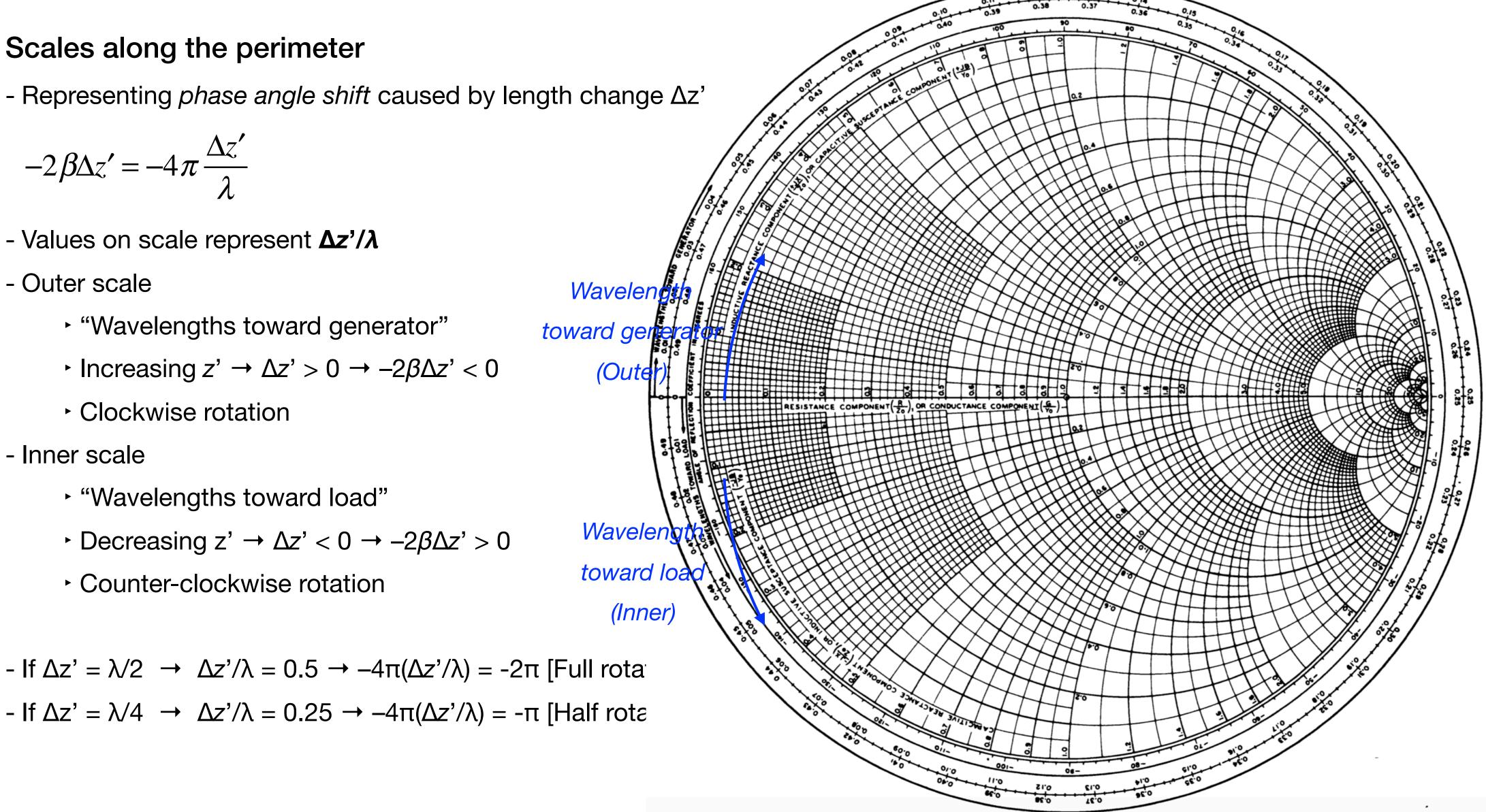
Chap. 9 Input impedance in Smith Chart (2/2)

Scales along the perimeter

- Representing *phase angle shift* caused by length change Δz'

$$-2\beta\Delta z' = -4\pi \frac{\Delta z'}{\lambda}$$

- Values on scale represent Δz'/λ
- Outer scale
 - "Wavelengths toward generator"
 - ► Increasing $z' \rightarrow \Delta z' > 0 \rightarrow -2\beta\Delta z' < 0$
 - Clockwise rotation
- Inner scale
 - "Wavelengths toward load"
 - ► Decreasing $z' \rightarrow \Delta z' < 0 \rightarrow -2\beta\Delta z' > 0$
 - Counter-clockwise rotation



• Example 1

- Find the input impedance with given condition as

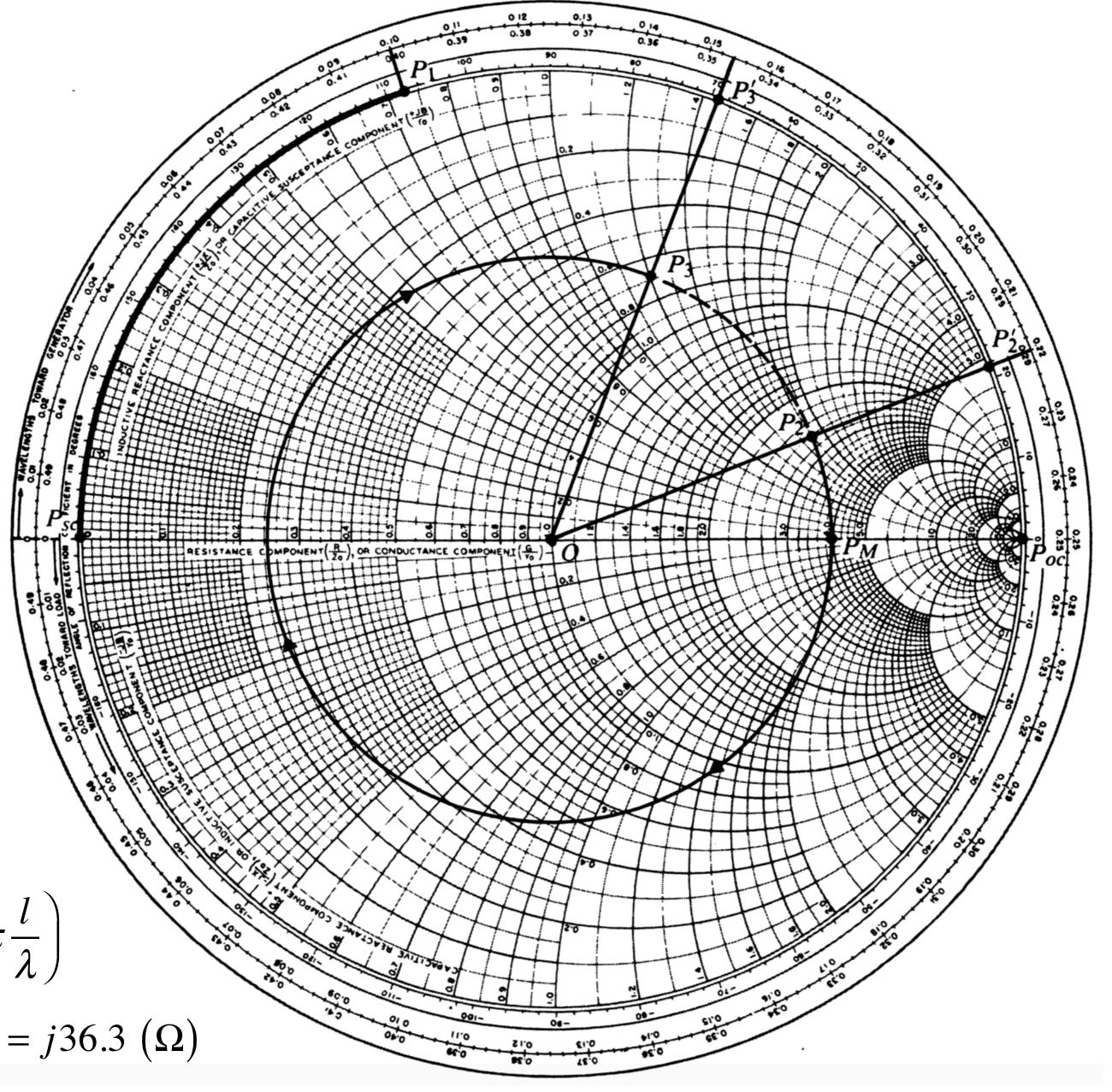
$$z_L = 0$$
, $R_0 = 50 (\Omega)$, $z' = 0.1\lambda$

Procedure

- (1) Find intersection of r = 0 and x = 0 circles $\rightarrow P_{sc}$ $(\because z_L = r + jx = 0)$
- (2) Move along perimeter by 0.1 (=z'/ λ) [Clockwise] \rightarrow P₁ $\left(\because -4\pi \frac{z'}{\lambda} < 0\right)$
- (3) At P_1 , we read r = 0 and $x \sim 0.725$. Thus, $z_i = j0.725$
- (4) Finally, $Z_i = R_0 \cdot z_i = 50 \cdot j0.725 = j36.3 (\Omega)$

** Result consistent as previously,

$$Z_{i} = R_{0} \frac{Z_{L} + jR_{0} \tan(\beta l)}{R_{0} + jZ_{L} \tan(\beta l)} = jR_{0} \tan(\beta l) = jR_{0} \tan(2\pi \frac{l}{\lambda})$$
$$= j50 \tan 36^{\circ} = j36.3 \ (\Omega)$$



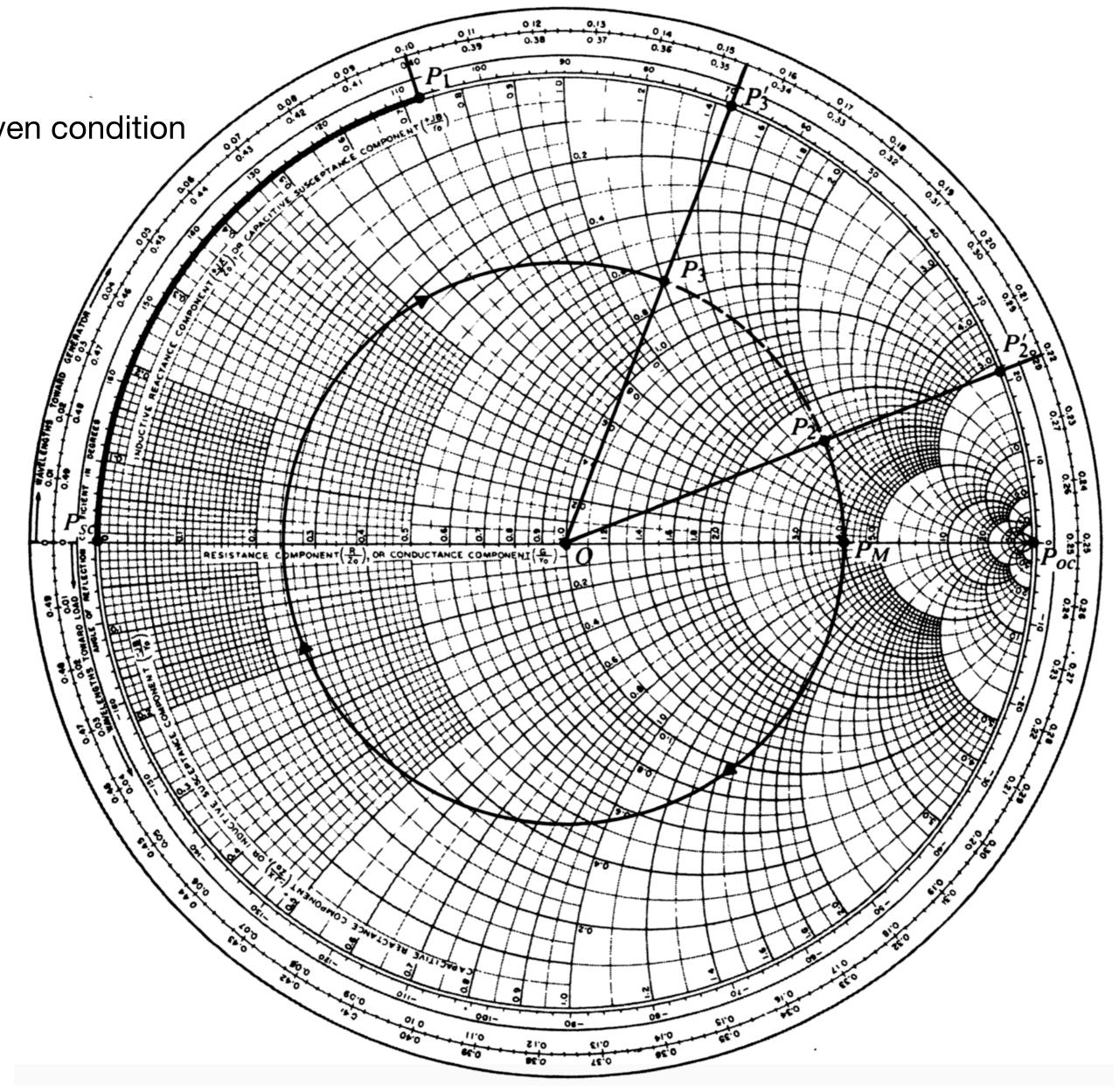
• Example 2

- Find Γ , S, Z_i at z' = I and location of a voltage maximum with given condition

$$Z_L = 260 + j180 \ (\Omega), \ R_0 = 100 \ (\Omega), \ l = 0.434 \lambda$$

Procedure

- (1) Find the $z_L = Z_L/R_0 = 2.6 + j1.8$ on the Smith Chart: **P**₂
- Obtain $|\Gamma|$ of a circle centered at the origin and passing P_2 by simply plugging Z_L and R_0 into $|\Gamma| = \left| \frac{Z_L R_0}{Z_L + R_0} \right| = 0.6$
- (3) Now, to obtain θ_{Γ} , draw an extension line of $\mathbf{OP_2}$ to reach at $\mathbf{P_2}$. Read the value 0.22 (=z'/ λ , w.r.t. P_{sc}) on the outer scale. Thus, $\theta_{\Gamma} = \pi 4\pi \frac{z'}{\lambda} = 0.12\pi \ (\mathrm{rad}) = 21^{\circ}$
- (4) Now, intercept between the circle and positive-real axis gives $r = \mathbf{S} = \mathbf{4}$.
- (5) To find input impedance at z' = I, extend the line $\mathbf{OP_2}$ to reach at $\mathbf{P_2'}$ and read 0.220 on outer scale. From there, rotate in the CW direction by 0.434 (= I/λ), reaching at 0.154 at $\mathbf{P_3'}$.



• Example 2

- Find Γ , S, Z_i at z' = I and location of a voltage maximum with given condition

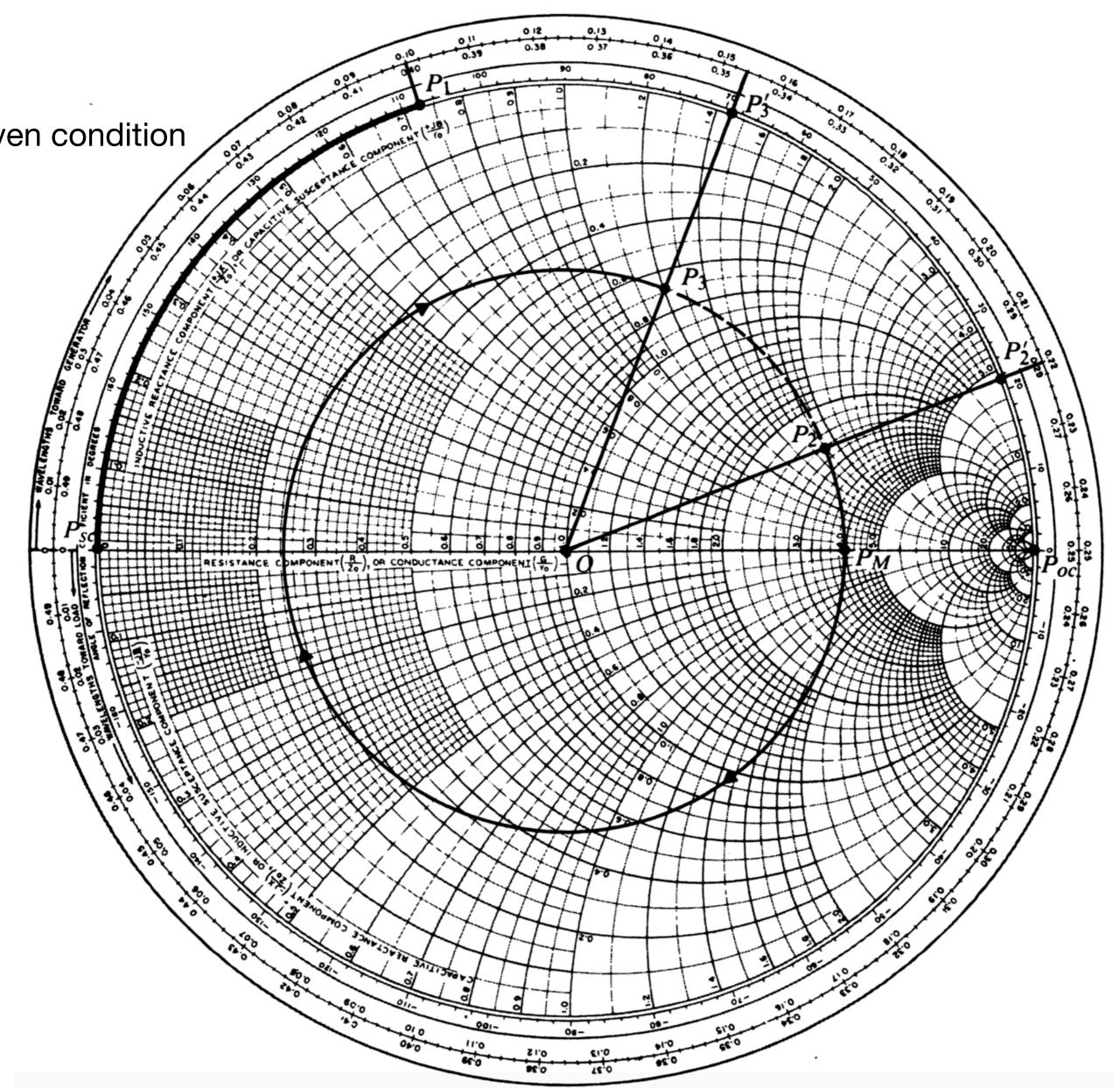
$$Z_L = 260 + j180 \ (\Omega), \ R_0 = 100 \ (\Omega), \ l = 0.434 \lambda$$

Procedure (Cont'd)

(4) To find input impedance at z' = I, extend the line $\mathbf{OP_2}$ to reach at $\mathbf{P_2'}$ and read 0.220 on outer scale. From there, rotate in the CW direction by 0.434 (= I/λ), reaching at 0.154 at $\mathbf{P_3'}$.

$$(:.0.22 + [0.5 - 0.066]) \rightarrow 0.22 - 0.066)$$
 (0.5 is a full-turn)

- (5) Find the intercept between the circle and the line **OP**₃' which gives **P**₃.
- (6) At P_3 , read r = 0.69 and x = 1.2.
- (7) Thus, $Z_i = R_0 \cdot z_i = 100 \cdot (0.69 + j1.2) = 69 + j120 (\Omega)$
- (8) In going from P2 to P3, the circle intersects the positive real axis at PM with voltage maxima. Thus, voltage maxima appears at (0.25-0.22)/λ away from the load.



• Example 3

- Find Γ , Z_L , I_m and R_m using the Smith Chart with given condition as

$$R_0 = 50 \ (\Omega), \ S = 3.0, \ \lambda = 0.4 \ (m)$$

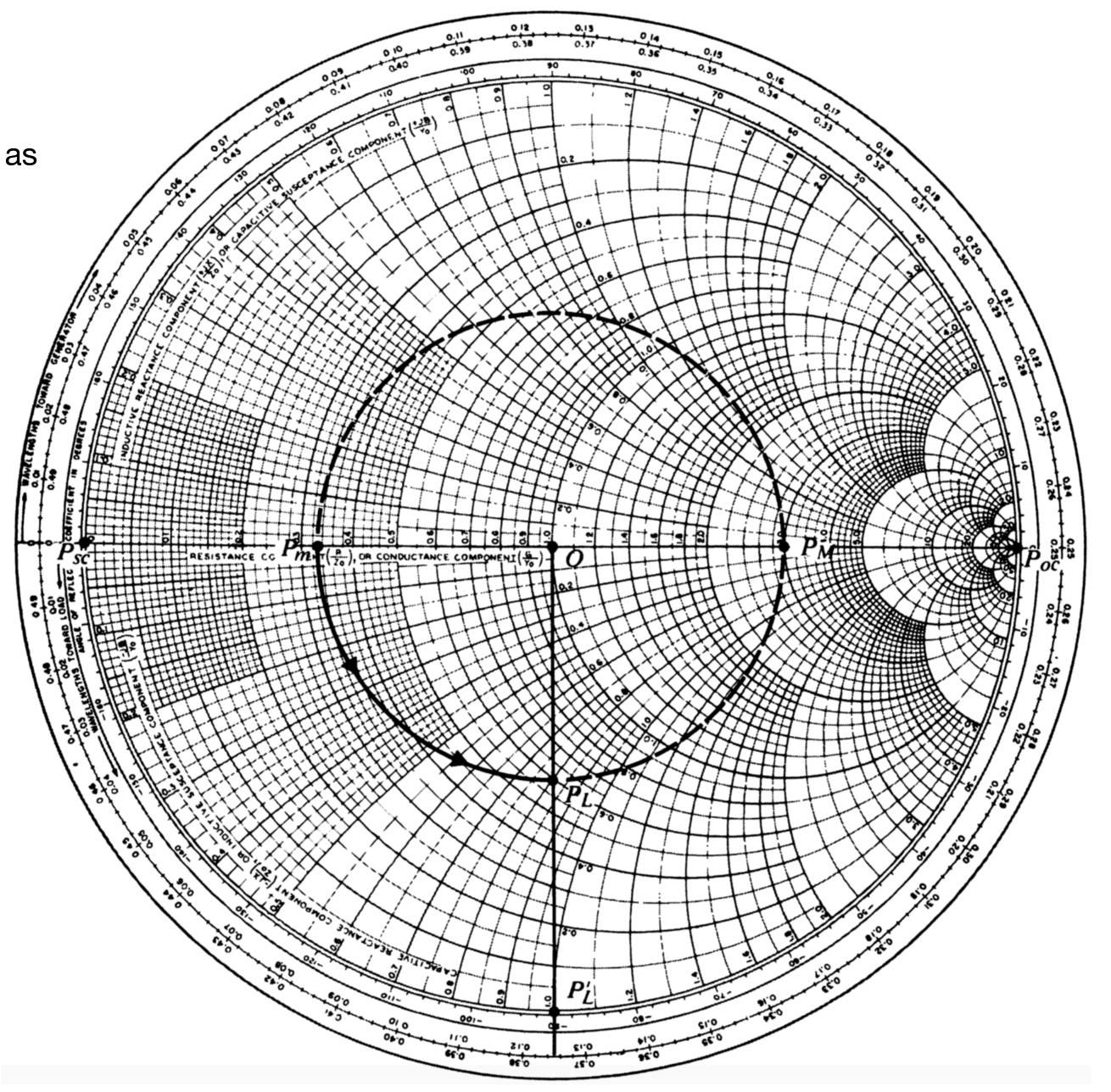
First voltage minima at $z'_m = 0.05 \, (m)$ (Meaning?)

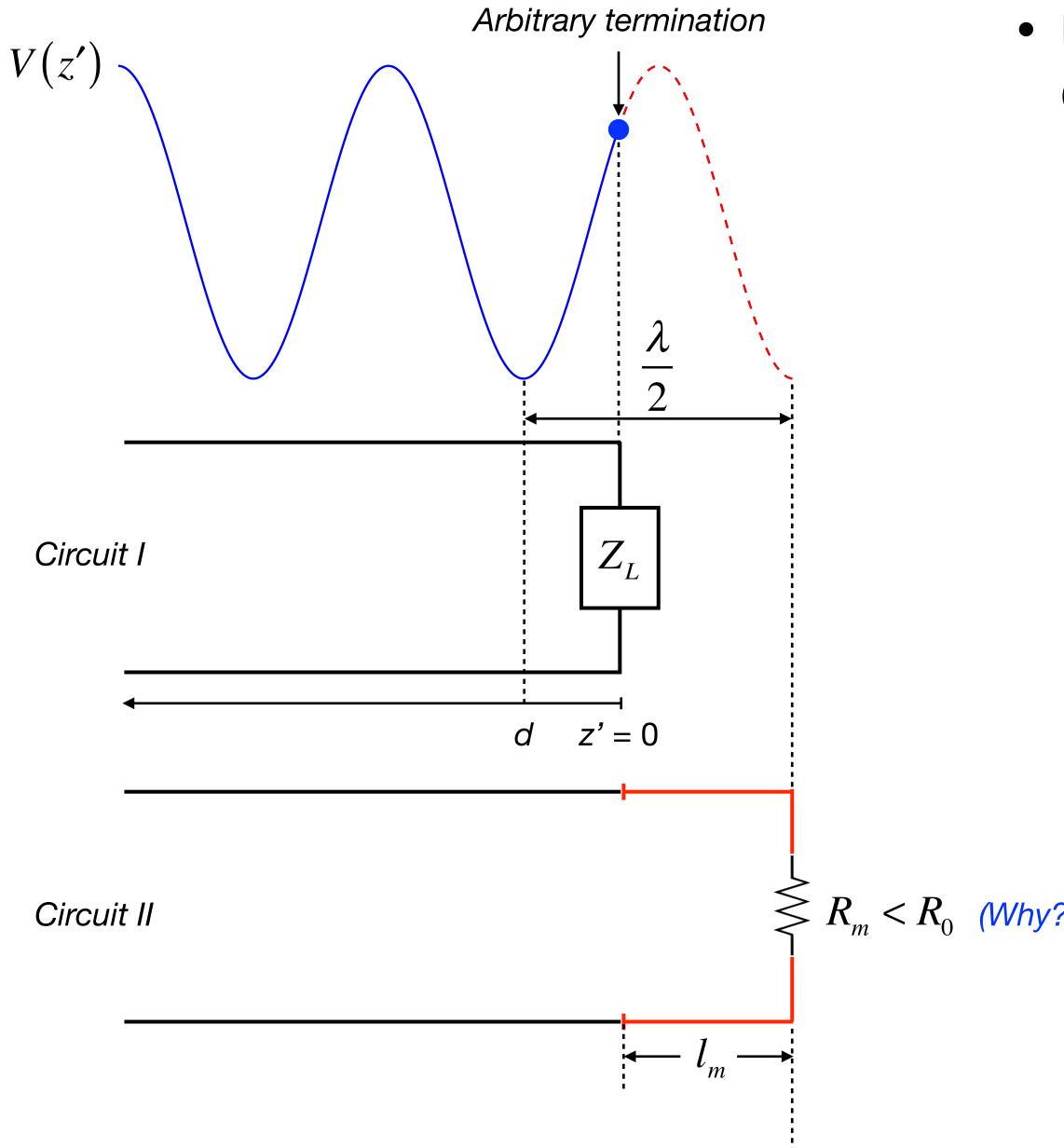
Procedure

- (1) On positive real-axis, P_{M} represents r = S = 3.0 (= R_{L}/R_{0})
- (2) Then, we have circle of radius $|\Gamma| = 0.5$ (θ_{Γ} yet unknown)

$$\left(:: |\Gamma| = \left| \frac{R_L - R_0}{R_L + R_0} \right| = 0.5 \right)$$

- (3) Intersection between negative real-axis and the circle
- (4) : $P_m [\Gamma < 0 \rightarrow R_L < R_0] \rightarrow Voltage minima at z' = 0$ (see slide 13-2)
- (5) To find load impedance, move from P_m along perimeter by $z'_m/\lambda = 0.05/0.4 = 0.125$ [in the CCW direction. Why?]
- (6) P_L represents reflection coefficient $\rightarrow \Gamma = -j0.5$
- (7) At **P**_L, Read r = 0.6, $x = 0.8 \rightarrow z_L = 0.6 + j0.8$
- (8) Thus, $Z_L = R_0 \cdot z_L = 30 j40 (\Omega)$





• Procedure (Cont'd)

(9) Equivalent length $I_{\rm m}$ and terminating resistance $R_{\rm m}$ can be found as

$$l_m = \frac{\lambda}{2} - z'_m = 0.2 - 0.05 = 0.15 \text{ (m)}$$

$$R_m = \frac{R_0}{S} = \frac{50}{3} = 16.7 \ (\Omega)$$

Electromagnetics

<Chap. 9> Transmission Lines
Section 9.6 ~ 9.7

(2nd of week 12)

Jaesang Lee
Dept. of Electrical and Computer Engineering
Seoul National University
(email: jsanglee@snu.ac.kr)

Chap. 9 Contents

Sec 7. Impedance matching

- Linear matching via quarter-wave transformer
- Parallel matching via single or double-stub approaches
- Admittance vs. impedance chart
- Examples

Impedance matching via Quarter-wave transformer

Maximum power transfer in TR-line

- Achieved under matched-load condition (i.e. $Z_L = Z_0$)

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0} = 0$$
 (No reflection at the load)
$$S = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} = 1$$
 (Smallest oscillation)

$$S = \frac{1 + |\Gamma_L|}{1 - |\Gamma_I|} = 1$$
 (Smallest oscillation)

Methods for impedance matching

- For resistive load $(Z_L = R_L) \rightarrow Using Quarter-wave transformer$
- For complex-valued load $(Z_L = R_L + jX_L) \rightarrow U$ sing single-stub or double-stub matching

Quarter-wave transformer

unknown

:TR-line with characteristic impedance (R_0) extended by $\lambda/4$ and terminated with load R_{\perp}

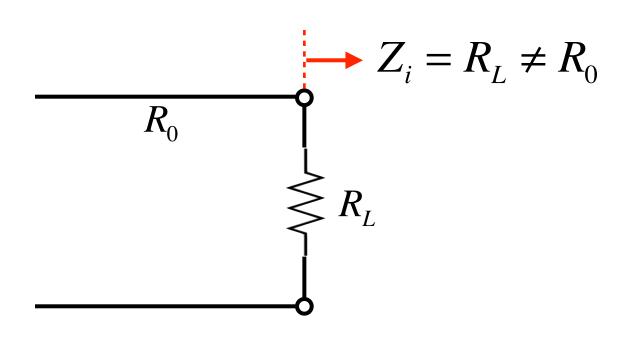
- *Input impedance* of quarter-wave transformer:

$$Z_{i} = R'_{0} \frac{R_{L} + jR' \tan \beta l}{R' + jR_{L} \tan \beta l} = \frac{R'_{0}^{2}}{R_{L}} \quad \left(\because \tan \beta l = \tan \left(\frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} \right) = \tan \left(\frac{\pi}{2} \right) \to \infty \right)$$

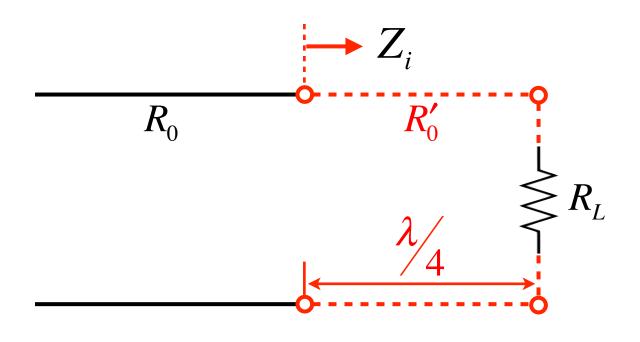
- To satisfy matching condition,

$$Z_i = R_0 \quad \rightarrow \quad \frac{R_0^{\prime 2}}{R_I} = R_0$$

$$\therefore R_0' = \sqrt{R_L R_0}$$



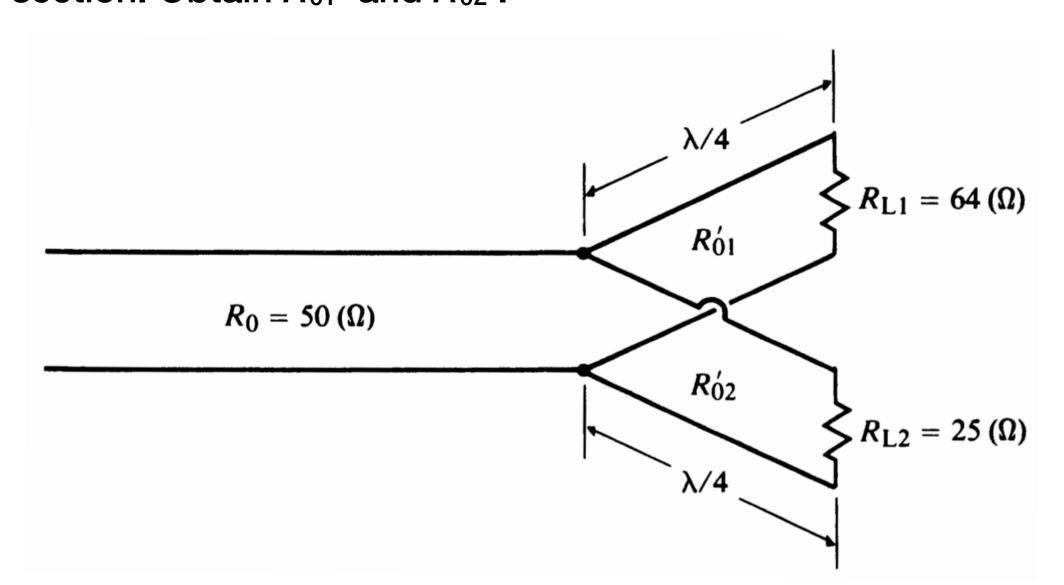
<Unmatched impedance> Reflection occurs → Undesirable!



<Quarter-wave transformer>

Chap. 9 Example: Quarter-wave transformer

• Quarter-wave transformers used for matching the loads (R_{L1} and R_{L2}) with $R_0 = 50$ (Ω). Power is fed "equally" to each load section. Obtain R_{01} ' and R_{02} '.



- Matching condition: input impedance at junction, $Z_i = R_0$

$$Z_{i} = \left(\frac{1}{Z_{i1}} + \frac{1}{Z_{i2}}\right)^{-1} = R_{0}, \quad Z_{i1}, Z_{i2} \rightarrow \begin{array}{l} \text{input impedance of each load section} \end{array}$$

- Since power equally sent to each load section,

$$Z_{i1} = Z_{i2} = 2R_0$$

- Each load connected with a quarter-wave transformer, so we have

$$Z_{i1} = \frac{R_{01}^{\prime 2}}{R_{L1}} = 2R_0 \rightarrow R_{01}' = \sqrt{2R_0R_{L1}} = \sqrt{2 \cdot 50 \cdot 64} = 80(\Omega)$$

$$Z_{i2} = \frac{R_{02}^{\prime 2}}{R_{L1}} = 2R_0 \quad \rightarrow \quad R_{02}^{\prime} = \sqrt{2R_0R_{L2}} = \sqrt{2 \cdot 50 \cdot 25} = \boxed{50(\Omega)}$$

$$\therefore Z_i = R_0' \frac{R_L + jR' \tan \beta l}{R' + jR_L \tan \beta l} = \frac{R_0'^2}{R_L}$$

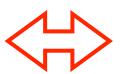
Obtain reflection coefficient and SWR for each section.

$$\Gamma_1 = \frac{R_{L1} - R'_{01}}{R_{L1} + R'_{01}} = \frac{64 - 80}{64 + 80} = -0.11 \quad \to \quad S_1 = \frac{1 + |\Gamma_1|}{1 - |\Gamma_1|} = 1.25$$

$$\Gamma_2 = \frac{R_{L2} - R'_{02}}{R_{L2} + R'_{02}} = \frac{25 - 50}{25 + 50} = -0.33 \quad \rightarrow \quad S_2 = \frac{1 + |\Gamma_2|}{1 - |\Gamma_2|} = 1.99$$

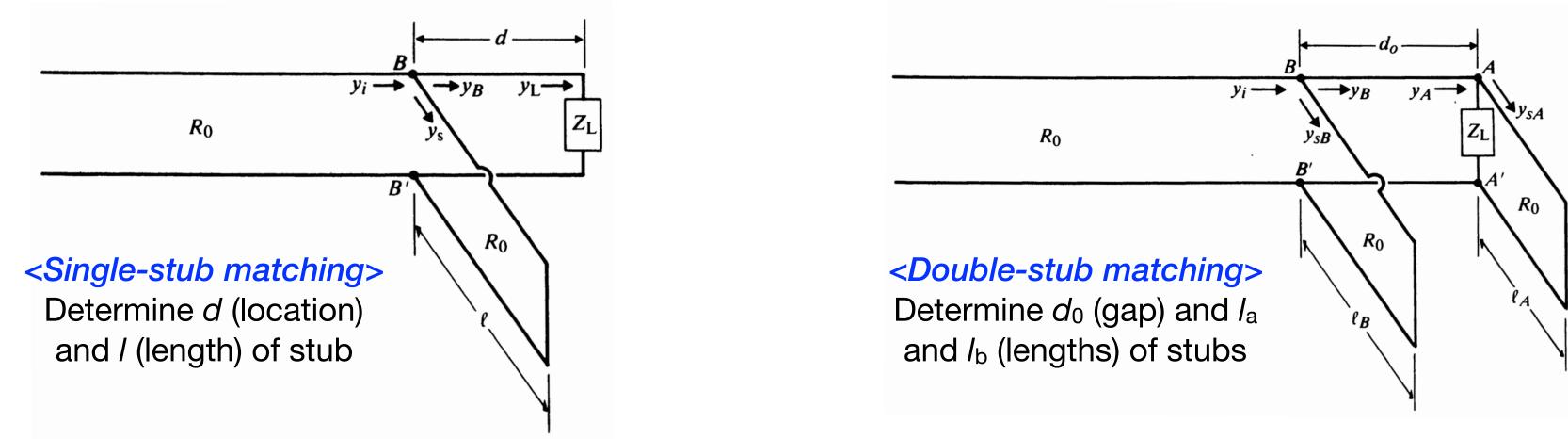
Impedance matching for complex-valued load Chap. 9

- Impedance matching for complex-valued loads $(Z_L = R_L + jX_L)$
 - Quarter-wave transformer does not work!
 - Lossless quarter-wave extension line (real-valued R_0 ') $R_0' = \sqrt{2R_0Z_L}$ (Complex-valued!)



Contradicting

- Single / double-stub matching
 - Open- or short-circuited line sections attached in parallel with main TR-line at an appropriate distance from the load
 - Purpose: to achieve $[Z_i]$ at a joint B-B'] = R_0 (i.e. Effectively cancelling out "imaginary part of Z_L " by using parallel stubs)



- Short-circuit preferable compared to open-circuit, because
 - ► $Z_L \rightarrow \infty$ hard to achieve
 - Radiation from an open end
 - Coupling to nearby objects

Chap. 9 Admittance Smith Chart

Admittance Smith Chart

- Previously, we read impedance on Smith Chart
- Similarly, we can read admittance via impedance-to-admittance conversion!
- Normalized admittance:

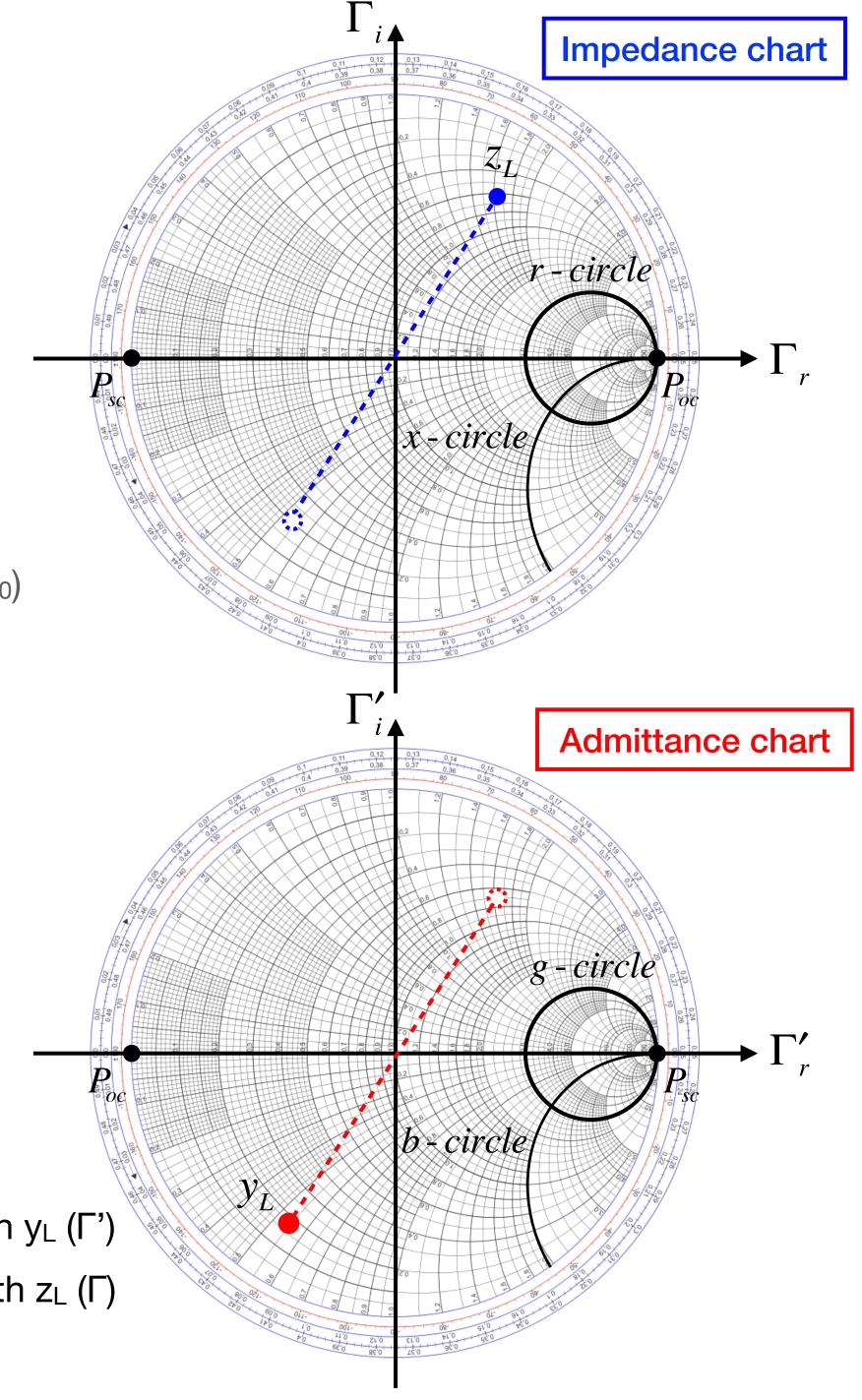
$$\begin{split} Y_L &\triangleq \frac{1}{Z_L} & \to \overbrace{ y_L = \frac{1}{z_L} } \text{ where } z_L = \frac{Z_L}{R_0} \\ &= \frac{R_0}{Z_L} = R_0 Y_L \triangleq \frac{Y_L}{Y_0} = g + jb \end{split} \begin{tabular}{l} *Y_0$: Characteristic admittance (1/R_0) \\ *g: conductance \\ *b: susceptance \\ \end{cases} \label{eq:YL}$$

- Impedance and Admittance in terms of reflection coefficient

$$z_{L} = \frac{1+\Gamma}{1-\Gamma} \longrightarrow y_{L} = \frac{1-\Gamma}{1+\Gamma} = \frac{1+\Gamma e^{j\pi}}{1-\Gamma e^{j\pi}} = \frac{1+\Gamma'}{1-\Gamma'}$$

where
$$\Gamma' = \Gamma e^{j\pi}$$

- ▶ y_{\perp} locates "diametrically opposite" to z_{\perp} on $|\Gamma|$ -circle (i.e. differed by an angle π)
- Impedance-to-Admittance conversion and vice versa
 - ▶ Rotate z_{\perp} by 180° in Impedance Chart (Γ) → Chart becomes Admittance Chart with y_{\perp} (Γ ')
 - ▶ Rotate y_L by 180° in Admittance Chart (Γ ') → Chart becomes Impedance Chart with z_L (Γ)



Chap. 9 | Single-stub matching (1/2)

Parallel connection of short-circuited stub

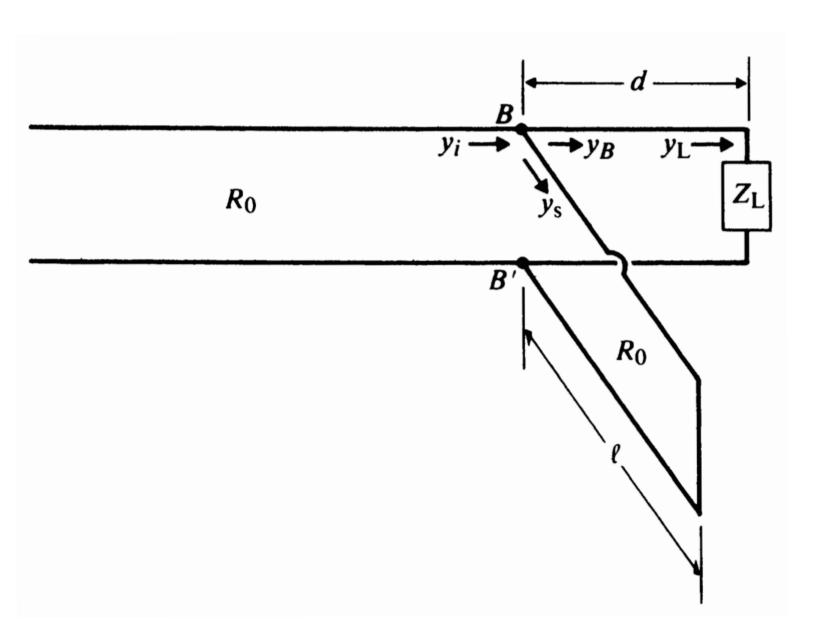
- Admittance more useful than impedance for "parallel" connection
 - Admittance (Y): a measure of how well a circuit will allow a current to flow $Y \triangleq \frac{1}{Z}$

$$[Y_i = Y_L + Y_s] = Y_0$$
 Yi: Total input admittance at B-B' terminals toward load

Y_B: admittance of load section

*Y*_s: admittance of short-circuited stub section

 Y_0 : Characteristic admittance of main TR-line (1/ R_0)



- Normalized admittance

$$Y_0 = Y_B + Y_s$$
 $\rightarrow \left(1 = \frac{Y_B}{Y_0} + \frac{Y_s}{Y_0} \triangleq y_B + y_s\right)$

y_s should be purely resistive (Why?)

$$y_s = \frac{Y_s}{Y_0} = \frac{R_0}{R_s} = \frac{R_0}{jR_0 \tan \beta l} = -\frac{j}{\tan \beta l} \longrightarrow \left(y_s \triangleq -jb_B \quad \cdots (1) \right)$$

From normalized admittance equation,

$$y_B = 1 - y_s = 1 + jb_B \quad \cdots (2)$$

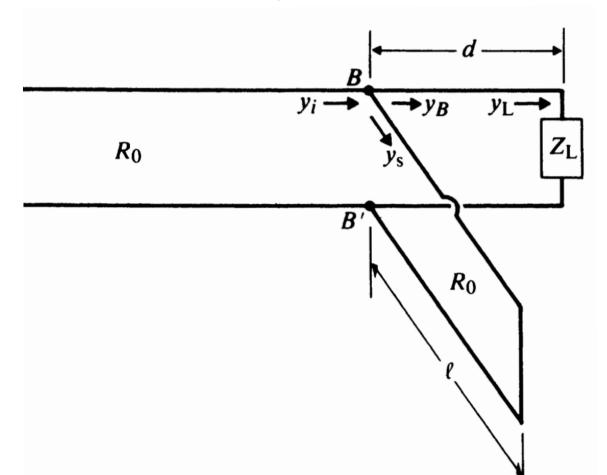
- What to do next?

- From eqn. (1), we define length (/) of the stub
- From eqn. (2), we define distance (d) of the stub
- Note that y_s (admittance of short-circuit stub) cancels imaginary part of y_B (admittance of load section)
 - → Our original purpose!

Chap. 9 | Single-stub matching (2/2)

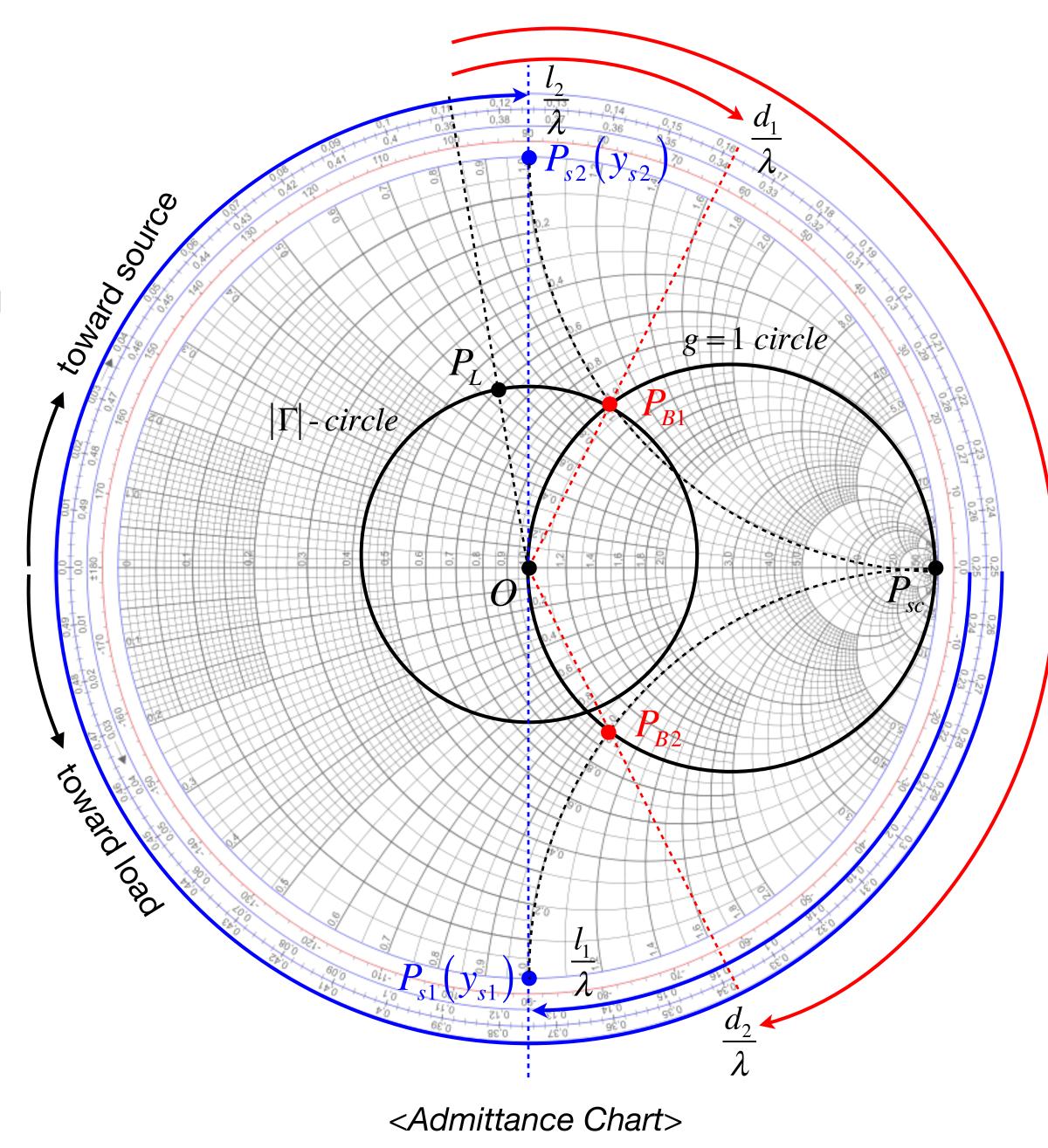
Procedures

- (1) Find point P_L for load admittance $y_L = g + jb$ in admittance Chart.
- (2) Draw $|\Gamma|$ -circle passing through P_L (* Any points on $|\Gamma|$ -circle represent load section of arbitrary length d).
- (3) Find intersections between $|\Gamma|$ -circle and (g = 1) circle. These are denoted as points P_{B1} and P_{B2} , representing two solutions for y_B satisfying condition (2). (i.e. $y_{B1} = 1 + jb_{B1}$, $y_{B2} = 1 + jb_{B2}$)
- (4) Find distances d_1 and d_2 for P_{B1} and P_{B2} from angles between [OP_L and OP_{B1}] and between [OP_L and OP_{B2}] in <u>CW direction</u> (why?)
- (5) Find angle values for $y_{s1} = -jb_{B1}$ (point P_{s1}) and $y_{s2} = -jb_{B2}$ (point P_{s2}) that cancel out imaginary part of y_B (Condition (1)). Choose lengths I_1 and I_2 from angles between [OP_{sc} and OP_{s1}] and between [OP_{sc} and OP_{s2}] in CW direction. (Why OP_{sc}?)



Conditions for matching

$$\begin{cases} y_s \triangleq -jb_B & \cdots (1) \\ y_B = 1 + jb_B & \cdots (2) \end{cases}$$



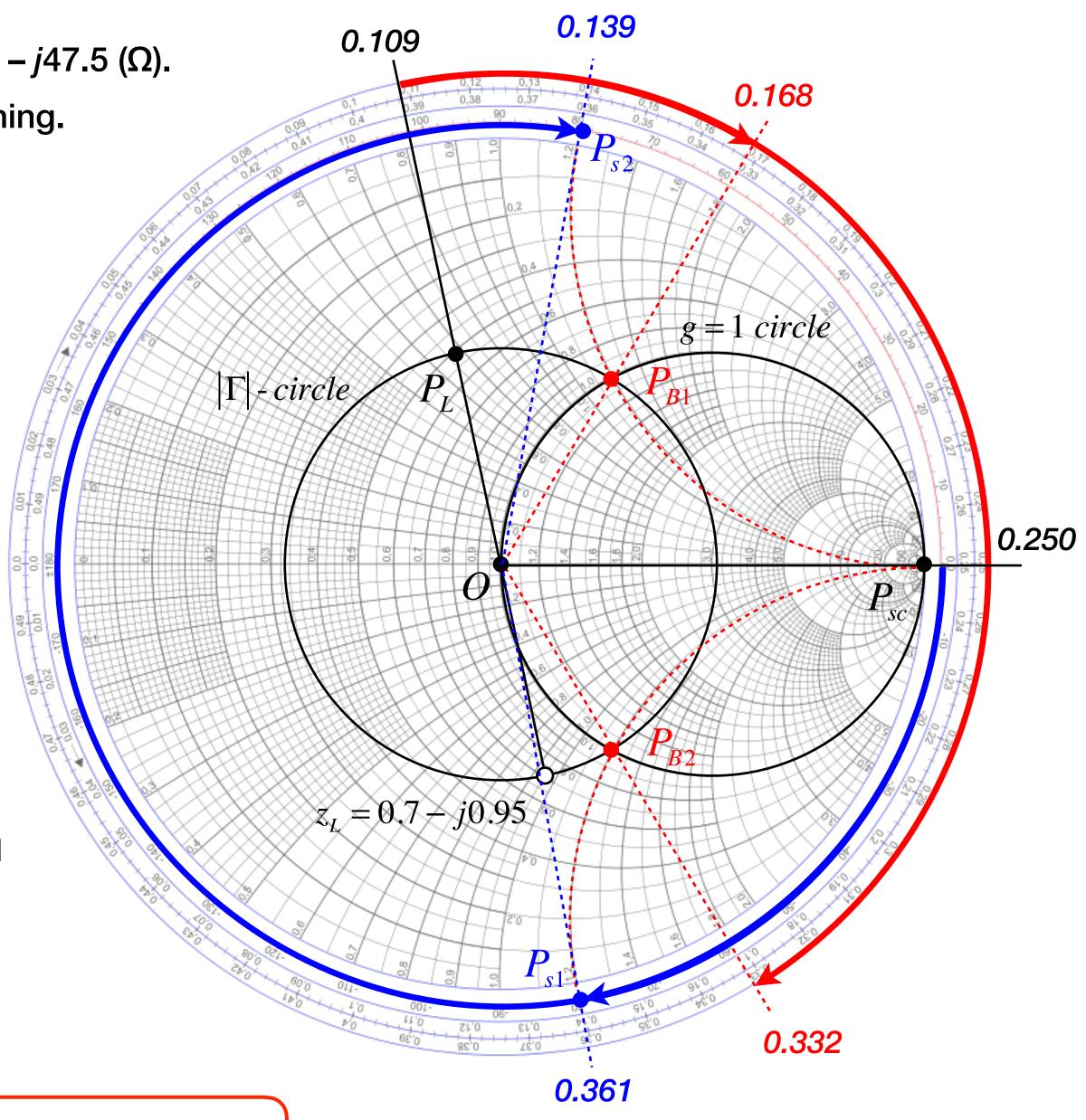
Chap. 9 Example: Single-stub matching

- Characteristic impedance of TR-line $R_0 = 50$ (Ω) and terminated by $Z_L = 35 j47.5$ (Ω). Find position (d) and length (l) of short-circuited stub for impedance matching.
 - Find normalized z_{\perp} (= $Z_{\perp}/R_0 = 0.7 j0.95$) on *impedance chart*.
 - (1) Rotate z_L by 180° to convert it to y_L (Point P_L). The chart now becomes admittance chart. We start from here.
 - (2) Draw $|\Gamma|$ -circle passing through P_L .
 - (3) Find two intersecting points between $|\Gamma|$ -circle and (g = 1)-circle (P_{B1} and P_{B2}) that yield $y_{B1} = 1 + j_{1.2}$ and $y_{B2} = 1 j_{1.2}$ (satisfying condition 1)
 - (4) Determine d_1 and d_2 from angles between [OP_L and OP_{B1}] and between [OP_L and OP_{B2}] in <u>CW direction</u>.

$$\begin{cases} d_1 = (0.168 - 0.109)\lambda = 0.059\lambda \\ d_2 = (0.332 - 0.109)\lambda = 0.223\lambda \end{cases}$$

(5) Read the angle values for $y_{s1} = -j1.2$ and $y_{s2} = j1.2$ (at points P_{s1} and P_{s2}) (Satisfying condition 2). Determine I_{B1} and I_{B2} from angles between [OP_{sc} and OP_{s1}] and between [OP_{sc} and OP_{s2}].

$$\begin{cases} l_{B1} = (0.361 - 0.250)\lambda = 0.111\lambda \\ l_{B2} = (0.139 + 0.250)\lambda = 0.389\lambda \end{cases}$$



.: Shorter length preferred unless there is mechanical constraint! Thus, choose d₁ and l_{B1}.

Chap. 9 Analytical solution for single-stub matching (1/2)

Problem of Smith Chart approach

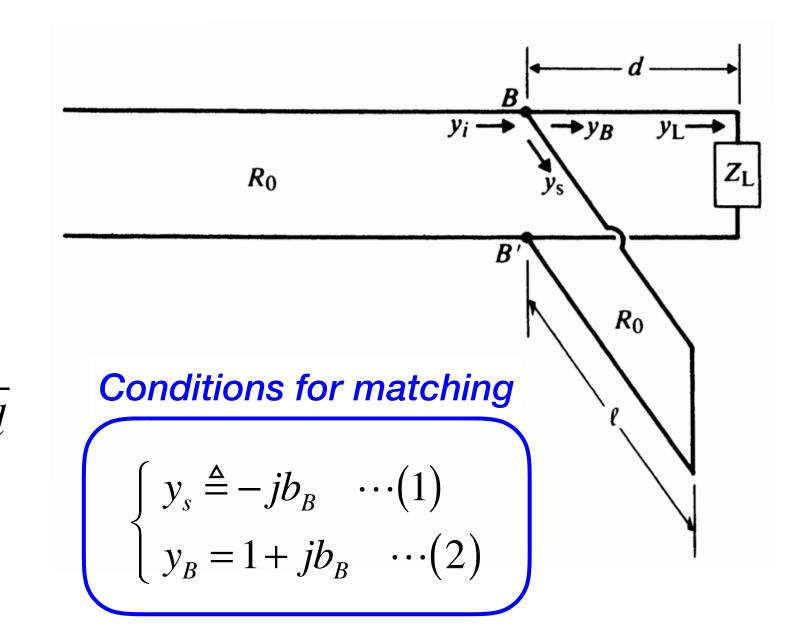
- In actual case, Smith chart leads to error due to graphical approximation (i.e. inter- or extrapolation)
- → needs fine-adjustment of lengths
- Instead, we can *analytically* obtain the solutions (*d* and *l*)!

Analytical approach

- Input impedance of "load" section (i.e. toward Z_L) at B-B' junction:

$$Z_{L,B-B'} = R_0 \frac{Z_L + jR_0 \tan \beta d}{R_0 + jZ_L \tan \beta d} \rightarrow z_{L,B-B'} = \frac{Z_{L,B-B'}}{R_0} = \frac{\left(Z_L + jR_0 \tan \beta d\right) / R_0}{\left(R_0 + jZ_L \tan \beta d\right) / R_0} = \frac{z_L + j \tan \beta d}{1 + j z_L \tan \beta d}$$

$$z_{L,B-B'} = \frac{z_L + j \tan \beta d}{1 + j z_L \tan \beta d} = \frac{\left(r_L + j x_L\right) + j t}{1 + j\left(r_L + j x_L\right) t} \quad \text{where} \quad z_L \triangleq r_L + j x_L \text{ and } t \triangleq \tan \beta d$$



- Normalized Admittance is then given as

$$y_{B} = \frac{1}{z_{L,B-B'}} = \frac{1+j(r_{L}+jx_{L})t}{(r_{L}+jx_{L})+jt} = g_{B}+jb_{B}$$

where
$$g_B = \frac{r_L (1 - x_L t) + r_L t (x_L + t)}{r_L^2 + (x_L + t)^2}$$
, $b_B = \frac{r_L^2 t - (1 - x_L t) (x_L + t)}{r_L^2 + (x_L + t)^2}$ $\rightarrow (r_L - 1) t^2 - 2x_L t + (r_L - r_L^2 - x_L^2) = 0$ ···(3)

- y_B should satisfy condition (2) as

$$g_{B} = \frac{r_{L}(1 - x_{L}t) + r_{L}t(x_{L} + t)}{r_{L}^{2} + (x_{L} + t)^{2}} = 1$$

$$\rightarrow (r_L - 1)t^2 - 2x_L t + (r_L - r_L^2 - x_L^2) = 0 \quad \cdots (3)$$

Chap. 9 Analytical solution for single-stub matching (2/2)

Analytical approach

- Solutions to eqn. (3) can be divided into two cases:

$$(r_L - 1)t^2 - 2x_L t + (r_L - r_L^2 - x_L^2) = 0 \quad \cdots (3)$$

If
$$r_L = 1$$
 $t = \tan \beta d = \tan \frac{2\pi d}{\lambda} = -\frac{x_L}{2}$ $\rightarrow \left(\frac{d}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{x_L}{2}\right)\right)$

If
$$r_L \neq 1$$

$$t = \frac{x_L \pm \sqrt{x_L^2 - (r_L - 1)(r_L - r_L^2 - x_L^2)}}{r_L - 1} = \tan \beta d = \tan \frac{2\pi d}{\lambda}$$

depending on x_{\perp} and $r_{\perp} \rightarrow t$: either negative or positive

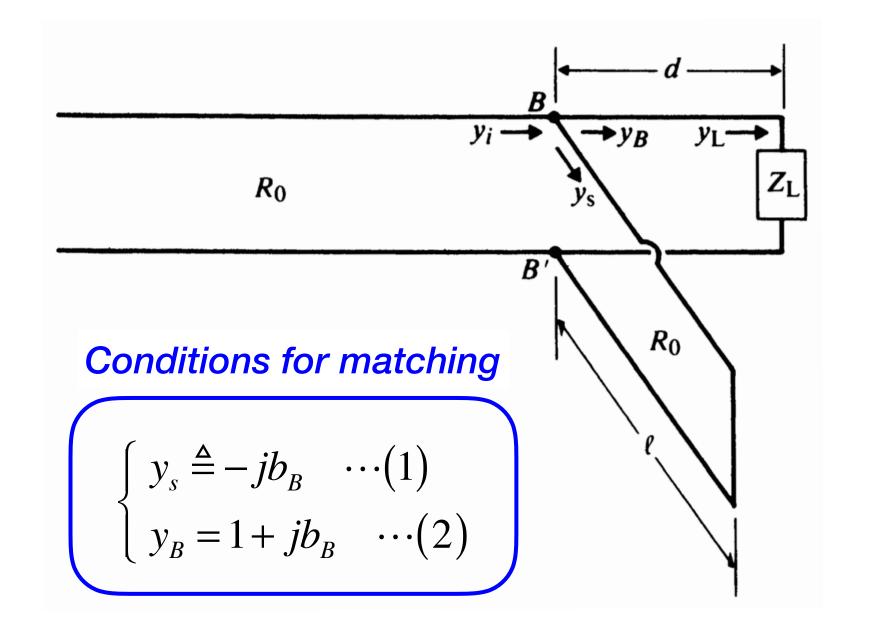
$$\left(\frac{d}{\lambda} = \frac{1}{2\pi} \tan^{-1} t \quad (t \ge 0), \quad \frac{d}{\lambda} = \frac{1}{2\pi} \left(\pi + \tan^{-1} t\right) \quad (t < 0)$$

- Now, let's obtain *I*. input impedance of stub at B-B' given as:

$$Z_{s,B-B'} = R_0 \frac{Z_L + jR_0 \tan \beta l}{R_0 + jZ_L \tan \beta l} = jR_0 \tan \beta l \quad \to \quad z_{s,B-B'} = \frac{Z_{s,B-B'}}{R_0} = j \tan \beta l$$

- Admittance then given as:

$$y_s = \frac{1}{z_{s,B-B'}} = \frac{1}{j \tan \beta l} = -jb_B \quad \to \quad \tan \beta l = \tan \frac{2\pi l}{\lambda} = \frac{1}{b_B}$$
(:: Condition 2)



Length solution

$$\frac{l}{\lambda} = \frac{1}{2\pi} \tan^{-1} \frac{1}{b_B} \quad (b_B \ge 0), \quad \frac{l}{\lambda} = \frac{1}{2\pi} \left(\pi + \tan^{-1} \frac{1}{b_B} \right) \quad (b_B < 0)$$

Impedance matching via Double-stub matching Chap. 9

Problem of single-stub matching

- Frequency-dependence of location of the stub, $d = C\lambda$ (i.e. distance from load)
- As frequency of signal varies, location of the stub should change! → Practically hard from mechanical point of view

Double-stub matching

- Two short-circuited stubs *attached at fixed locations* and apart by d_0 (arbitrarily chosen)
- Only need to adjust their lengths I_A and I_B for matching with Z_L
- Matching condition:

$$[Y_i = Y_B + Y_s] = Y_0$$
 Y_i: Total input admittance at B-B'

 Y_B : admittance of load section at B-B'

Y_s: admittance of short-circuited stub at B-B'

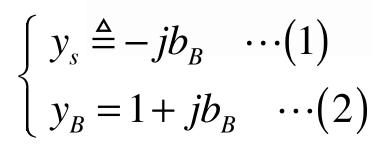
 Y_0 : Characteristic admittance of main TR-line (1/ R_0)

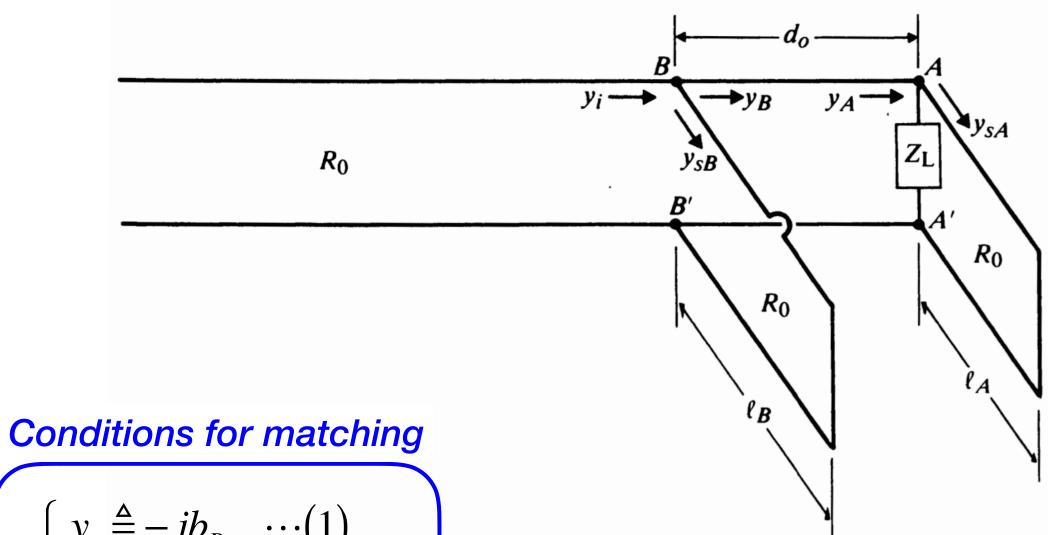
- Normalized admittance:

$$\frac{Y_i}{Y_0} = 1 = \frac{Y_B}{Y_0} + \frac{Y_s}{Y_0} \triangleq y_B + y_s$$
 where $y_s = -jb_B$ (Why?)

Thus,

$$y_B = 1 - y_s = 1 + jb_B$$



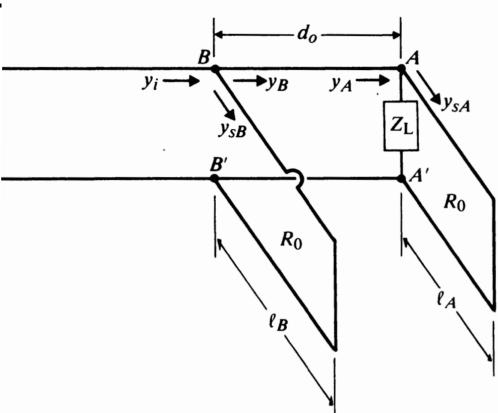


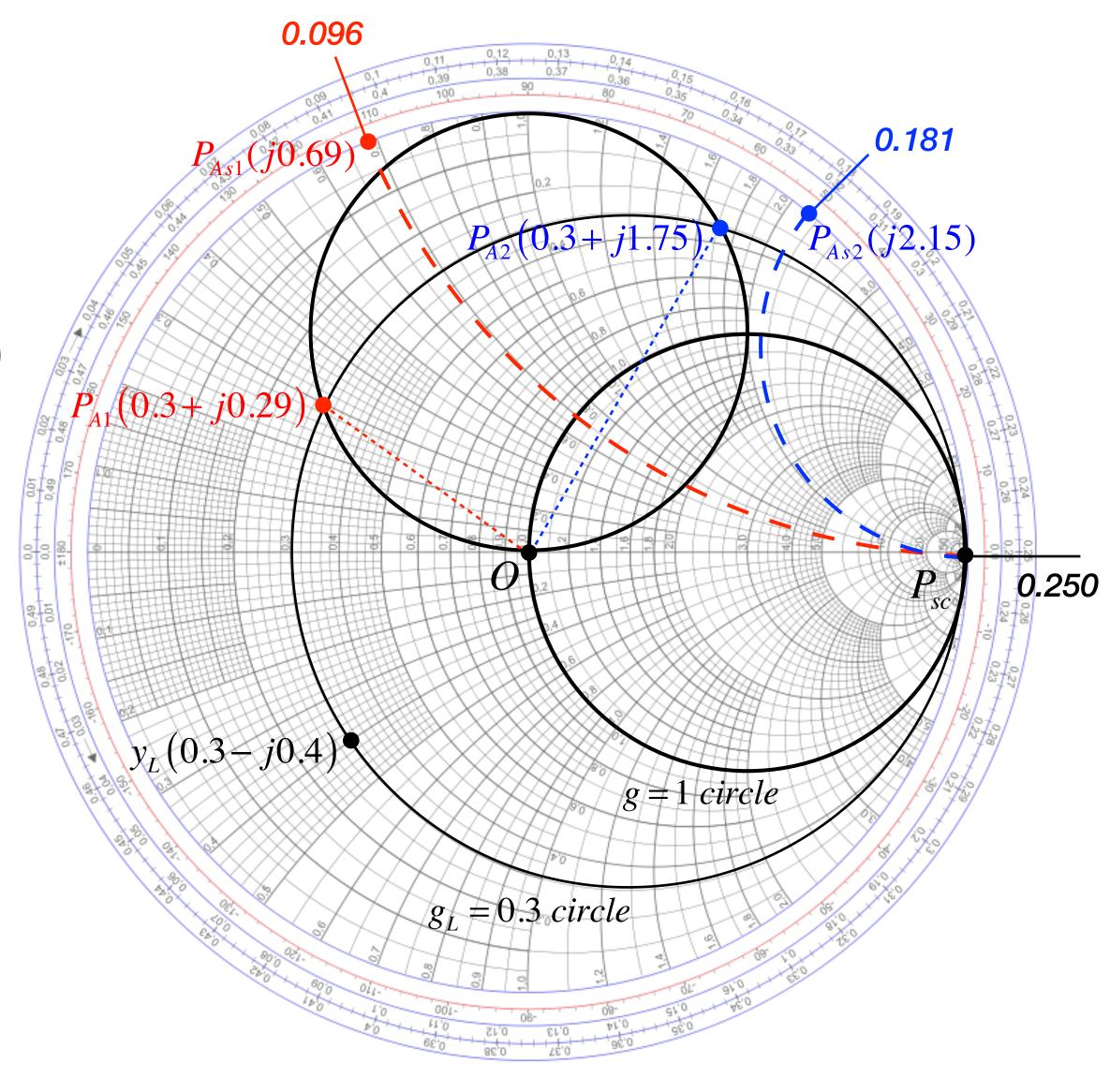
.. Conditions for double-stub matching same as those for single-stub matching!

Chap. 9 Example: double-stub matching (1/2)

- Characteristic impedance of TR-line $R_0 = 50$ (Ω) and terminated by $Z_L = 60 + j80$ (Ω). $d_0 = \lambda/8$. Find I_A and I_B .
 - First, locate $y_L = g_L + jb_L$ [= $1/z_L = R_0/Z_L = 0.3 j0.4$] on Admittance chart.
 - (1) Draw (g = 1)-circle for $y_B = 1 + jb_B$ (admittance of load section at B-B').
 - (2) Rotate (g = 1)-circle by $[\lambda/d_0 = 1/8 = 0.125]$ in <u>CCW direction (toward load)</u>. $\frac{d_0}{\lambda} = 0.125 \rightarrow 4\pi \frac{d_0}{\lambda} = \frac{\pi}{2} \text{ (rad)}$
 - (3) "Rotated" circle representing total admittance at A-A', y_A such that $y_A = y_{sA} + y_L = (-jb_{sA}) + (g_L + jb_L) = g_L j(b_{sA} + b_L) = 0.3 j(b_{sA} 0.4)$ (:: short-circuit)
 - (4) Thus, intersections [between "rotated" circle and $g_L = 0.3$ circle] are two solutions with $y_{A1} = 0.3 + j0.29$ and $y_{A2} = 0.3 + j1.75$ (P_{A1} and P_{A2}).
 - (5) Since $y_{sA} = y_L y_A$, we get $y_{sA1} = j0.69$, $y_{sA2} = j2.15$ (P_{As1} and P_{As2}).
 - (6) Determine length I_{A1} and I_{A2} from angles between [OP_{sc} and OP_{As1}] and between [OP_{sc} and OP_{As2}] in CW direction.

$$\begin{cases} l_{A1} = (0.096 + 0.250)\lambda = 0.346\lambda \\ l_{A2} = (0.181 + 0.250)\lambda = 0.431\lambda \end{cases}$$

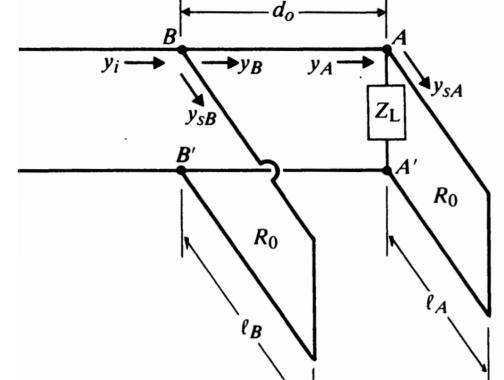




Example: double-stub matching (2/2) Chap. 9

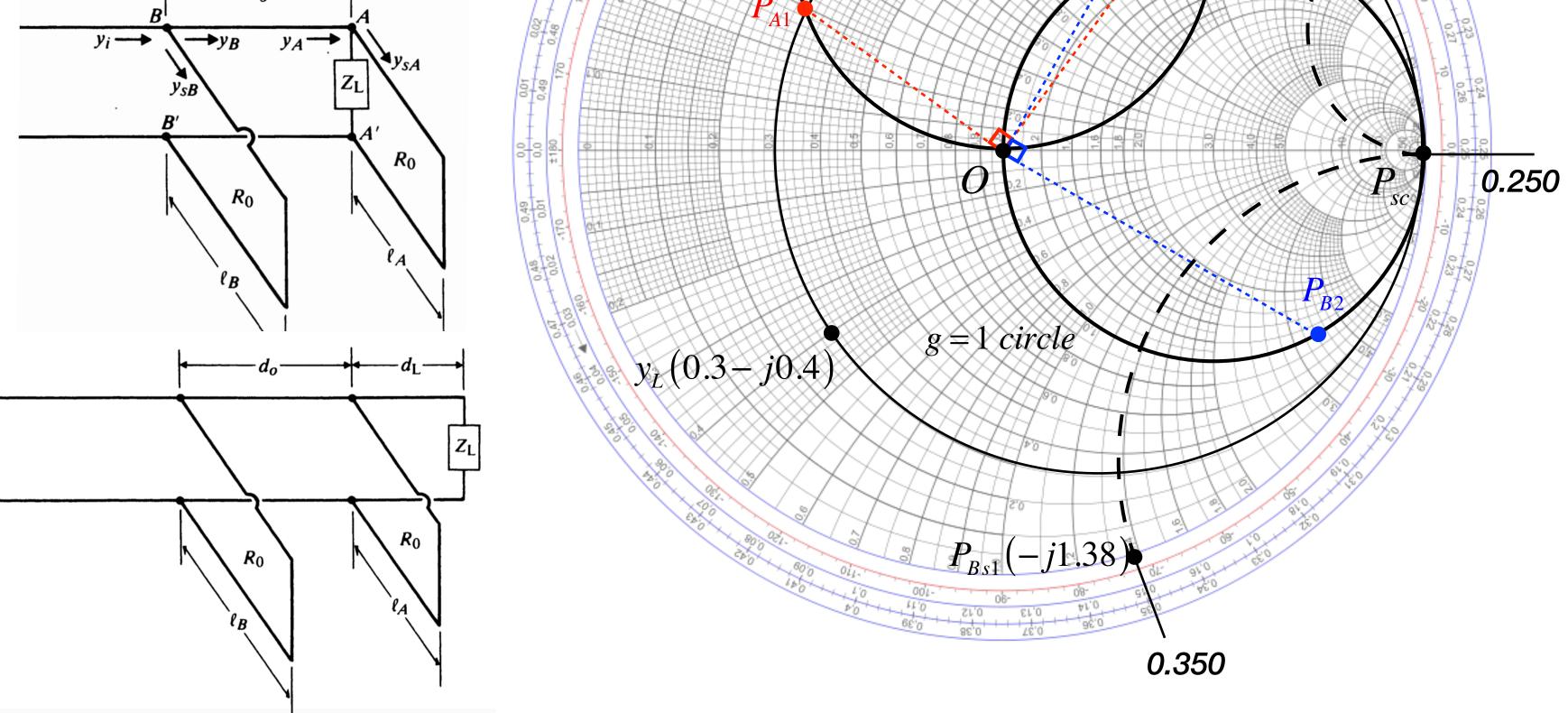
- Characteristic impedance of TR-line $R_0 = 50$ (Ω) and terminated by $Z_L = 60 + j80$ (Ω). $d_0 = \lambda/8$. Find I_A and I_B .
 - Rotate OP_{A1} and OP_{A2} back in CW direction by d_0/λ (=0.125) and find corresponding points on (g = 1)-circle. These are solutions y_B (P_{B1} and P_{B2})
 - Read points P_{B1} and P_{B2} yielding $y_{B1} = 1 + j1.38$ and $y_{B2} = 1 j3.5$.
 - Thus, y_{sB} should cancel imaginary part of y_B such that $y_{sB1} = -j1.38$ and $y_{sB2} = j3.5$. These are denoted as points P_{Bs1} and P_{Bs2} on chart.
 - (10) Determine lengths I_{B1} and I_{B2} from angles between [OP_{sc} and OP_{Bs1}] and between [OP_{sc} and OP_{Bs2}].

$$\begin{cases} l_{B1} = (0.350 - 0.250)\lambda = 0.100\lambda \\ l_{B2} = (0.206 + 0.250)\lambda = 0.456\lambda \end{cases}$$



Special case

- If y_{\perp} lies within (g = 2)-circle, no solution exists! (No overlap with rotated circle)
- In this case, solution given as left



0.206

 $P_{Bs2}(j3.5)$