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Chap. 9 |  Contents for 1st class of week 11

Sec 6. The Smith Chart 

• Arbitrary impedance termination


• Introduction, construction and interpretation


• Examples



Chap. 9 |  Arbitrary termination of TR-line (1/2)

• “Resistive” termination (ZL = RL) 
- Voltage minima (RL < R0) or maxima (RL > R0) at the load end


• “Arbitrary” termination (ZL = RL + jXL) 
- Voltage minima or maxima shifted by d from the load end

- If, additional line extended by lm with resistive termination (Rm)

→ voltage shape does not change! → Circuit I = Circuit II (Equivalent)

ZL

V ′z( )
Arbitrary termination

z’ = 0d

Rm < R0

lm

λ
2

Why?

• How do we identify ZL experimentally? 
- Given condition: we measured S (SWR) and knew R0

- Step 1) Express ZL in terms of R0 and Γ

ZL =
V ′z( )
I ′z( )

′z =0

= R0
1+ Γ e j θΓ−2β ′z( )

1− Γ e j θΓ−2β ′z( )
′z =0

- Step 2) At z’ = d, we should have first voltage minima as

θΓ − 2βd = − 2n +1( )π n=0

Circuit I

Circuit II

→    θΓ = 2βd −π

- Step 3) By measuring S, we can get |Γ| as Γ = S −1
S +1

We have to obtain 

Γ = Γ e− jθΓ

through step 2), 3)

∵S = 1+ Γ
1− Γ

⎛
⎝⎜

⎞
⎠⎟



Chap. 9 |  Arbitrary termination of TR-line (2/2)
Engineering example We measured S = 3 for lossless TR-line of R0 = 50 (Ω). d = 5 (cm) of the first voltage minima for arbitrary terminated TR-

line. Distance between successive voltage minima = 20 (cm). What is an arbitrary load impedance ZL? What is Rm and lm 
for equivalent Circuit II?

- Step 1) Step 1) Express ZL in terms of R0 and Γ

ZL =
V ′z( )
I ′z( )

′z =0

= R0
1+ Γ e jθΓ

1− Γ e jθΓ

- Step 2) At z’ = d, we should have first voltage minima as

θΓ − 2βd = − 2n +1( )π n=0
   →    θΓ = 2βd −π Here, β = 2π

λ
where

λ
2
= 20 (cm)

Distance between successive voltage minima

→θΓ = 2 × 5π × 0.05 −π = −0.5π  (rad)= 2π
0.4

= 5π  (rad/m)
- Step 3) By measuring S, we can get |Γ| as

Γ = S −1
S +1

= 1
2 ∴ZL = R0

1+ Γ e jθΓ

1− Γ e jθΓ
= 501− j0.5

1+ j0.5
= 30 − j40 (Ω)

- Recall previous slides that if Rm < R0,

Rm = R0

S
= 50

3
= 16.7 Ω( ) lm + d =

λ
2

   →    lm = λ
2
− d = 0.2 − 0.05 = 0.15 (m)

- From the relation as below (see voltage graph in previous slide)



Chap. 9 |  The Smith Chart: Introduction

• Discussion so far 
- Tedious TR-line calculations involving Zi (input impedance), Γ (reflection coefficient), ZL (load impedance)

Zi = R0
ZL + jR0 tanβ ′z
R0 + jZL tanβ ′z

Γ = ZL − R0
ZL + R0

= Γ e jΘΓZL = R0
1+ Γ
1− Γ

• The Smith Chart 
- A graphical representation of Zi, ZL and Γ

- “Easy” to visualize complex-valued quantities and obtain them


- Commonly used to identify load characteristics

‣ Check how capacitive or inductive a load is

‣ Check How well impedance-matched a load is

‣ and many more in RF engineering

Philip Hagar Smith 
(1905-1987) 
At Bell lab<The Smith Chart>

where



Chap. 9 |  Construction of Smith Chart (1/3)

• How Smith Chart constructed for lossless TR-line? 
- Starting with reflection coefficient as

Γ = ZL − R0
ZL + R0

=
ZL
R0

−1

ZL
R0

+1
= zL −1
zL +1

where zL !
ZL

R0
= RL + jXL

R0
= r + jx : Normalized load impedance w.r.t. R0

- Conversely, zL expressed in terms of Γ as

zL =
1+ Γ
1− Γ

    →    (lhs) zL = r + jx,     (rhs) 1+ Γ
1− Γ

=
1+ Γ r + jΓ i( )
1− Γ r + jΓ i( ) =

1− Γ r
2 − Γ i

2 + j2Γ i

1− Γ r( )2 + Γ i
2

∵Γ = Γ r + jΓ i( )

 r = 1− Γ r
2 − Γ i

2

1− Γ r( )2 + Γ i
2

   ! 1( )

 x = 2Γ i

1− Γ r( )2 + Γ i
2

   ! 2( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Load impedance (r, x) 
vs. 

Reflection coefficients (Γr, Γi)

Γ r −
r
1+ r

⎛
⎝⎜

⎞
⎠⎟
2

+ Γ i
2 = 1

1+ r
⎛
⎝⎜

⎞
⎠⎟

2

   ! 1( )′

∴The Smith Chart 

Determining load impedance (r, x) in  
Reflection coefficient plane (Γr, Γi)

Γ r −1( )2 + Γ i −
1
x

⎛
⎝⎜

⎞
⎠⎟
2

= 1
x

⎛
⎝⎜

⎞
⎠⎟

2

   ! 2( )′

Circle of radius 1/(1+r) and centered at (r/(1+r), 0) Circle of radius 1/|x| and centered at (1,1/x)



Chap. 9 |  Construction of Smith Chart (2/3)

Γ r −
r
1+ r

⎛
⎝⎜

⎞
⎠⎟
2

+ Γ i
2 = 1

1+ r
⎛
⎝⎜

⎞
⎠⎟
2

• Circles with solid-lines

- Different r values → circles of different radii centered at different 
positions (r/(1+r), 0) on Γr axis


- Since |Γ| ≤ 1, only those within a unit box meaningful

‣ All circles passing through (Γr, Γi) = (1, 0) → (∴Γ = 1)  What condition?


- Circles vs. r value

‣ At r = 0: a circle, centered at origin, is largest

‣ As r increases, circle gets smaller 

‣ As r → ∞, circle ends at (Γr, Γi) = (1, 0)<Smith Chart in reflection coefficient plane>

zL !
ZL

R0
= RL

R0
+ j XL

R0
= r + jx   ↔    Γ = Γ r + jΓ i

center: Γ r ,Γ i( ) = r
1+ r

,0⎛
⎝⎜

⎞
⎠⎟

radius: 
1
1+ r

Hint: Γ = ZL − R0

ZL + R0

⎛
⎝⎜

⎞
⎠⎟



Γ r −1( )2 + Γ i −
1
x

⎛
⎝⎜

⎞
⎠⎟
2

= 1
x

⎛
⎝⎜

⎞
⎠⎟
2

Chap. 9 |  Construction of Smith Chart (3/3)

• Circles with dashed-lines

- Different x values → circles of different radii 1/|x| centered at 
different positions (1, 1/x) on Γr = 1 line (red line)


‣ Centers of all the circles lie on Γr = 1 line


- Since |Γ| ≤ 1, only those lying within a unit box meaningful


- Circles vs. x value

‣ If x > 0 (inductive), circles lie above Γr axis

‣ If x < 0 (capacitive), circles lie below Γr axis


‣ At x = 0, circles become Γr axis itself

‣ As |x| increases, circles progressively become smaller

‣ As |x| → ∞, circles end at (Γr, Γi) = (1, 0) What condition?

<Smith Chart in reflection coefficient plane>

zL !
ZL

R0
= RL

R0
+ j XL

R0
= r + jx   ↔    Γ = Γ r + jΓ i

center: Γ r ,Γ i( ) = 1,  1
x

⎛
⎝⎜

⎞
⎠⎟

radius: 
1
x



Chap. 9 |  Interpretation of Smith Chart

• How to read it then? 
- Intersection of r- and x-circles = Normalized load impedance, zL = r + jx

∴ Actual impedance ZL = R0 · (r + jx)


- Point P

‣ Intersections of [r = 1.7] circle and [x = 0.6] circle

‣ zL = 1.7 + j0.6


- Point Psc: (Γr, Γi) = (–1, 0)

‣ Intersections of [r = 0] circle and [x = 0] circle

‣ zL = 0 (→ short-circuit)


- Point Poc: (Γr, Γi) = (1, 0)

‣ Represents infinite impedance (why?)

‣ zL = ∞ (→ Open-circuit)<Smith Chart in reflection coefficient plane>

zL !
ZL

R0
= RL

R0
+ j XL

R0
= r + jx   ↔    Γ = Γ r + jΓ i

Hint: Γ = ZL − R0

ZL + R0

⎛
⎝⎜

⎞
⎠⎟



Chap. 9 |  Smith Chart in Polar Coordinate

• Smith Chart in Polar coordinate 
- All the points in Γ plane can be represented as

Γ = Γ r + jΓ i ! Γ e jΘΓ
- Two intersections with Γr axis (PM and Pm)


‣ PM: Positive real Γ > 0

→ Purely resistive load ZL = RL


→ RL > R0 or r = RL / R0 > 1 


Previously, RL / R0 = S if RL > R0 (see slide 13-2) 
∴ r = S

∵Γ = RL − R0
RL + R0

⎛
⎝⎜

⎞
⎠⎟

The value of r-circle passing through PM  
= Standing-wave ratio, S

- Centered at origin (O) with radius of 0≤|Γ|≤1 & phase angle θΓ

- e.g.) At P with a load zL = r + jx, we can obtain Γ for that load

‣ Pm: Negative real Γ < 0

→ Purely resistive load ZL = RL


→ RL < R0 or r = RL / R0 < 1 


Previously, R0 / RL = S if RL < R0 (see slide 13-2) 
∴ r = 1/S

zL !
ZL

R0
= RL

R0
+ j XL

R0
= r + jx   ↔    Γ = Γ r + jΓ i



Chap. 9 |  Input impedance in Smith Chart (1/2)

• Smith Chart for input impedance Zi 
- Input impedance Zi looking toward the load at z’

Zi ′z( ) = V ′z( )
I ′z( ) = Z0

1+ Γe− j2β ′z

1− Γe− j2β ′z

⎡

⎣
⎢

⎤

⎦
⎥

- Normalized input impedance zi given as

zi ′z( ) = Zi ′z( )
Z0

= 1+ Γe
− j2β ′z

1− Γe− j2β ′z =
1+ Γ e j ΘΓ−2β ′z( )

1− Γ e j ΘΓ−2β ′z( )

∴ Our previous discussion is a special case of zi(z’) where z’ = 0

zi 0( ) = zL =
1+ Γ e jΘΓ

1− Γ e jΘΓ

- Magnitude |Γ| and S independent of z’, but only phase angle (θΓ – 2βz’) varies!


- When calculating zi(z’)

‣ Find the point A with |Γ| and θΓ for a given zL [= zi(0)]

‣ Rotate OA by an angle –2βz’ (i.e. clockwise direction)

‣ New point B represents zi(z’)


- What is 2βz’?

2β ′z = 2 2π
λ

′z = 4π ′z
λ

′z = λ
2
n  →   2πn ′z = λ

4
2n −1( )   →   π 2n −1( )

z’ → Half-wave length

Full-turns

z’ → Quarter-wave length

Half-turns



- Values on scale represent Δz’/λ 
- Outer scale


‣ “Wavelengths toward generator”

‣ Increasing z’ → Δz’ > 0 → –2βΔz’ < 0

‣ Clockwise rotation


- Inner scale

‣ “Wavelengths toward load”

‣ Decreasing z’ → Δz’ < 0 → –2βΔz’ > 0

‣ Counter-clockwise rotation


- If Δz’ = λ/2  →  Δz’/λ = 0.5 → –4π(Δz’/λ) = -2π [Full rotation]

- If Δz’ = λ/4  →  Δz’/λ = 0.25 → –4π(Δz’/λ) = -π [Half rotation]

Chap. 9 |  Input impedance in Smith Chart (2/2)

−2βΔ ′z = −4π Δ ′z
λ

Wavelength  
toward generator  

(Outer)

• Scales along the perimeter 
- Representing phase angle shift caused by length change Δz’

Wavelength  
toward load  

(Inner)



Chap. 9 |  Examples

• Example 1 
- Find the input impedance with given condition as

zL = 0,   R0 = 50 Ω( ),   ′z = 0.1λ

∵zL = r + jx = 0( )

• Procedure 
(1) Find intersection of r = 0 and x = 0 circles → Psc

(2) Move along perimeter by 0.1 (=z’/λ) [Clockwise] → P1

∵−4π ′z
λ
< 0⎛

⎝⎜
⎞
⎠⎟

(3) At P1, we read r = 0 and x ~ 0.725. Thus, zi = j0.725

(4) Finally, Zi = R0· zi = 50 · j0.725 = j36.3 (Ω)


** Result consistent as previously,

Zi = R0
ZL + jR0 tan βl( )
R0 + jZL tan βl( ) = jR0 tan βl( ) = jR0 tan 2π l

λ
⎛
⎝⎜

⎞
⎠⎟

= j50 tan36! = j36.3 Ω( )



Chap. 9 |  Examples

• Example 2 
- Find Γ, S, Zi at z’ = l and location of a voltage maximum with given condition

ZL = 260 + j180 Ω( ),   R0 = 100 Ω( ),   l = 0.434λ
• Procedure 

(1) Find the zL = ZL/R0 = 2.6 + j1.8 on the Smith Chart: P2 

(2) Obtain |Γ| of a circle centered at the origin and passing

Γ = ZL − R0
ZL + R0

= 0.6

(3) Now, to obtain θΓ, draw an extension line of OP2 to reach 
at P2’. Read the value 0.22 (=z’/λ, w.r.t. Psc) on the outer

P2 by simply plugging ZL and R0 into

θΓ = π − 4π ′z
λ
= 0.12π  (rad) = 21°scale. Thus,

(4) Now, intercept between the circle and positive-real axis 
gives r = S = 4.


(5) To find input impedance at z’ = l, extend the line OP2 to 
reach at P2’ and read 0.220 on outer scale. From there, 
rotate in the CW direction by 0.434 (= l/λ), reaching at 
0.154 at P3’. 



Chap. 9 |  Examples

• Procedure (Cont’d) 
(4) To find input impedance at z’ = l, extend the line OP2 to 

reach at P2’ and read 0.220 on outer scale. From there, 
rotate in the CW direction by 0.434 (= l/λ), reaching at 
0.154 at P3’. 

(∵0.22 + [0.5 – 0.066]) → 0.22 - 0.066) (0.5 is a full-turn)


(5) Find the intercept between the circle and the line OP3’ 
which gives P3.


(6) At P3, read r = 0.69 and x = 1.2.

(7) Thus, Zi = R0 · zi = 100 · (0.69 + j1.2) = 69 + j120 (Ω) 
(8) In going from P2 to P3, the circle intersects the positive 

real axis at PM with voltage maxima. Thus, voltage 
maxima appears at (0.25-0.22)/λ away from the load.

• Example 2 
- Find Γ, S, Zi at z’ = l and location of a voltage maximum with given condition

ZL = 260 + j180 Ω( ),   R0 = 100 Ω( ),   l = 0.434λ



Chap. 9 |  Examples

• Example 3 
- Find Γ, ZL, lm and Rm using the Smith Chart with given condition as

R0 = 50 Ω( ),   S = 3.0,    λ = 0.4 m( )
First voltage minima at ′zm = 0.05 m( )

• Procedure 
(1) On positive real-axis, PM represents r = S = 3.0 (= RL/R0)

(2) Then, we have circle of radius |Γ| = 0.5 (θΓ yet unknown)


(3) Intersection between negative real-axis and the circle

(4) : Pm [Γ < 0 → RL < R0] → Voltage minima at z’ = 0 


(see slide 13-2) 
(5) To find load impedance, move from Pm along perimeter 

by z’m/λ = 0.05/0.4 = 0.125 [in the CCW direction. Why?] 
(6) PL represents reflection coefficient → Γ = –j0.5

(7) At PL, Read r = 0.6, x = 0.8 → zL = 0.6 + j0.8

(8) Thus, ZL = R0 · zL = 30 – j40 (Ω)

(Meaning?)

∵ Γ = RL − R0
RL + R0

= 0.5
⎛

⎝⎜
⎞

⎠⎟



ZL

V ′z( )
Arbitrary termination

z’ = 0d

Rm < R0

lm

λ
2

Circuit I

Circuit II

Chap. 9 |  Examples

• Procedure (Cont’d) 
(9) Equivalent length lm and terminating resistance Rm can be 

found as

lm = λ
2
− ′zm = 0.2 − 0.05 = 0.15 (m)

Rm = R0
S

= 50
3

= 16.7 (Ω)

(Why?)
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Chap. 9 |  Contents

Sec 7. Impedance matching 

• Linear matching via quarter-wave transformer


• Parallel matching via single or double-stub approaches


• Admittance vs. impedance chart 

• Examples



Chap. 9 |  Impedance matching via Quarter-wave transformer

• Maximum power transfer in TR-line 
- Achieved under matched-load condition (i.e. ZL = Z0)

ΓL =
ZL − Z0
ZL + Z0

= 0 (No reflection at the load) S =
1+ ΓL

1− ΓL

= 1 (Smallest oscillation)

• Methods for impedance matching 
- For resistive load (ZL = RL) → Using Quarter-wave transformer

- For complex-valued load (ZL = RL + jXL) → Using single-stub or double-stub matching

<Unmatched impedance> 
Reflection occurs → Undesirable!

Zi = ′R0
RL + j ′R tanβl
′R + jRL tanβl

= ′R0
2

RL

• Quarter-wave transformer 
:TR-line with characteristic impedance R0’ extended by λ/4 and terminated with load RL


- Input impedance of quarter-wave transformer:

∵ tanβl = tan 2π
λ

⋅ λ
4

⎛
⎝⎜

⎞
⎠⎟ = tan

π
2

⎛
⎝⎜

⎞
⎠⎟ → ∞⎛

⎝⎜
⎞
⎠⎟

Zi = R0    →    ′R0
2

RL

= R0 ∴ ′R0 = RLR0

Zi = RL ≠ R0

Zi

R0

RL

R0

RLλ
4

′R0

<Quarter-wave transformer>

- To satisfy matching condition,

unknown



Chap. 9 |  Example: Quarter-wave transformer
• Quarter-wave transformers used for matching the loads (RL1 and RL2) with R0 = 50 (Ω). Power is fed “equally” to each load 

section. Obtain R01’ and R02’.
- Matching condition: input impedance at junction, Zi = R0

Zi =
1
Zi1

+ 1
Zi2

⎛
⎝⎜

⎞
⎠⎟

−1

= R0,

- Since power equally sent to each load section,

Zi1 = Zi2 = 2R0
- Each load connected with a quarter-wave transformer, so we have

Zi1 =
′R 2
01

RL1

= 2R0    →    ′R01 = 2R0RL1 = 2 ⋅50 ⋅64 = 80 Ω( )

Zi2 =
′R 2
02

RL1

= 2R0    →    ′R02 = 2R0RL2 = 2 ⋅50 ⋅25 = 50 Ω( )

• Obtain reflection coefficient and SWR for each section.

Γ1 =
RL1 − ′R01

RL1 + ′R01

= 64 − 80
64 + 80

= −0.11   →    S1 =
1+ Γ1

1− Γ1

= 1.25

Γ2 =
RL2 − ′R02

RL2 + ′R02

= 25 − 50
25 + 50

= −0.33   →    S2 =
1+ Γ2

1− Γ2

= 1.99

Zi1,Zi2 →
input impedance of  
each load section

∵Zi = ′R0
RL + j ′R tanβl
′R + jRL tanβl

= ′R0
2

RL



<Single-stub matching> 
Determine d (location)

and l (length) of stub

<Double-stub matching> 
Determine d0 (gap) and la 
and lb (lengths) of stubs

Chap. 9 |  Impedance matching for complex-valued load

• Impedance matching for complex-valued loads (ZL = RL + jXL) 
- Quarter-wave transformer does not work!


‣ Lossless quarter-wave extension line (real-valued R0’) ′R0 = 2R0ZL

Contradicting

• Single / double-stub matching 
- Open- or short-circuited line sections attached in parallel with main TR-line at an appropriate distance from the load 
- Purpose: to achieve [Zi at a joint B-B’] = R0 (i.e. Effectively cancelling out “imaginary part of ZL” by using parallel stubs)

- Short-circuit preferable compared to open-circuit, because

‣ ZL → ∞ hard to achieve

‣ Radiation from an open end

‣ Coupling to nearby objects

(Complex-valued!)



Chap. 9 |  Admittance Smith Chart

• Admittance Smith Chart 
- Previously, we read impedance on Smith Chart


- Similarly, we can read admittance via impedance-to-admittance conversion! 
- Normalized admittance:

YL !
1
ZL

   →    yL =
1
zL

where zL =
ZL

R0

= R0
ZL

= R0YL !
YL
Y0

= g + jb
* Y0: Characteristic admittance (1/R0)

* g: conductance

* b: susceptance

- Impedance and Admittance in terms of reflection coefficient

zL =
1+ Γ
1− Γ

   →    yL =
1− Γ
1+ Γ

= 1+ Γe jπ

1− Γe jπ
= 1+ ′Γ

1− ′Γ

where ′Γ = Γe jπ

‣ yL locates “diametrically opposite” to zL on |Γ|-circle (i.e. differed by an angle π)

Γ i

Γ r

′Γ i

′Γ r

zL

yL

r - circle

x - circle

g - circle

b - circle

PocPsc

Poc Psc

Impedance chart

Admittance chart

- Impedance-to-Admittance conversion and vice versa

‣ Rotate zL by 180º in Impedance Chart (Γ)  →  Chart becomes Admittance Chart with yL (Γ’)

‣ Rotate yL by 180º in Admittance Chart (Γ’)  →  Chart becomes Impedance Chart with zL (Γ)



Chap. 9 |  Single-stub matching (1/2)

• Parallel connection of short-circuited stub 
- Admittance more useful than impedance for “parallel” connection


‣ Admittance (Y): a measure of how well a circuit will allow a current to flow


- Impedance-matching condition

Yi = YL +Ys[ ]= Y0

Y0 = YB +Ys    →    1= YB
Y0

+ Ys
Y0

! yB + ys

Y ! 1
Z

⎛
⎝⎜

⎞
⎠⎟

‣ ys should be purely resistive  (Why?)

ys =
Ys
Y0

= R0
Rs

= R0
jR0 tanβl

= − j
tanβl

   →    ys ! − jbB    ! 1( )

‣ From normalized admittance equation,

yB = 1− ys = 1+ jbB    ! 2( )

- What to do next?

‣ From eqn. (1), we define length (l) of the stub

‣ From eqn. (2), we define distance (d) of the stub


‣ Note that ys (admittance of short-circuit stub) cancels 
imaginary part of yB (admittance of load section)


→ Our original purpose!

Yi: Total input admittance at B-B’ terminals toward load

YB: admittance of load section

Ys: admittance of short-circuited stub section

Y0: Characteristic admittance of main TR-line (1/R0)

- Normalized admittance



Chap. 9 |  Single-stub matching (2/2)
• Procedures 

(1) Find point PL for load admittance yL = g + jb in admittance Chart.

(2) Draw |Γ|-circle passing through PL (* Any points on |Γ|-circle represent 

load section of arbitrary length d). 
(3) Find intersections between |Γ|-circle and (g = 1) circle. These are denoted 

as points PB1 and PB2, representing two solutions for yB satisfying 
condition (2). (i.e. yB1 = 1 + jbB1, yB2 = 1 + jbB2)


(4) Find distances d1 and d2 for PB1 and PB2 from angles between [OPL and 
OPB1] and between [OPL and OPB2] in CW direction (why?)


(5) Find angle values for ys1 = –jbB1 (point Ps1) and ys2 = –jbB2 (point Ps2) that 
cancel out imaginary part of yB (Condition (1)). Choose lengths l1 and l2 
from angles between [OPsc and OPs1] and between [OPsc and OPS2] in 
CW direction. (Why OPsc?)

 ys ! − jbB    ! 1( )
 yB = 1+ jbB    ! 2( )

⎧
⎨
⎪

⎩⎪

PL

O

Γ - circle

g = 1 circle

PB1

PB2

to
wa

rd
 so

ur
ce

toward load

d1
λ

d2
λ

Psc

Ps2 ys2( )

Ps1 ys1( )
l1
λ

Conditions for matching

<Admittance Chart>

l2
λ



Chap. 9 |  Example: Single-stub matching
• Characteristic impedance of TR-line R0 = 50 (Ω) and terminated by ZL = 35 – j47.5 (Ω). 

Find position (d) and length (l) of short-circuited stub for impedance matching.

- Find normalized zL (=ZL/R0 = 0.7 – j0.95) on impedance chart. 

(1) Rotate zL by 180º to convert it to yL (Point PL). The chart now becomes 

admittance chart. We start from here.

(2) Draw |Γ|-circle passing through PL. 

(3) Find two intersecting points between |Γ|-circle and (g = 1)-circle (PB1 and PB2) 

that yield yB1 = 1 + j1.2 and yB2 = 1 – j1.2 (satisfying condition 1) 
(4) Determine d1 and d2 from angles between [OPL and OPB1] and between [OPL 

and OPB2] in CW direction.


(5) Read the angle values for ys1 = –j1.2 and ys2 = j1.2 (at points Ps1 and Ps2) 
(Satisfying condition 2). Determine lB1 and lB2 from angles between [OPsc and 
OPs1] and between [OPsc and OPs2].

PL PB1

PB2
zL = 0.7 − j0.95

Ps2

Ps1

0.109
0.168

O

0.332

 d1 = 0.168 − 0.109( )λ = 0.059λ
 d2 = 0.332 − 0.109( )λ = 0.223λ

⎧
⎨
⎪

⎩⎪

0.361

0.139

Psc

0.250

 lB1 = 0.361− 0.250( )λ = 0.111λ
 lB2 = 0.139 + 0.250( )λ = 0.389λ

⎧
⎨
⎪

⎩⎪

∴Shorter length preferred unless there is mechanical constraint! Thus, choose d1 and lB1.

g = 1 circle

Γ - circle



Chap. 9 |  Analytical solution for single-stub matching (1/2)
• Problem of Smith Chart approach 

- In actual case, Smith chart leads to error due to graphical approximation (i.e. inter- or extrapolation)

→ needs fine-adjustment of lengths


- Instead, we can analytically obtain the solutions (d and l)!


• Analytical approach 
- Input impedance of “load” section (i.e. toward ZL) at B-B’ junction:

ZL ,B− ′B = R0
ZL + jR0 tanβd
R0 + jZL tanβd

   →    zL ,B− ′B =
ZL ,B− ′B

R0

=
ZL + jR0 tanβd( ) / R0

R0 + jZL tanβd( ) / R0

= zL + j tanβd
1+ jzL tanβd

zL ,B− ′B = zL + j tanβd
1+ jzL tanβd

=
rL + jxL( )+ j t
1+ j rL + jxL( )t where zL ! rL + jxL and t ! tanβd

yB =
1

zL ,B− ′B

=
1+ j rL + jxL( )t
rL + jxL( )+ j t = gB + jbB

- Normalized Admittance is then given as

gB =
rL 1− xLt( )+ rLt xL + t( )

rL
2 + xL + t( )2 ,   bB =

rL
2t − 1− xLt( ) xL + t( )
rL

2 + xL + t( )2

- yB should satisfy condition (2) as

 ys ! − jbB    ! 1( )
 yB = 1+ jbB    ! 2( )

⎧
⎨
⎪

⎩⎪

Conditions for matching

where

gB =
rL 1− xLt( )+ rLt xL + t( )

rL
2 + xL + t( )2

= 1

→    rL −1( )t 2 − 2xLt + rL − rL
2 − xL

2( ) = 0   ! 3( )



Chap. 9 |  Analytical solution for single-stub matching (2/2)
• Analytical approach 

- Solutions to eqn. (3) can be divided into two cases:

 ys ! − jbB    ! 1( )
 yB = 1+ jbB    ! 2( )

⎧
⎨
⎪

⎩⎪

Conditions for matching

rL −1( )t 2 − 2xLt + rL − rL
2 − xL

2( ) = 0   ! 3( )

‣If rL = 1 t = tanβd = tan 2πd
λ

= − xL
2

   →    d
λ
= 1

2π
tan−1 xL

2
⎛
⎝⎜

⎞
⎠⎟

‣If rL ≠ 1 t =
xL ± xL

2 − rL −1( ) rL − rL2 − xL2( )
rL −1

= tanβd = tan 2πd
λ

depending on xL and rL → t: either negative or positive

d
λ
= 1

2π
tan−1 t    (t ≥ 0),    d

λ
= 1

2π
π + tan−1 t( )    (t < 0)

- Now, let’s obtain l. input impedance of stub at B-B’ given as:

Zs,B− ′B = R0
ZL + jR0 tanβl
R0 + jZL tanβl

= jR0 tanβl    →    zs,B− ′B =
Zs,B− ′B

R0

= j tanβl

- Admittance then given as:

 ys =
1

zs,B− ′B

= 1
j tanβl

= − jbB    →    tanβl = tan 2π l
λ

= 1
bB

(∵ Condition 2)

l
λ
= 1
2π

tan−1 1
bB

   (bB ≥ 0),    l
λ
= 1
2π

π + tan−1 1
bB

⎛
⎝⎜

⎞
⎠⎟

   (bB < 0)

Length solution



Chap. 9 |  Impedance matching via Double-stub matching

• Problem of single-stub matching 
- Frequency-dependence of location of the stub, d = Cλ (i.e. distance from load)

- As frequency of signal varies, location of the stub should change! → Practically hard from mechanical point of view


• Double-stub matching 
- Two short-circuited stubs attached at fixed locations and apart by d0 (arbitrarily chosen)

- Only need to adjust their lengths lA and lB for matching with ZL


- Matching condition:

Yi = YB +Ys[ ]= Y0 Yi: Total input admittance at B-B’

YB: admittance of load section at B-B’

Ys: admittance of short-circuited stub at B-B’

Y0: Characteristic admittance of main TR-line (1/R0)

- Normalized admittance:
Yi
Y0

= 1= YB
Y0

+ Ys
Y0
! yB + ys where ys = − jbB (Why?) 

Thus, 
yB = 1− ys = 1+ jbB

 ys ! − jbB    ! 1( )
 yB = 1+ jbB    ! 2( )

⎧
⎨
⎪

⎩⎪

Conditions for matching

∴ Conditions for double-stub matching same as 
those for single-stub matching!



Chap. 9 |  Example: double-stub matching (1/2)
• Characteristic impedance of TR-line R0 = 50 (Ω) and terminated by ZL = 60 + j80 (Ω). d0 = λ/8. Find lA and lB.

- First, locate yL = gL + jbL [= 1/zL = R0/ZL = 0.3 – j0.4] on Admittance chart.

(1) Draw (g = 1)-circle for yB = 1 + jbB (admittance of load section at B-B’).

(2) Rotate (g = 1)-circle by [λ/d0 = 1/8 = 0.125] in CCW direction (toward load).


g = 1 circle

d0
λ

= 0.125   →    4π d0
λ

= π
2

 rad( )

yL 0.3− j0.4( )

O

yA = ysA + yL = − jbsA( )+ gL + jbL( ) = gL − j bsA + bL( ) = 0.3− j bsA − 0.4( )

gL = 0.3 circle

(4) Thus, intersections [between “rotated” circle and gL = 0.3 circle] are two 
solutions with yA1 = 0.3 + j0.29 and yA2 = 0.3 + j1.75 (PA1 and PA2).


(5) Since ysA = yL – yA, we get ysA1 = j0.69, ysA2 = j2.15 (PAs1 and PAs2).

(6) Determine length lA1 and lA2 from angles between [OPsc and OPAs1] and 

between [OPsc and OPAs2] in CW direction.

PA1 0.3+ j0.29( )

PA2 0.3+ j1.75( )

(∵ short-circuit)

PAs1( j0.69)

PAs2 ( j2.15)

0.096

0.181

Psc 0.250

 lA1 = 0.096 + 0.250( )λ = 0.346λ
 lA2 = 0.181+ 0.250( )λ = 0.431λ

⎧
⎨
⎪

⎩⎪

(3) “Rotated” circle representing total admittance at A-A’, yA such that



Chap. 9 |  Example: double-stub matching (2/2)
• Characteristic impedance of TR-line R0 = 50 (Ω) and terminated by ZL = 60 + j80 (Ω). d0 = λ/8. Find lA and lB.

(7) Rotate OPA1 and OPA2 back in CW direction by d0/λ (=0.125) and find 
corresponding points on (g = 1)-circle. These are solutions yB (PB1 and PB2)


(8) Read points PB1 and PB2 yielding yB1 = 1 + j1.38 and yB2 = 1 – j3.5. 

(9) Thus, ysB should cancel imaginary part of yB such that ysB1 = –j1.38 and ysB2 = j3.5. 

These are denoted as points PBs1 and PBs2 on chart.

(10) Determine lengths lB1 and lB2 from angles between [OPsc and OPBs1] and between 

[OPsc and OPBs2].

O

PA1

PA2

PB1

PB2

Psc 0.250

PBs1 − j1.38( )

0.350

g = 1 circle

PBs2 j3.5( )
0.206

 lB1 = 0.350 − 0.250( )λ = 0.100λ
 lB2 = 0.206 + 0.250( )λ = 0.456λ

⎧
⎨
⎪

⎩⎪

• Special case 
- If yL lies within (g = 2)-circle, no solution 

exists! (No overlap with rotated circle)

- In this case, solution given as left

yL 0.3− j0.4( )


