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Chap. 11 |  Contents

Sec 1. Introduction 

Sec 2. Radiation Fields of Elemental Dipoles 

• Elemental electric dipoles


• Elemental magnetic dipoles



Chap. 11 |  Introduction to Chapter

• Antennas 
- Structures designed for radiating EM energy in a prescribed manner


(i.e., Directivity. Otherwise, huge loss!)

- Used for wireless transmission of info over long distances

- Examples


‣ Single straight wire

‣ Conducting loop

‣ Aperture at the end of waveguide

‣ Complex array of these elements


• What will we learn? 
- How E and H generated by antenna of particular geometry

- How E and H “directed” in a source-free region over long distances


• How do we do? 
- Obtain E and H by solving for A and V of antenna with sources (J and ρ)

Img src: NETGEAR Nighthawk, HomeDepot, Wikipedia



Chap. 11 |  Review of time-varying EM fields

• Time-varying EM waves originate from time-varying sources 
- E and H in terms of electric and magnetic potentials

B = ∇× A

∇2A− µε ∂
2 A
∂t 2

= −µJ

∇2V − µε ∂
2V
∂t 2

= − ρ
ε

⎧

⎨
⎪⎪

⎩
⎪
⎪

,

(∵Divergence-less)
spatial distribution of charges

Time-varying magnetic field

−∇V

− ∂A
∂t

- By plugging above into Maxwell’s equations, we get non-homogeneous equations in A and V:

A R,t( ) = µ
4π

J t − R u( )
R

d ′v
′V∫

V R,t( ) = 1
4πε

ρ t − R u( )
R

d ′v
′V∫

Solutions: Retarded potentials
- In phasor notation, solutions are given as

A = µ
4π

Je− jkR

R
d ′v

′V∫

V = 1
4πε

ρe− jkR

R
d ′v

′V∫

∇⋅ A+ µε ∂V
∂t

= 0if A and V satisfies

Lorentz Condition

Q: Do we have to evaluate these two integrals?

E = −∇V − ∂A
∂t (∵Faraday’s law)



Chap. 11 |  Procedures to obtain E and H for antenna

• Duality between E and H 
- Potentials (A and V) related by Lorentz condition as

∇⋅ A+ jωµεV = 0

- Sources (J and ρ) related by Equation of Continuity as

∇⋅ J = − jωρ

∴we need to evaluate only one integral for A to obtain H, then use Maxwell’s equations to obtain E

A = µ
4π

Je− jkR

R
d ′v

′V∫ H = 1
µ
∇× A ∇× H = J + jωεE (∵E and H in “source-free” region!  

→ How waves propagate in free space)

• Three steps for determining EM fields from a time-varying current source

A = µ
4π

Je− jkR

R
d ′v

′V∫

H = 1
µ
∇× A

E = 1
jωε

∇× H

(1) Determine A from J:

(2) Find H from A:

(3) Find E from H:



Chap. 11 |  Types of Antennas

• What types of antennas will we learn in Chap. 11? 
- Elemental electric dipole

- Elemental magnetic dipole (i.e. conducting loop)

- Finite-length linear antenna

- Antenna array


‣ Higher directivity & desirable radiation properties


• Reciprocity theorem 
- Good transmitting antenna = Good receiving antenna

magnetic dipoleelectric dipole Linear Antenna Antenna array

this class!

Img src: Team Blacksheep, mwrf.com



Chap. 11 |  Hertzian dipole (1/3)

• Elemental electric dipole 
- A short conducting wire of length dl terminated with two conductive spheres

- Uniform, sinusoidal current flowing in the wire

i t( ) = I cosωt = Re Ie jωt⎡⎣ ⎤⎦
- Total charge Q oscillating between two spheric ends

i t( ) = ±
dq t( )
dt

I = ± jωQ

- A pair of equal & opposite charges separated by a short distance 

→ Electric Dipole

p = qd p = azQdl “Hertzian” dipole

Heinrich Hertz  
Germany 

(1857-1894) 
*Proof of EM wave existence 

theorized by Maxwell 
*First experiment of radio wave 

using “dipole antenna”

q t( ) = Re Qejωt⎡⎣ ⎤⎦

• Procedures to obtain EM fields by Hertzian dipole 
(1) Determine A from J

A = µ0
4π

Je− jkR

R
d ′v

′V∫ where Jd ′v = az Idl ⋅δ R( ) A = az
µ0Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟

β = k0 =
ω
c
= 2π

λ
Img src: Wikipedia



Chap. 11 |  Hertzian dipole (2/3)

• Procedures to obtain EM field by Hertzian dipole 
(1) Determine A from J

- Let’s express A in Spherical coordinates

where

(2) Determine H from A

A = az
µ0Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟

az = aR cosθ − aθ sinθ( )

AR = Az cosθ = µ0Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
cosθ

Aθ = −Az sinθ = − µ0Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
sinθ

Aφ = 0

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

A = aRAR + aθAθ + aφAφ

H = 1
µ0

∇× A = aφ
1

µ0R
∂
∂R

RAθ( )− ∂AR

∂θ
⎡
⎣⎢

⎤
⎦⎥

∇× A = 1
R2 sinθ

aR aθR aφRsinθ
∂
∂R

∂
∂θ

∂
∂φ

AR RAθ RsinθAφ
= −aφ

Idl
4π

β 2 sinθ 1
jβR

+ 1
jβR( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

(∵Azimuthal symmetry)
∂
∂φ

→ 0,   Aφ = 0



Chap. 11 |  Hertzian dipole (3/3)

E = 1
jωε

∇× H = 1
jωε0

aR
1

Rsinθ
∂
∂θ

Hφ sinθ( )− aθ 1R
∂
∂R

RHφ( )⎡
⎣⎢

⎤
⎦⎥

ER = − Idl
4π

η0β
2 2cosθ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Eθ = − Idl
4π

η0β
2 sinθ 1

jβR
+ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Eφ = 0

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

where

η0 =
µ0

ε0

≅ 120π  Ω( )Here,

Hφ = − Idl
4π

β 2 sinθ 1
jβR

+ 1
jβR( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

ER = − Idl
4π

η0β
2 2cosθ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Eθ = − Idl
4π

η0β
2 sinθ 1

jβR
+ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

• EM fields by Hertzian dipole

Fairly complicated to analyze!

Near-field &  
Far-field 

Approximations!

• Procedures to obtain EM field by Hertzian dipole 
(3) Determine E from H



• Near-field approximation 
- In the region near Hertzian dipole (βR = 2πR/λ << 1  →  2πR << λ)

Chap. 11 |  Near-field by Hertzian dipole

Hφ = − Idl
4π

β 2 sinθ 1
jβR

+ 1
jβR( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

ER = − Idl
4π

η0β
2 2cosθ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Eθ = − Idl
4π

η0β
2 sinθ 1

jβR
+ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

e− jβR = 1− jβR −
βR( )2
2

+!≅ 1
⎛

⎝⎜
⎞

⎠⎟

Hφ ≅
Idl
4πR2

sinθ

ER ≅ − p
4πε0R

3 2cosθ

Eθ ≅ − p
4πε0R

3 sinθ

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Only leading 
term

where p =Qdl

was used

for derivation

I = ± jωQ

• Characteristics of near-field 
- Eθ and ER are identical to those by a static electric dipole (Chap. 3)

∴Near-fields of oscillating electric dipole = Quasi-static fields

∵E = p
4πε0R

3 aR2cosθ + aθ sinθ( )⎛
⎝⎜

⎞
⎠⎟



• Far-field approximation 
- In the region where βR = 2πR/λ >> 1  →  2πR >> λ)

Chap. 11 |  Far-field by Hertzian dipole

Hφ = −aφ
Idl
4π

β 2 sinθ 1
jβR

+ 1
jβR( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

ER = − Idl
4π

η0β
2 2cosθ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Eθ = − Idl
4π

η0β
2 sinθ 1

jβR
+ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

e− jβR = 1− jβR −
βR( )2
2

+!≅ 1
⎛

⎝⎜
⎞

⎠⎟

Only leading 
term

• Characteristics of far-field 
- Eθ and Hφ are in time phase and in space quadrature

- Ratio Eθ / Hφ = η0 : Intrinsic impedance of medium → Far-fields = a plane wave

- R (distance from source)↑ → Magnitude of far-fields↓

Hφ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
β sinθ

Eθ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
η0β sinθ



Chap. 11 |  Elemental magnetic dipole

• Procedures to obtain EM field by elemental magnetic dipole 
- Small conducting loop of radius b carrying time-harmonic current i(t) = Icosωt 
- Vector phasor magnetic moment:

m = az Iπb
2 = azm   A ⋅m2( )

(1) Determine A from J

A = µ0I
4π

e− jβR1

R1
d ′l!∫

Time-retardation term

e− jβR1 = e− jβRe− jβ R1−R( ) ≅ e− jβR 1− jβ R1 − R( )⎡⎣ ⎤⎦

A = µ0I
4π

e− jβR 1+ jβR( ) d ′l
R1!∫

− jβ d ′l!∫
⎡

⎣
⎢

⎤

⎦
⎥ (∵closed-line integral)

= b
2 sinθ
πR2

A = aφ
µ0m
4πR2

1+ jβR( )e− jβR sinθ where m = Iπb2



Chap. 11 |  Duality: electric and magnetic dipoles

• Procedures to obtain EM field by Magnetic dipole 
(2) Obtain E and H from A

H = 1
µ
∇× A  and  E = 1

jωε
∇× H

EM fields by oscillating “Magnetic” dipole EM fields by oscillating “Electric” dipole

Idl = jβm,

Eφ = − jωµ0m
4π

β 2 sinθ 1
jβR

+ 1
jβR( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

HR = − jωµ0m
4πη0

β 2 cosθ 1
jβR( )2

+ 1
jβR( )3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Hθ = − jωµ0m
4πη0

β 2 sinθ 1
jβR

+ 1
jβR( )2

+ 1
jβR( )3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

Hφ = − Idl
4π

β 2 sinθ 1
jβR

+ 1
jβR( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

ER = − Idl
4π

η0β
2 2cosθ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

Eθ = − Idl
4π

η0β
2 sinθ 1

jβR
+ 1

jβR( )2
+ 1

jβR( )3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
e− jβR

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

Ee =η0Hm

He = − Em
η0

If

Principle of Duality 
Both are solutions  

of Maxwell’s Equations

Observations 
- Eθ for electric dipole and Eφ for magnetic dipole 

have the same pattern function |sinθ|

- Both space and time quadrature

- Combination of two → Antenna with circular 

polarization (Good for signal reception in 
satellite communication!)
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Chap. 11 |  Contents

Sec 3. Antenna Patterns and Antenna Parameters 

• Radiation patterns


• Characteristic parameters


- Main beam width


- Side lobes level


- Directivity


- Power gain


- Radiation efficiency



Chap. 11 |  Radiation pattern of Antenna (1/2)

• Radiation pattern of Antennas 
- Our major interest: Far fields = Radiation fields

- Radiation pattern


‣ Relative far-field strength vs. direction at a fixed distance (R) from antenna

‣ Three dimensional (varying with θ and φ in spherical coordinate)


• Visualization of radiation pattern in practice 
- E-plane: Plane containing E-field vector


‣ |Normalized field strength| vs. θ for constant φ  
- H-plane: Plane containing H-field vector


‣ |Normalized field strength| vs. φ for constant θ


• Example: Hertzian dipole 

Eθ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
η0β sinθ    →    Eθ ∝ sinθ

φ = 0

θ = π/2

|sinθ|

θ

φ

1

x

y

** No power radiation 
along antenna’s axis

E-plane

H-plane

z

Hφ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
β sinθ    →    Hφ ∝1

(for φ = 0)

(for θ = π/2)



Chap. 11 |  Radiation pattern of Antenna (2/2)

• Radiation pattern of practical antennas 
- Quite complicated!

- Comprised of major maximum (Main beam) & several minor maxima (side lobes)

- Useful to plot in rectangular coordinates in dB scale


• Important characteristic parameters 
(1) Width of main beam


- Sharpness of main radiation region (the narrower, the better!)

- Angular width between half-power (i.e. -3 dB) points


(2) Levels of side lobes

- Regions of unwanted radiation (the smaller, the better!)

- In modern antennas, maintained at -40dB or even smaller


(3)Directivity gain (**) 
- A measure of ability to concentrate radiated power in a given direction

<Typical H-plane pattern>

Main beam

Side lobes

<H-plane pattern in dB scale> 
(in rectangular coordinates)

Beam width



Chap. 11 |  Directivity of antenna (1/2)

• Directive gain 
- A measure of ability to concentrate radiated power in a given direction

GD θ ,φ( ) ! Radiation intensity in a given direction with θ ,φ( )
Average radiation intensity

- Radiation “intensity”: Time-average radiated power per unit solid angle (W/sr)

- Solid angle: 3D angle of…


‣ A measure of field-of-view from a particular observing point

‣ A measure of how large the object appears to an observer looking from that point

‣ Unit: Steradian [sr]

Earth

Moon

Sun

Why Moon and Sun appear to be same size 
from Earth? Why do you see a solar eclipse?

Ω Subtended solid angle

Ω ! a
R2

where a is spherical surface area and R is the radius of the sphere

๏ Ω = 1 (sr) when a = R2 (i.e. Unit solid angle)


๏ Ω = 4π (sr) when a = 4πR2 (i.e. Max solid angle)

- Radiation intensity:

U W/sr( ) = Pav ⋅a = Pav ⋅R2
Spherical area per unit solid angle, i.e. a = R2 (m2/sr)

Time-average power per unit area (W/m2)

Img src: Socratic



Good example of directive antenna → wifi router!

Chap. 11 |  Directivity of antenna (2/2)

• Directive gain 
- Radiation intensity: U W/sr( ) = Pav ⋅a = Pav ⋅R2

- “total” time-average radiated power is given by

Pr = U dΩ!∫ = Pav ⋅ds!∫    W( )

- Thus, directive gain is given by

GD θ ,φ( ) = U θ ,φ( )
1
4π

U θ ,φ( )dΩ!∫
=
4πU θ ,φ( )

Pr

GD θ ,φ( ) ! Radiation intensity in a given direction with θ ,φ( )
Average radiation intensity

where dΩ = sinθdθdφ
Differential solid angle

* What if antenna is isotropic (= Omni-directional)? 

→ GD(θ, φ) = 1 [But, practically not useful!)

• Directivity = Maximum directive gain

D ! max GD θ ,φ( )⎡⎣ ⎤⎦ =
4πUmax

Pr

Img src: Researchgate, countrymilewifi.com



GD θ ,φ( ) = U θ ,φ( )
1
4π

U θ ,φ( )dΩ!∫
=
4πU θ ,φ( )
U θ ,φ( )dΩ!∫

=
4πU θ ,φ( )

Pr

Chap. 11 |  Example for directivity
• Obtain directive gain & directivity of Hertzian dipole. 

- Directive gain (GD)

where U is radiation intensity (W/sr) and Pr is total radiated power (W)

U θ ,φ( ) = Pav θ ,φ( ) ⋅R2
‣ (Numerator) Radiation intensity U is given by

where Pav θ ,φ( ) = 1
2
Re E × H* = 1

2
Eθ Hφ [time-average power per unit area in direction of (θ, φ)]

Here,

Eθ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
η0β sinθ

Hφ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
β sinθ

⎧

⎨
⎪
⎪

⎩
⎪
⎪

for a Hertzian dipole

Pav θ ,φ( ) = Idl( )2
32π 2

η0β
2

R2
sin2θ    →    U θ ,φ( ) = Pav θ ,φ( ) ⋅R2 = Idl( )2

32π 2
η0β

2

R2
sin2θ    W( )

‣ (Denominator) Total radiated power can be evaluated as

U θ ,φ( )dΩ!∫ = U θ ,φ( )sinθ dθ dφ
0

π

∫0

2π

∫ =
Idl( )2
32π 2

η0β
2

R2
sin3θ dθ dφ

0

π

∫0

2π

∫ =
Idl( )2
32π 2

η0β
2

R2
⋅ 4
3

∴GD θ ,φ( ) = 4πU θ ,φ( )
U θ ,φ( )dΩ!∫

= 3
2
sin2θ

Directive gain

Directivity

∴D = max GD θ ,φ( )⎡⎣ ⎤⎦ =
3
2
→1.76 dB( )



Chap. 11 |  Directivity of a few antennas

Hertzian antenna = 1.8 (dBi) Single patch antenna = 8.8 (dBi)

Patch array antenna = 18 (dBi)Yagi antenna = 15 (dBi)

Typically used for mobile phones!

Img src: Cisco



Chap. 11 |  Additional characteristic parameters of Antenna

• Power gain (Gp)

GP !
Max radiation intensity in a particular direction by the subject antenna

Radiation intensity in that direction by the isotropic antenna
= Umax

Uiso

Isotropic antenna

Subject antenna

= (Both antennas excited by same power source)

- Total power generated by the source

Pi = Pr + Pl where Pr is total radiation power and Pl is total ohmic loss

Unit solid angle

- For isotropic source, Pi radiates isotropically in all directions, Uiso =
Pi
4π

   W/sr( )    →    GP =
4πUmax

Pi

• Radiation efficiency of Antenna (ηr)

ηr =
Pr
Pi

= Pr
Pr + Pl

   %( )

Since GP =
4πUmax

Pi
and D = 4πUmax

Pr
(Power gain) (Directivity)

ηr !
Pr
Pi

=
Gp

D

• Radiation resistance (Rr) 
- Hypothetical resistance that would dissipate radiation power of 

antenna if current in resistance = max current along antenna

- A measure of amount of power radiated by antenna

- The higher, the better! Rr !

Pr
I 2



Chap. 11 |  Example for radiation resistance

• Example – Obtain radiation resistance of Hertzian dipole if we assume Pl = 0 (no ohmic loss).

Rr !
Pr
I 2

- Total power generated by the source

where Pr is total radiated power and I is maximum current flowing in dipole

i.e., i(t) = IRe[ejωt] → max[i(t)] = I

→ Pr =
1
2

EθHφ
*R2 sinθ dθ dφ

0

π

∫0

2π

∫

=
I 2 dl( )2
32π 2 η0β

2 sin3θ dθ dφ
0

π

∫0

2π

∫ =
I 2 dl( )2
12π

η0β
2 = I 2

2
80π 2 dl

λ
⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

Pr = U dΩ!∫ = R2Pav dΩ!∫ where Pav θ ,φ( ) = 1
2
Re E × H* = 1

2
Eθ Hφ and dΩ = sinθdθdφ

Eθ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
η0β sinθ

Hφ = j Idl
4π

e− jβR

R
⎛
⎝⎜

⎞
⎠⎟
β sinθ

⎧

⎨
⎪
⎪

⎩
⎪
⎪

EM fields by Hertzian dipole

∴Rr =
Pr
I 2

= 80π 2 dl
λ

⎛
⎝⎜

⎞
⎠⎟

2

   Ω( )
★ Hertzian dipole vs. half-wave dipole antennas

‣ dl << λ ~ 0.01 λ → Rr ~ 0.08 (Ω) for Hertzian dipole

‣ Input impedance of Hertzian dipole largely capacitive → Hard to match!

‣ Half-wave dipole (l = λ/2) → Rr ~ 73 (Ω)

‣ Input impedance of Half-wave dipole purely resistive → Easy to match!



Chap. 11 |  Example for radiation efficiency

• Example – Obtain radiation efficiency of Hertzian dipole made of a metal wire of radius a and length d.

Pl =
1
2
I 2Rl

ηr =
Pr

Pr + Pl
= Rr
Rr + Rl

= 1
1+ Rl Rr

Pr =
1
2
I 2Rr

: Total Ohmic loss

: Total radiated power

where Rl = Rs
dl
2πa

⎛
⎝⎜

⎞
⎠⎟

Rs =
π fµ0
σ

Here, : Surface resistance 

(Effective at high frequency due to skin effect)

λ = c
f
= 3×108

1.5 ×106 = 200 m( )

Rs =
π × 1.5 ×106( )× 4π ⋅10−7( )

5.80 ×107
= 3.20 ×10−4 Ω( )

Rl =
π fµ0
σ

= 3.20 ×10−4 × 2
2π ⋅1.8 ×10−3

⎛
⎝⎜

⎞
⎠⎟ = 0.057 Ω( )

Rr = 80π
2 dl

λ
⎛
⎝⎜

⎞
⎠⎟
2

= 80π 2 2
200

⎛
⎝⎜

⎞
⎠⎟
2

= 0.079 Ω( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

a

dl

- If f = 1.5 (Mhz), a = 1.8 (mm), dl = 2 (m)

∴ηr =
Rr

Rl + Rr
= 0.079
0.079 + 0.057

= 58%ηr =
Pr

Pr + Pl
= Rr
Rr + Rl

= 1
1+ Rl Rr

= 1

1+ Rs
160π 3

λ
a

⎛
⎝⎜

⎞
⎠⎟

λ
dl

⎛
⎝⎜

⎞
⎠⎟

For Hertzian dipole under assumption that 

λ/a <<1 and  λ/dl << 1

c.f.) 95% for half-wave dipole antenna


