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Time-harmonic Maxwell’s equations 
in phasor notation

∇× E = −µ ∂H
∂t

∇× E = −µ jωH( )

∇× H = J + ε ∂E
∂t

∇× H = J + ε jωE( )

∇⋅H = 0 ∇⋅H = 0

∇⋅E = ρ
ε

∇⋅E = ρ
ε

Chap. 8 |  Time-harmonic (sinusoidal) electromagnetics

E R,t( ) = Re E(R)e jωt⎡⎣ ⎤⎦ where E(R) is a vector phasor with direction, magnitude, and phase information

time-harmonic source ρ and J  
with a given frequency ω

time-harmonic E and H fields  
with the same frequency ω

Maxwell’s Equations

Differential & Integral of 
Time-varying vector Vector phasor

∂
∂t
E R,t( ) jωE(R)

E R,t( )dt∫
1
jω
E(R)

Phasor notation



∇× E = −µ ∂H
∂t

∇× H = J + ε ∂E
∂t

∇⋅H = 0

∇⋅E = ρ
ε

∇× E = −µ ∂H
∂t

∇× H = ε ∂E
∂t

∇⋅H = 0

∇⋅E = 0

∇2E − µε ∂
2E
∂t 2

= 0

∇2H − µε ∂
2H
∂t 2

= 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

∇× E = − jωµH

∇× H = J + jωεE

∇⋅H = 0

∇⋅E = ρ
ε

∇× E = − jωµH

∇× H = jωεE

∇⋅H = 0

∇⋅E = 0

∇2E +ω 2µεE = 0
∇2H +ω 2µεH = 0

⎧
⎨
⎪

⎩⎪

Chap. 8 |  Wave equations in source-free, lossless media

Phasor 
Notation

Time-varying 
vector fields

Maxwell’s Equations Homogeneous Helmholtz Equation(ρ = 0, σ = 0 → J = σE = 0)

∵
∂2E
∂t 2

→ − jω( )2 E⎛
⎝⎜

⎞
⎠⎟

∇2E + k2E = 0
∇2H + k2H = 0

⎧
⎨
⎪

⎩⎪
k =ω µεwhere



Chap. 8 |  Plane waves in free space (1/5)
Homogeneous Helmholtz’s equations for free space

∇2E +ω 2µ0ε0E = 0   →    ∇2E + k0
2E = 0 where k0 =ω µ0ε0 = ω

c
  (rad/m) is free-space wavenumber

“Plane” wave 
: a wave whose wavefronts (i.e. surfaces of constant 
phase) are parallel planes normal to propagation direction

E = axEx

“Uniform” Plane wave 
Plane wave characterized by “uniform” E over the wavefronts 

: E has uniform magnitude and phase on the plane normal to z-axis (i.e. xy plane)

where
∂2Ex

∂x2
= 0 and

∂2Ex

∂y2
= 0

∇2E + k0
2E = 0  →   ax

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ k0

2⎛
⎝⎜

⎞
⎠⎟
Ex = 0  →   d

2Ex

dz2
+ k0

2Ex = 0

x

y

z

Img srcs: miniphysics.com, Wikipedia
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Chap. 8 |  Plane waves in free space (2/5)
Uniform Plane wave propagating in z-direction

: ODE because Ex is only a function of z
d 2Ex

dz2
+ k0

2Ex = 0

Ex z( ) = Ex
+ z( )+ Ex

− z( ) = E0+e− jk0z + E0−e jk0z
propagating in –z direction
propagating in +z direction

Uniform plane wave in real time (traveling wave)

Ex
+ z,t( ) = Re Ex

+ z( )e jωt⎡⎣ ⎤⎦ = Re E0
+e− jk0ze jωt⎡⎣ ⎤⎦

= Re E0
+e j ωt−k0z( )⎡⎣ ⎤⎦ = E0

+ cos ωt − k0z( )

At successive times, the curve travels in the positive z direction

Traveling waveEx z,t( ) = E0 cos ωt − k0z( )

(Let’s omit “+” for simplicity)

gif src: Wikipedia



Chap. 8 |  Plane waves in free space (3/5)
Uniform plane wave in real time (traveling wave) 
• Phase velocity 

: velocity of propagation of an equi-phase front 

(= traveling speed of the point of particular phase)

Ex z,t( ) = E0 cos ωt − k0z( )

ωt − k0z = Constant up =
dz
dt

= ω
k0

= 1
µ0ε0

= c

• Wavenumber and wavelength

k0 =ω µ0ε0 = ω
c
= 2π f

c
= 2π
λ0

   (rad/m)

λ0 =
c
f

   (m)

: the number of waves per unit distance

∴How strongly (many times) the wave oscillates (Strength of the oscillation)

: How long the wave travels in one oscillation

cos ωt − k0z( ) = Constant



Chap. 8 |  Plane waves in free space (4/5)
Traveling wave in real time 
• Associated magnetic field

Since ∇× E = − jωµ0H, ∇× E =

ax ay az
∂
∂x

∂
∂y

∂
∂z

Ex z( ) 0 0

= − jωµ0 axHx + ayHy + azHz( )

we get Hx = 0,      Hy =
1

− jωµ0
∂Ex z( )
∂z

,      Hz = 0.

∵
∂Ex z( )
∂z

= ∂
∂z

E0e
− jk0z( ) = − jk0Ex z( )⎛

⎝⎜
⎞
⎠⎟

Here, Hy z( ) = 1
− jωµ0

∂Ex z( )
∂z

= 1
− jωµ0

− jk0Ex z( )( )    

Hy z( ) = k0
ωµ0

Ex z( ) = 1
η0
Ex z( ) η0 =

ωµ0

k0

= ωµ0

ω µ0ε0

= µ0

ε0

≅ 377 (Ω)where is intrinsic impedance of free space.

Instantaneous expression for magnetic field

H z,t( ) = ayHy z,t( ) = ay Re Hy z( )e jωt⎡⎣ ⎤⎦ = ay
E0
η0
cos ωt − k0z( )



Chap. 8 |  Plane waves in free space (5/5)
Characteristics of uniform plane wave

E z,t( ) = ax Re Ex z( )e jωt⎡⎣ ⎤⎦ = axE0 cos ωt − k0z( )
H z,t( ) = ayRe Hy z( )e jωt⎡⎣ ⎤⎦ = ay

E0
η0
cos ωt − k0z( )

⎧

⎨
⎪

⎩
⎪

Img src: inspirehep.net

E z,t( )
H z,t( ) ≠η0 =

Ex z( )
Hx z( )

• E(z,t) and H(z,t) are in phase


• The ratio of magnitudes of E- and H-fields = intrinsic impedance of the medium

Should be obtained from Phasors!

• Both E(z,t) and H(z,t) are transverse (or normal) to propagation direction (z)


• E(z,t) and H(z,t) are perpendicular to each other

Transverse Electromagnetic (TEM) Waves

H

E

http://inspirehep.net


Chap. 8 |  Transverse Electromagnetic Waves (1/4)
Uniform plane wave propagating in “an arbitrary direction”

E z( ) = E0e− jkz :Uniform plane wave propagating “in the +z-direction”E R( ) = E0e− jk⋅R = E0e− jkan ⋅R

where k = axkx + ayky + azkz = kan is wavenumber vector where

R = axx + ayy + azz

k = kx
2 + ky

2 + kz
2 and an denotes propagation direction.

Here, is position vector.

In a source-free region, ∇⋅E = 0

∇⋅E = ∇⋅ E0e
− jk⋅R( ) = e− jk⋅R( )∇⋅E0 + E0 ⋅∇ e− jk⋅R( )

∇ e− jk⋅R( ) = − jke− jk⋅R∇⋅ fA( ) = f∇⋅ A+ A ⋅∇f

∇⋅E = − j E0 ⋅ k( )e− jk⋅R = 0 ∴E0 ⋅ k = E0 ⋅ an = 0 E-field is transverse (normal) to  
propagation direction!

• E-field vs. propagation direction



Chap. 8 |  Transverse Electromagnetic Waves (2/4)
Uniform plane wave propagating in “an arbitrary direction”

• Associated Magnetic field

Since ∇× E = − jωµH,

H R( ) = − 1
jωµ

∇× E R( ) = 1
η
an × E R( )

= 1
η
an × E0( )e− jk⋅R = H0e

− jk⋅R

where η = ωµ
k

= µ
ε

   (Ω) : Intrinsic impedance of the medium

∴H0 ⋅ k = H0 ⋅ an = 0 H-field is also transverse (normal) to  
propagation direction! ∴E0 ⋅ k = E0 ⋅ an = 0c.f.)

• A uniform plane wave propagating in an  

= Transverse Electromagnetic (TEM) wave such that E ⊥ H and both E&H are normal to an

• Relationship between H(R) & E(R)

E R( ) = −ηan × H R( )

∇× E R( ) = ∇× E0e
− jk⋅R( ) = e− jk⋅R ∇× E0( )−∇ e− jk⋅R( )× E0

∇× fA( ) = f ⋅ ∇ × A( )+∇f × A

= − jk × E0e
− jk⋅R( )

= − jkan × E R( ) where k =ω µε



Chap. 8 |  Transverse Electromagnetic Waves (3/4)
Polarization of plane waves

: describing time-varying behavior of the E-field at a given point in space

E = axExe.g.) E-field of plane wave : Linearly polarized in x-direction

* H-field does not need to be specified → H-field can be determined by E-field by H R( ) = 1
η
an × E R( )

• Superposition of two linearly-polarized waves

E z( ) = axE1 z( )+ ayE2 z( )
= axE10e

− jkz − ay jE20e
− jkz − j = e

− jπ
2

Polarized in x-direction
Polarized in y-direction, but lagging in time phase by 90o (π/2)

Example: Circularly polarized wave

• Instantaneous expression for E

E z,t( ) = Re E z( )e jωt⎡⎣ ⎤⎦ = Re axE1 z( )+ ayE2 z( ){ }e jωt⎡⎣ ⎤⎦

= axE10 cos ωt − kz( )+ ayE20 cos ωt − kz − π
2

⎛
⎝⎜

⎞
⎠⎟



Chap. 8 |  Transverse Electromagnetic Waves (4/4)

Example: Circularly polarized wave

E z,t( ) = axE10 cos ωt − kz( )+ ayE20 cos ωt − kz − π
2

⎛
⎝⎜

⎞
⎠⎟

E 0,t( ) = axE10 cosωt + ayE20 sinωt

x

y

z

E 0,t( )ω

If E10 = E20, wave is circularly polarized


If E10 ≠ E20, wave is elliptically polarized

• Propagation direction 
‣ Right-hand circularly polarized wave


-Thumb of the right hand: propagation direction


-Fingers of the right hand: rotation of E 

‣ left-hand circularly polarized wave


-Thumb of the left hand: propagation direction


-Fingers of the left hand: rotation of E

E 0,t( ) = axE10 cosωt + ayE20 sinωt

E 0,t( ) = axE10 cosωt − ayE20 sinωt
Circularly polarized wave = 

Sum of TWO linearly polarized waves in both space and time quadrature

gif src: gfycat.com



Chap. 8 |  Doppler Effect (1/2)
Doppler effect
• Frequency of the wave sensed by the receiver ≠ Frequency of the wave emitted by the source 

when there is relative motion between them

T R
θ

u

at t = 0

r0

T Rat t = Δt

T’
uΔt

u

r’

Time (t1) that EM wave 

emitted at t = 0 from T will reach at R

Time (t2) that EM wave 

emitted at t = Δt from T’ will reach at R

t1 =
r0
c t2 = Δt + ′r

c
= Δt + 1

c
r0
2 − 2r0 uΔt( )cosθ + uΔt( )2

θ

≅ Δt + r0
c
1− uΔt

r0
cosθ

⎛
⎝⎜

⎞
⎠⎟

if  uΔt( )2 ≪ r0
2

• Elapsed time at R when the second wave arrives 
after the first wave arrived

t2 − t1 = Δ ′t = Δt 1− u
c
cosθ⎛

⎝⎜
⎞
⎠⎟

• If Δt = 1/f: a period of the time-harmonic source,

′f = 1
Δ ′t

= f

1− u
c
cosθ

≅ f 1+ u
c
cosθ⎛

⎝⎜
⎞
⎠⎟ if  u

c
⎛
⎝⎜

⎞
⎠⎟

2

≪1



Chap. 8 |  Doppler Effect (2/2)
Doppler effect

T R

′f = 1
Δ ′t

= f

1− u
c
cosθ

≅ f 1+ u
c
cosθ⎛

⎝⎜
⎞
⎠⎟

T R

f
f’

f
f’

f: frequency of the transmitted wave from T 
f’: frequency of the received wave at R

f’ > f 
When T moves toward R

f’ < f 
When T moves away R

Doppler effect example

Doppler effect caused by 
• motion of the source 
• motion of the observer 
• motion of the medium

• Police speed gun (HW!) 
• Speed measurements for stars or galaxies 

- Approaching stars: blue shift

- Receding stars: red shift

Redshift of spectral lines in the optical spectrum of 
a distant galaxy (bottom) vs. that of the sun (top) 

Doppler effect simulation

img, gif src: Wikipedia



Electromagnetics 
<Chap. 8> Plane Electromagnetic waves 

Section 8.1 ~ 8.4 

(2nd class of week 3)

Jaesang Lee

Dept. of Electrical and Computer Engineering


Seoul National University

(email: jsanglee@snu.ac.kr)

Textbook: Field and Wave Electromagnetics, 2E, Addison-Wesley

mailto:jsanglee@snu.ac.kr


Chap. 8 |  Contents for 2nd class of week 3

Sec 3. Plane waves in “lossy” media 

Sec 4. Group velocity



Chap. 8 |  Plane waves in source-free “Lossy Media”

∇2E + kc
2E = 0 where

Wave equations

kc =ω µεc is a complex wavenumber

Propagation constant γ

γ = jkc = jω µεc    (m−1) Conventional notation used in transmission-line theory

Since complex permittivity is given by εc = ε − j σ
ω
,

γ = jω µε 1− j σ
ωε

⎛
⎝⎜

⎞
⎠⎟ =α + jβ

∇2E − γ 2E = 0
E = axEx = axE0e

−γ z

Solution: transverse electromagnetic (TEM) wave propagating in z-direction

(wave is linearly polarized in the x-direction)

Ex = E0e
−γ z = E0e

−αze− jβz
e−αz

e− jβz

: Attenuation factor

: Phase factor

α: Attenuation constant (Np/m)

β: phase constant (rad/m)

Plane wave in terms of γ



Chap. 7 |   Complex permittivity (Review)

Complex permittivity

∇× H = J + jωεE∇× H = J + ∂D
∂t

= σ + jωε( )E = jω ε + σ
jω

⎛
⎝⎜

⎞
⎠⎟
E = jωεcE

where εc = ε − j σ
ω

   (F/m) is complex permittivity

• Out-of-phase polarization 
‣ When external time-varying E-field applied to material bodies → Slight displacements of bound charges (electric dipoles)


‣ As frequency of time-varying E-field increases

- Inertia of charged particles resists against E-field

- Inertia of charged particles prevents dipoles from being in phase with field change → Frictional damping


• Ohmic loss 

• if materials have sufficient amount of free charges

Physical origin of complex permittivity

εc = ε − j σ
ω

(representing damping and ohmic losses)



Chap. 8 |  Plane wave in “Low-loss” dielectrics (1/2)
Meaning of low-loss?

εc = ε − j σ
ω

= ε 1− j σ
εω

⎛
⎝⎜

⎞
⎠⎟

σ is non-zero, but small →

= ′ε − j ′′ε = ′ε 1− j ′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟

σ
εω
≪1   or   ′′ε

′ε
≪1

Propagation constant

γ ! jkc = jω µεc = jω µ ′ε 1− j ′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟

1
2
≅ jω µ ′ε 1− j ′′ε

2 ′ε
+ 1
8

′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥ =α + jβ

1+ x = 1+ 1
2
x − 1

8
x2 + 1

16
x3 +!∵ binomial expansion:

α = − jω µ ′ε j ′′ε
2 ′ε

⎛
⎝⎜

⎞
⎠⎟ =

ω ′′ε
2

µ
′ε
   (Np/m)Attenuation constant

Phase constant β =ω µ ′ε 1+ 1
8

′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥    (rad/m)



Chap. 8 |  Plane wave in “Low-loss” dielectrics (2/2)
Intrinsic impedance

ηc =
Ex z( )
Hx z( ) =

µ
εc

= µ
′ε

1− j ′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟
−1

2
≅ µ

′ε
1+ j ′′ε

2 ′ε
⎛
⎝⎜

⎞
⎠⎟    (Ω)

Complex Intrinsic Impedance → 
Electric and Magnetic fields are NOT in time-phase 

c.f.) They are in phase in a lossless medium (ηc is a real number)

Phase velocity

up =
dz
dt

= ω
β
≅ 1

µ ′ε
1− 1

8
′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥    (m/s) c.f.) up =

dz
dt

= ω
k
= 1

µε for plane wave in “lossless” medium

∵β =ω µ ′ε 1+ 1
8

′′ε
′ε

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥



Chap. 8 |  Plane wave in “good” conductors (1/2)
Meaning of “good” conductors?

εc = ε + σ
jω

= ε 1+ σ
jωε

⎛
⎝⎜

⎞
⎠⎟

σ is large →
σ
εω
≫1

Propagation constant

γ ! jkc = jω µεc ≅ jω µ σ
jω

⎛
⎝⎜

⎞
⎠⎟
= j ωµσ ∵ j = e j

π
2( )12 = e jπ4 = 1+ j2

= 1+ j
2

ωµσ = 1+ j( ) π fµσ =α + jβ

ω = 2π f ∴α = β = π fµσ

Intrinsic impedance

η ! µ
εc

≅ µ
σ
jω( ) =

jωµ
σ

= 1+ j( ) π fµ
σ

= 1+ j( )α
σ

   (Ω)

εc ≅ ε σ
jωε

⎛
⎝⎜

⎞
⎠⎟
= σ
jω

∴η = 1+ j( )α
σ

   (Ω)
Phase angle of 45º 

(Magnetic field lags behind 
Electric field by 45º)



Chap. 8 |  Plane wave in “good” conductors (2/2)
Phase velocity

up =
ω
β
≅ ω

π fµσ
= 2 π f

µσ
   (m/s)

Wavelength of a plane wave

λ = 2π
β

=
up
f
≅ 2 π

fµσ
   (m)

Skin depth (Depth of penetration)

δ = 1
α

= 1
π fµσ

= 0.038  (mm)

e.g.) For copper where σ = 5.8 x 107 (S/m) and μ = 4π x 10-7 (H/m),

at f = 3 (MHz)

at f = 10 (GHz)

e−αδ = e−1 ~ 0.368 δ = 1
α

: Distance through which amplitude of wave is attenuated by a factor of e-1

= 0.66  (µm)

∴ At high frequency, EM wave is attenuated very rapidly in a good conductor

   

→ Fields and currents are confined in a very thin layer of the conductor surface



Chap. 8 |  Plane wave in ionized gases (1/3)
Ionosphere

Img src: Nasa Img src: astrosurf.com

• Ionosphere ranges from 60 km (37 mi) ~ 1,000 km (620 mi) altitude


• Ionosphere = free electrons + positive ions (Ionized by solar radiation or cosmic rays)


• Such ionized gases with equal number of electrons and ions: Plasma 

• Used for long-distance radio communication

대류권
성층권

중간권

열권

35,000ft ~ 10 km

60 km

1,000 km

http://astrosurf.com


Chap. 8 |  Plane wave in ionized gases (2/3)
Simplified model
• Due to lighter mass of electrons, they are more accelerated by E-field than positive ions 

• Ionized gases ~ free electron gas, and motion of ions neglected

−eE = m d 2x
dt 2 = −mω 2x    →    x = e

mω 2 E

• An electron (-e) in a time-harmonic electric field (with angular frequency ω)

where x and E are phasors, and x is displacement distance from positive ion

• Polarization

p = −ex    →    P = Np = − Ne2

mω 2 E : Volume density of electric dipole moment (or polarization vector) 
where N is the number of electrons per unit volume

• Plasma oscillation frequency

D = ε0E + P = ε0 1−
Ne2

mω 2ε0

⎛
⎝⎜

⎞
⎠⎟
E = ε0 1−

ω p
2

ω 2

⎛

⎝⎜
⎞

⎠⎟
E where ω p =

Ne2

mε0

   (rad/s) : Plasma angular frequency

Corresponding plasma frequency

fp =
ω p

2π
= 1

2π
Ne2

mε0

   (Hz)



Chap. 8 |  Plane wave in ionized gases (3/3)
Plasma oscillation

D = ε0 1−
ω p

2

ω 2

⎛

⎝⎜
⎞

⎠⎟
E = ε pE

“Effective” relative permittivity εr

where ε p = ε0 1−
ω p

2

ω 2

⎛

⎝⎜
⎞

⎠⎟
= ε0 1−

fp
2

f 2

⎛

⎝⎜
⎞

⎠⎟
   (F/m) : Permittivity of ionosphere (or plasma)

• When f = fp    →    ε p = 0   →    D = 0,
Note that D depends only on free charges ∵∇⋅D = ρ( )

although E still exists.

c.f.) E depends on both free charges and polarization charges

∴ At f = fp, an oscillating E-field exist in the plasma in the absence of free charges → “Plasma oscillation”

Wave propagation

γ = jω µ0ε p = jω µ0ε0 1−
fp
f

⎛
⎝⎜

⎞
⎠⎟

2
f < fp

f > fp

: γ purely real → A reactive load with NO transmission of power

: γ purely imaginary → EM wave propagating without attenuation

fp : “Cut-off” frequency

fp =
1

2π
Ne2

mε0

~ 9 N    (Hz)

• Radio communication in ionosphere

* N at a given altitude vs. time of the 
day, season, and other factors


* signal should be sent at a frequency 
larger than 9 (MHz)

Earth
N = 1010 /m3 → fp ~ 0.9 MHz

N = 1012 /m3 → fp ~ 9 MHz



Chap. 8 |  Group Velocity (1/3)

Phase velocity vs. frequency

: Velocity of propagation of an equi-phase frontup =
ω
β

   (m/s)

<img src: Wikipedia>

• For plane waves in a lossless medium

β =ω µε    →    up =
1
µε

Independent of frequency

However, for plane waves in a “lossy dielectric”, along a “transmission line”, or in a “waveguide”,
• Phase constant (β) is NOT a linear function of frequency (ω)

• Waves with different ω propagate with different up → “Distortion” of the signal

Dispersion

• The phenomenon of signal distortion caused by dependence of up vs. ω 
• Lossy dielectric = dispersive medium 

• e.g.) Dielectric prism = dispersive medium

*Colors are dispersed at the front face

*Colors are refracted at different angles

*Refractive index different for different colors

<Img source: AZoOptics>



Chap. 8 |  Group Velocity (2/3)
Group velocity
• An information-bearing signal consists of a “group of frequencies” 
• There is a small spread of frequencies (Δω) around the central carrier frequency (ω0)

• Such a group of frequencies forms a “wave packet” 

Group velocity = velocity of propagation of the wave packet envelop

<gif source: GIPHY>

<img source: Physics Libretexts>

Simple example
• Two traveling waves with 


‣ Equal amplitude (E0)

‣ Slightly different angular frequencies (ω0 ± Δω)

‣ Slightly different phase constants (β0 ± Δβ)

E z,t( ) = E0 cos ω 0 + Δω( )t − β0 + Δβ( )z⎡⎣ ⎤⎦ + E0 cos ω 0 − Δω( )t − β0 − Δβ( )z⎡⎣ ⎤⎦
= 2E0 cos Δωt − Δβz( ) ⋅cos ω 0t − β0z( )

Wave Packet Envelop Waves

• Phase velocity

ω 0t − β0z = Constant   →    up =
dz
dt

= ω 0

β0
• Group velocity

Δωt − Δβz = Constant   →    ug =
dz
dt

= Δω
Δβ

∴ug =
1

dβ
dω

   (m/s)

in dispersive medium,



Chap. 8 |  Group Velocity (3/3)
β vs. ω relationship (dispersion relationship)
• For an ionized medium (e.g. ionosphere)

γ ! jkc = jω µ0ε p =α + jβ    →    β =ω µ0ε p =ω µ0ε0 1−
ω p

ω
⎛
⎝⎜

⎞
⎠⎟

2

β

ω

ω p

P

slope:

slope: dω dβ = ug
ω
β = up

Phase velocity:

ug =
dω
dβ

= c 1−
ω p

ω
⎛
⎝⎜

⎞
⎠⎟

2

Group velocity:

up =
ω
β
= c

1−
ω p

ω
⎛
⎝⎜

⎞
⎠⎟
2

slope: c = 1
µε0

• For ω > ωp (γ purely imaginary = propagating without attenuation)

• up ≥ c, ug ≤ c and upug = c2 in an ionized medium
Relationship between up and ug

dβ
dω

= d
dω

ω
up

⎛

⎝⎜
⎞

⎠⎟
= 1
up

− ω
up

2

dup
dω

   →    ug =
1

dβ
dω

=
up

1− ω
up

dup
dω

• No dispersion
dup
dω

= 0   →    up = ug

• Normal dispersion
dup
dω

< 0   →    up > ug


