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Chap. 10| Contents for 1st class of week 6

Sec 1. Introduction

Difference between Chap. 9 (Transmission lines) and Chap. 10 (Waveguides)

» General wave behaviors (TEM, TE, TM) in the guiding structures

» Various waveguides
- Parallel-plate, rectangular, circular and dielectric-slab waveguides

« Cavity resonators

Sec 2. General wave behaviors along a uniform guiding structures

For TEM and TM waves



Chap. 10 | Difference between Chap. 9 and Chap. 10

 In <Chapter 9> Theory and Applications of Transmission Lines,

- Propagation of TEM wave in parallel-plate, two-wire, and coaxial transmission lines

Parallel plate Two-wire

Coaxial

 In <Chapter 10> Waveguides and Cavity resonators,

- Propagation of all TEM, TM, TE wave not only in parallel plate, but also in other waveguides

* Attenuation coefficient for a general transmission line

- Low-loss line (R << wL, G << wl)

( 7))
20V N,

04

1N

- Distortionless line (R/L = G/C)

—
=R E
L

\

— () o< R o< , /f
where R results from finite

conductivity of the lines

— TEM not supported at

microwave range!

1. These are NOT THE ONLY wave-guiding structures (=waveguides)
2. TEM is NOT THE ONLY mode that these structures can support

TR Lines Parallel plate | Two-wire Coaxial
2 (T R R (1 1
R (Q/m) | — s > : |
w\ o, a 2r\a b
T
where R = JH,
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Chap. 10| Overview (1/2)

e Section 10.2 - Wave definition and general behavior

- TEM wave: No field components in the propagation direction (Both E L k and H 1 k)
- TE wave: Having a longitudinal H-field (Only E 1 k)

- TM wave: Having a longitudinal E-field (Only H L k) TE mode TM mode
i E@ b H‘f-"..'
e Characteristics of TE and TM waves o 2
4 il

- Have a cut-off frequency (fc) o

- Power & Signal transmission only possible when f > fc (= High-pass filters) Parallel-plate transmission line

e Section 10.3 - Parallel-plate waveguides with TE & TM modes

- Transverse components (i.e., x and y) of the fields expressed in terms Longitudinal components (i.e., 2) e e Y
y \—.\\
> For TM modes: Ex, Ey, Hx, Hy = f(E) (Ez: longitudinal E-field, H; = 0) y L ——
4 Z
> For TE modes: Ex, Ey, Hx, Hy = f(H) (Hz: longitudinal H-field, E; = 0) S ‘;///
iy S T, Ve
T, =y
/') ~— - //:; /{/;
. . . . . o O Y N\\;\:‘:\\V/V///’ //‘%/
- Attenuation coefficient a due to imperfect conducting walls ‘~-l'.?j§‘§5\I/' R e Z
>~ Depends on the mode of propagating wave and frequency 0“---’-‘::}:_\:{/ /

> For TM modes: fT = a1
» For TE modes: fT = al

Parallel-plate waveguides

*Mode: A wave propagating in the structure with a particular frequency and energy



Chap. 10| Overview (2/2)

e Section 10.4 & 10.5 - Hollow metal-pipe of an arbitrary cross-sections
- TEM CANNOT BE supported in such waveguides!
- Only TM & TE waves are possible to pass

Circular waveguide Coaxial transmission line
e Section 10.6: Dielectric slab waveguide (Only TE and TM) (Only TE and TM) (All TE, TM, and TEM)

- Fields are confined within the dielectric (core) w

A
v

- Fields decay rapidly away from the slab surface in the transverse

2d {

plane (cladding)
- TE & TM waves in dielectric slab wave-guide = “Surface waves”

X

cladding

e Section 10.7: Cavity resonator
- Resonator: Device or system exhibiting resonance (Waves oscillating

cladding

at SOME frequency with greater amplitude than others)

Dielectric slab waveguide Optical fiber
(Img src: Aalto Univ., ELEC-E3240) (Img src: tiaonline)

- A hollow metal box with proper dimension = “Resonant device”
- Box walls providing large areas for current flow with extremely small
losses = Resonance with very high Q-factor
e.g. 1) Acoustic resonator in musical instruments
e.g. 2) Quartz crystals in radio transmitter

e.g. 3) Quartz watches for oscillation of precise frequencies

Metal box resonator



Chap. 10 | Waves within a uniform waveguide

- Characteristics for waves within a uniform dielectric waveguide

- Time-harmonic electromagnetic wave

E(x,y,z,t) = Re[E(x,y,Z)ejwt] where (E(x,y,z) = E"’ ()C,y)e_yZ ) X

Here, ¥ = O + ],B IS a propagation constant

- Homogenous wave eqgns in “charge-free dielectric region”

-

9

0° 9> 9’

V’H+k’H=0
J

- where V2 =

- ~
VE+Kk’E=0 | where k=@ UE is the wavenumber

o 9y 0z

- Decomposition of Laplacian

Vi=V +V:

— “Longitudinal” coordinate

» “Cross-sectional” coordinate
0°E

2
07

2 2 2 %72 ,
—VE=V_ E+VE=V_E-
2 2
=V, ,E+Y'E

O

<Uniform dielectric waveguide>

® fransverse plane: xy plane
® Propagation direction: z
Is Laplacian operator

- New form of Homogenous wave eqns.
g 2 2 2 h
nyE + (’)/ +k )E =0 . Still 6 equations for Ex, Ey, Ez, Hx, Hy, H-

V)zcyH+(’}/2 + kz)H _ OJ * but in different notation

\

k\

: Solution depends on
(i) cross sectional geometry
(i) cladding-dielectric boundary condition



Chap. 10| Transverse & longitudinal fields

* Inter-relationship among six components * Assumptions
- E and H components are partly dependent and no need to - All the field quantities in the phasor depend only on x, y
solve all 6 equations! - Only propagation factor e-¥z depends on z

-

E(x,y,z)=E°(x,y)e " = (afo +a,E + azEf)e_yZ

H(x,y,z)=H’(x,y)e " = (afoj +a,H, + asz)e‘VZ

VXE =—jouH <+— |Maxwell’s Equations » VXH=jweE
a. a, a, a. a, a,
0 0 0 , . 0 0 0 , .
o % = :—]a)u(axHS+ayH;)+asz)e ’ 5 % 3 :]a)g(ang+ayE§+azEf)e y
E'e” Ele” E'" Hle” H)e" Hle™
(" JE° ; | ; A Curl Equations [ OH° 0 )
SSHYE =—jout; @) | e———————— o, TrH, = joeE, ()
Y Transverse components Y
OE’ p p 0H
J _ z —YE)(C):—]G)#H;) "'(b) (E!Ey!HiHy) ! — Z _»}/Hg:]ngO ...(f)
o0x can be expressed in terms of o0x g
OE° JE° longitudinal components! 0H®’ oH"
95 euH® () g P > O - joeE” - (g)
ox  dy : (Ez, Hz) ox  dy ‘




Chap. 10| General behavior of wave within a guide

- Transverse (Ex, Ey, Hx, Hy) components in terms of longitudinal (Ez, H;) components

o 1(_OE . 0H] o 1
3

o 1 O0E’ . 0H] o 1

£y = hz(y oy — I 0x ) \Hy TR

;
K

oH"

ox
oH"

dy

~— JWE

~+ JWE

oE]
dy

.--(3)

OE.
5 j (4)

~

where }° = y2 + k2

‘i.e., (Ex, Ey, Hx, Hy) are functions of (E_, Hz).’."

S

* Procedures to determine EM wave within a waveguide

1. Solve the wave eqns for E;, H;
with given boundary conditions

(. ,
nyE+

9

-

2
\nyH+

)
(.2 2 .
Y +k*)E=0

(
Y +k*)H=0
J

=)

- Classification of EM wave in terms of (Ez, H)

- TEM wave: No longitudinal components, H;, Ez = 0 (wave in unbounded medium [Chap. 8], wave in transmission lines [Chap. 9])

2. Substitute E;, H:into
above eqgns to obtain Ex, Ey, Hx, Hy

(. f )
E'=S(E),H) |H'=3(E’.H)
9 9
E'=S(E’,H) |H!=S(E’,H’)
\_ ‘ _

- Transverse Magnetic (TM) wave: H; = O, but nonzero E;
- Transverse Electric (TE) wave: E; = 0, but nonzero H;



Chap. 10| TEM wave within a guide (1/3)

- TEM wave within a guide

EO———1
4
1
0 _
ST

0E]
ax

OE]
dy

o0H’
dy

oH"

0x

j (1)

Z) .+(2)

9

1( oH' oE"
Hﬂ——?[y axz — JWE a;] --(3)
1( oH' oE"
Hf"ﬁ(y oy axzj "

* Characteristics of TEM waves within a guide
- Propagation constant yrewv

h* = yTEMz +k*=0 — (yTEM = Jk = ja)\/,ueJ

- Velocity of propagation (phase velocity)

é w 1 )
:/tp(TEM) — ; — ﬁ (IH/S)J

- Wave impedance

E'  jw
Logy = xo —J = — ZTEM :\/E:TI (Q)
L Hy Yiemw  JWE € y

~

Since E., H. =0 for TEM,

1. Trivial case: All (Ex?, E,9,Hx0, H,9) are zero

(meaningless!)
[hz =y’ +k’ :O)

2. Nontrivial case:

* Exactly same as y for uniform plane wave in an unbounded medium
or in lossless transmission lines!

In the Curl egns (b) and (e), set E2=0and H:°=0
(o 8E3+},E =—jouH’ --(a) F%H%V_Fy[{ = jweE" ---(e) A
< /3! VEO =—jouH® --(b) - _a;z ~yH' = joeE" - (f)
0
< | Bafio_ ayo =—jouH’ ---(c) | aiy —ag’? = joweE] ---(g)
[ YimEy = JOUH ) ] ( Yo H, = JOEE] )

\_




Chap. 10| TEM wave within a guide (2/3)

- Characteristics of TEM wave within a guide

! 1
O ()

U — —
p(TEM ) k
E
. VH

ZTEM —

~

E

J

* Relationship between E and H via Ztewm

- )
a 0 (
728 “+yE’=—jouH ---(a) 78%'+yH§:ja)gEf --+(e)
0y ’ dy
H
<—/a25'—yE3=—jwuH° --+(b) <—%Z—yH£=jw8ES (@
ox ’ X
QE" 0 oH" H'
, OE; =—jouH’ () » _9H, = jweE. ---(2)
dx  dy ox oy
k\ - J

by combining (1) and (2), we get

r

1

V4
. TEM

H=——a,xE (A/m)

~

.

c.f.) E and H in an unbounded medium

H=1a xE (A/m)

n

Both phase velocity & wave impedance
independent of frequency!

by setting E;° = 0 and H:0 = 0 in the Curl equations (b) and (e),

A E. U 0 1 0
z. 2o By s gL )
Y H;) € ’ Ly

by setting E;° = 0 and H:% = 0 in the Curl equations (a) and (f),

E,__|u o_ 1
7R P

TEM

.+(2)



Chap. 10 | TEM wave within a guide (3/3)

» “single conductor” waveguide cannot support TEM wave!
(see <Fig.1>, <Fig.2>) - T
1

* Proof of the statement
- Suppose that TEM wave exists in such a guide

Of

- Its B and H should form a closed Ioop in a transverse plane (Xy) Rectangular waveguide Circular waveguide Coaxial transmission line
'+ V-B =0 (Magnetic flux lines close upon themselves) (Only TE and TM) (Only TE and TH) (All TE, TM, and TEM)
<Fig. 1> <Fig. 2> <Fig. 3>
- According to Ampere’s circuital law (see <Fig. 4> and <Fig.5>),
b H-al=| (J+—)-ds
Ampcn an loops , , B
Point your right
e 2R thumb 1in the direction

of the current.--

Line integral of H around any closed loop C in a transverse plane

Longitudinal conduction & displacement currents through the loop C Then curl your
. fingers to get

the field direction.

-
b .
------

- By definition, TEM wave does not have longitudinal E;
— No longitudinal current (J and 6D/6t) can flow

— Thus, B and H do not exist in a transverse plane Ampere’s circuital law Ampere’s circuital law
— Thus, E and D also do not exist in a transverse plane <Fig. 4> <Fig. 5>
(Img src: Toppr) (img src: Pearson Education)

.. TEM cannot exist in a single conductor waveguide!
* However, if there is an inner conductor as in <Fig. 3>, TEM can be supported!



Chap. 10| TM wave within a guide (1/5)

(A)-] V2E +(y? +K*)E° =0
 Transverse Magnetic (TM) waves within a uniform guide
_ H-field = 0 in the propagation direction — Hy = 0 o 1( 9E° . 9H'
. - E=——|Y——+jou——1| (1)
- E-field has a non-zero longitudinal component = E; = 0 h ox dy
. . . 1( O0E° . OH’
* Procedure to determine the actual field components ES = s 14 > ~— jou 5 : +(2)
X
- Solve the homogeneous equation for longitudinal Ex° [Eqn. (A)] with given B.C. ( B) — Y
0 0
- Plug E; into Egns. (B) to find transverse Ex9, E,°, Hx0, H,9 HO = _i(y aHz — jwe aEz ] ..(3)
X 2
> Since H; = 0, Eqns. (B) reduce to Eqgns. (B’) as h dx dy
1( OH. OE’
r 0 H =—— “+ joe— (4
E‘):_yaEZ (1Y - hZEy dy / Bx] &
g h> ox \_
0E’ )
E;) = —2/2 ayz .++(2) — By combining (1)’ and (2)’, we get
(B)-- ' o 0 ‘
) 0 0 0 A 70 v v 9 loa Y 0
HO = ]aig ) . (3Y [axEx +a k= ETM] — (a . +a, aijZ % ~—V.,E
h Ody g . L _
O JWE BES (4 ~E, = —%VTES where E;, is transverse electric field
y h? - v,
0x l where V ES is the gradient of E;0 in the transverse plane

formula for finding Ex% and E,° from E°



Chap. 10| TM wave within a guide (2/5)

- Wave impedance

- By combining equations (1)’ and (4)’, or (2)’ and (3)’,

r

ZTM o

\_

EO

HO

Y

0

(€2)

~

_J

- Solutions to homogeneous wave eqn. (A)

- Subject to B.C. of a given waveguide

(4)-1

- Solution only possible for discrete values of h! — Characteristic values or eigenvalues of the boundary-value problem

V:E’

Xy 'z

2

(v

K*)E? =0

a - )
£ = hyz o W
oOE"’
EO — 7 Z . 2 /
(B’)-- y h 0y ”
‘we OE"
H;):]Z;g Byz (3
‘we OE"
\_ Y,

- Each eigenvalue determines the characteristics of a particular mode of the given waveguide

- Eigenvalues in many cases are real numbers

Will be covered in greater detail with a particular waveguide! (next class)




Chap. 10| TM wave within a guide (3/5)

* Frequency-dependence of TM waves
- f where [propagation constant (y) = O] is given by

~ )
h
V= \/hz —k* = \/h2 —0'ue=0 — o pe=h" —|f= 5 : cut-off frequency
. T HE ) (depending on the eigenvalue)
(" )
2
y=h,|l (f]
VA

- ,

- When f > fc = y: purely imaginary

y:jﬁ:jk\l_(%) :jkVI (]}j — propagating mode with 'B:kVI []}j (rad/m)

- Corresponding wavelength in the guide

2 A 21 1 u

> A, where A= — = — is a wavelength of a plane wave in an unbounded dielectric medium (u, €)

AT

where u is the velocity of light in that medium

1 =2 =
B i-(r gy




Chap. 10| TM wave within a guide (4/5)

- When f > fc = y: purely imaginary
- Phase velocity of the propagating wave in the guide

), u

u,=—= > >u —> (1) up within a waveguide is always higher than u in an unbounded medium
'B \/ 1 - (fc / I ) (2) up is frequency-dependent

— Waveguide for TM = dispersive system

- Group velocity

2
y = 1 —u 11 Je <y s =y A Group velocity in a lossless medium
° d,B / dw V f &' ' - T ) = Velocity of signal propagation (or energy transport) [will be discussed in next class]
- Wave impedance Zmm
: ~ =) -
f v f (1) Purely resistive
By plugging y = jk,[1 ~| into Z,, =—, L =11 - (2) Always smaller than intrinsic impedance of
N J JwE V f ) the dielectric




Chap. 10| TM wave within a guide (5/5)

- When f < f. = y: real
- Propagation constant (y)

V (}i

- Wave with f < f; attenuates

- Wave with f > f; propagates with § —

- Wave impedance Ztwm

By plugging ¥ = h\

ttenuation constant — \Wave propagating with ¢ ’* = ¢

—0Z

(Rapidly decaying with z = Evanescent mode)

—> a waveguide for TM wave acts like a high-pass filter!

-

\_

W/

™ —

h

J

| (fc
we \ f

J

> )

J

Purely reactive below cutoff frequency
— E and H in a phase quadrature
— No power flow associated with such an evanescent wave because

PCZV —

1

—Re

2

(ExH")=0
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Chap. 10| Contents for 2nd class of week 6
Review of the last class

- General wave behavior along a uniform dielectric guide

Sec 2. General wave behaviors along a uniform guiding structures (Cont’d.)

- TE and TM wave characteristics, commonality and difference



Chap. 10 | General wave behavior within a uniform dielectric guide (1/2)

- Propagating waves along a uniform dielectric waveguide
E(x,3.2)=E°(x.y)e " =[ a,E) (x,y)+a,E} (x,y)+aE(x.y) | "
H(x,y.z)=H"(x,y)e " = [afo (x.y)+a,H(x,y)+aH’ (x,y)]e—ﬂ

(" (o 5 ) (s , , N\ We have to solve
V'E+k'E=0 VLE+ (7/ +k )E =0 “source-free” <Uniform dielectric waveguide>
) 0 < e Uniform cross-section & com 't
2 2qr 2 2 2 _ Non- position
(VH+RH=0 | U7 | [VLH (7 +k7)H =0 | Non-homogeneous oo pians: xy plane
q ' e Propagation direction: z
VXE=-jouH PEESSSSNN \1axwell’s Equations » VXH=jweE
(r 0 \ (f 0 \
oE 0 0 oH R
5 ~+YyE =—jouH () 5 ~+YH, = joek (e)
* - *
Ey)EO Transverse components ByH 0
{ — & _7/E)(C):_]a)‘uH;) (b) (EX, E}/a Hj, Hy) { — < _f}/H)?:]a)gE)? (f)
0x can be expressed in terms of ox
0E, OE’ longitudinal components! 0H oH°
S jauH! (©) J " - joeE! ()
- dx Yy (Ez, H2) ox  dy
\_ W, \_ W,




Chap. 10 | General wave behavior within a uniform dielectric guide (2/2)

» Transverse (Ex, Ey, Hx, Hy) components in terms of longitudinal (Ez, Hz;) components

;

oE’

<

ox
oOE"’

<

dy

+ jou

—Jjou

0H’
dy
oH’
0x

j (1)
j .+(2)

9

H)?:—F
1

0 _
)

OH. e 0E]
ox / dy
0H’ . OE]
oy 7 ox

* Procedure to determine EM wave within a waveguide

1. Solve the wave eqns for E;, H;
with given boundary conditions

@

9

-

VIE+(y’+K)E=0
V H+

(y2+k2)H:O

~

_

=)

- Classification of EM wave in terms of (Ez, H-)
- TEM wave: No longitudinal components = H,E L k > H;, E;=0

2. Substitute E;, H:into

above eqns to obtain Ex, Ey, Hx, Hy

where }? = y2 + k2

(Ex, Ey, Hx, Hy) are functions of (Ez, H;)!!

@ ; R
E'=S(E’,H) |H!=S(E’,H’)
S S
0 _ 0 0) 0 _ f 0 0
k\Ey - S \EZ ,HZ ) kHy - S \EZ ’HZ )J

- Transverse Magnetic (TM) wave: H 1. k = H; = 0, but nonzero E;

- Transverse Electric (TE) wave: E 1 k — E; =0, but nonzero H;



Chap. 10 | TE wave within a guide (1/2)

* Transverse Electric (TE) waves
-E 1 k = E; =0 (Longitudinal component of E-field = 0)

- Nonzero H,

* Characterization of TE waves

- i.e. How to obtain Ex0, E,0, 20, Hx, Hy0, H,07

[step1]| VZH!+(y’+K°)

ISTEP 2|

H’=0
OEX . 0H,
+ jou
X 0y

Solve non-homogenous equation for H;° with given B.C. of a guide
(Will be dealt in greater details in section 10.2~7)

If we combine egns. (3) and (4),

.+(2)

[(H; ) 2a,H +ayH;>]
.+-(3)
~ N O\
(HT )TE - hz VTI{z
. (4) \ ),

#

-++(1)  Use H,0 from STEP 1 and E.° = 0 to determine transverse H-field components

0 0 4
axa—x+ay$)Ho h2VfO_

Gradient of H0 in a transverse plane

. Transverse H-fields (Hx® and H,% can be obtained by longitudinal H-field (H:°)!



Chap. 10 | TE wave within a guide (2/2)

 Characterization of TE waves
- i.e. How to obtain ExO, E\0, E;0, Hx0, H\0, H;07?

(

‘STEP 3‘ 10 1 oEx  OH’ 0 By using a wave impedance, obtain transverse E-fields from transverse H-fields
=—— ZZ + Jj@ : -
0 1 IE . 9H f Wave .|mpedance |
E = 7 14 — jou 5 -+(2) - A ratio of transverse components of the E and H-fields
) Y - By using egns. (1)/(4) or egns. (2)/(3),
1( OH’® A
H’=—— < — jowe A .-(3
Zyp=—t=——2=2L (Q)| —» |"E,=-Z,(a xH,)
HO _ 1 aH? i wg/aZ (4) - Hy Hx Y Wy, \ _J
Y h 4 dy / ox
e Wave impedance is defined according to “right-hand” rule for propagating waves 14 f 7 ES A 14 [ E;’ A
¢ “Right-hand” rule k TE HOJ L’ZTE - —HOJ
y X
- Determining the directions of E, H, and k associated with a EM wave Lo
- Steps K KE <
> Point the fingers of your right hand in E-field direction o > 0 >
> Bend them in the H-field direction i 0\/‘ / 4 g 4
» Then, your thumb points in the k direction g
X X



Chap. 10| TM wave within a guide (1/2)

* Transverse Magnetic (TM) waves
-H 1 k = H; =0 (Longitudinal component of H-field = 0)

- Nonzero E;

* Characterization of TM waves

- i.e. How to obtain Ex9, E\9, EZ0, Hx9, H\9, b@?

[step1]| VZE)+(y’+K°)E’ =0

ISTEP 2|

E] ——%(785 +jwu%
E, = %(785  jou "
e e
H, :—%(yaayg + jwe afxg

Solve non-homogenous equation for Ez0 with given B.C. within a guide

If we combine egns. (1) and (2),

.+(2)

/4

[(Eﬁ )TM Za E’+ ayE;’] —
Q) N
~(EY) =—LV,E
h
() - J

h

d

o
* ox

a,—+a i)EO = —lVTEf

-++(1)  Use E0 from STEP 1 and H:° = 0 to obtain transverse E-field components

y ay Z h2 )
!

Gradient of EZ0 in a transverse plane

. Transverse E-fields (Ex® and E,%) can be obtained by longitudinal E-field (E°)!



Chap. 10| TM wave within a guide (2/2)

« Characterization of TM waves

- i.e. How to obtain Ex0, E\9, E;0, Hx0, H\0, H,0?

(

By using a wave impedance, obtain transverse H-fields from transverse E-fields

‘STEP 3‘ 7o 1 OE. aHé] (D) Wave impedance
’ h’ 0x y - By having egns. (1)/(4) or (2)/(3),
1( OE’ 0 4 0 0 A - R
E’ =——| Y= —ja),uzfg] -+ (2) 7 E, E, Vi 0 : __
_ L —p | (H,) = a X(E
< © R 9y X " H)  H)  joe ( )J &( 2 ZTM( ( T)TM)J
o 1( oBf . OE]
Hx__}f Y X — e 0y () - c.f.) For TE and TEM,
1( o JE" a E° E° o A g .
* h y dx kTE H — H Yy ) é e TE( X T)TE))
§ E, jou |u A ’ I :
Ly = on v = \/; =1 () —> (HT )TEM ~ ;(az X (ET )TEM)
. y TEM - W,

e Wave impedance for TEM vs. TE/ TM

- Ztem is independent of frequency <— Vipy = jk= JO\JUE <«— p* =y’ +k

- Zte and Z7wm are frequency-dependent <«— Y, and v, # jk

2:()




Chap. 10| TE & TM waves within a guide (Commonality, 1/2)

* Cut-off frequency 4 h? )
- frequency at which [y = 0] is given by ?

V2E+(y*+k*)E =0
V:H+(y’+k)H=0

y=Nh -k’ :\/hz—a)z,ug:O — w’ue=h’

3

“cut-off frequency” - ~ \\ J
g h h 7 2 * h: Characteristic values or eigenvalues determined by boundary condition
o Je = 27 e - Y= h\ 1 (f j - Only discrete & real values are allowed!
- ~ L ’ y - Each eigenvalue determines the characteristics of a particular mode of
the given waveguide
- When f > fc = y: purely imaginary
- Phase constant (8) - ~

% :%4_ iB= jkV 1 — (%) — ]'kV 1 (]]E j — propagating mode with | [3 kV 1 (J]E j (rad/m)

- _/

- Corresponding wavelength

27 A 21 1 U - : : : :
2 o==C > 1. where A = —— “ A: wavelength of a plane wave in an unbounded dielectric medium (u, €)

b B \/1_(-fc/f)2 k ] f\/,ug ] f  u:velocity of light in that medium




Chap. 10| TE & TM waves within a guide (Commonality, 2/2)

* When f > fc = y: purely imaginary (cont’d)

- Phase velocity

u

()

-
2
_ fe
U B=k,[1
>u —> (1) up within a waveguide is “always faster” than u in an unbounded medium N f
(2) up is frequency-dependent (when f > f)
-

"B (1)

- Group velocity

1

— Waveguides for TE/TM = “dispersive systems”

“ " apidw "\ (?] D Gl

* When f < fc = y: real

- Waves become “at

tenuating” or “evanescent” modes 4
- Waveguides for TE/TM = “high-pass” filters (f > fc propagating, f < fc attenuated) f 2
y=h,|l
( Y our Wave impedance for evanescent TM and TE modes \ f.
/ 2 Fi = JE * Purely Imaginary — Purely “reactive” \-
e S . . E
Je _ JWH Z = j|Z|=|Z]e’™* = ==
Loy = H.
N ?/TE

(04

Group velocity in a lossless medium

= Velocity of signal propagation (or energy transport) [will be discussed later]

- ET and Hr are in phase-quadrature
.. No power flow for evanescent waves <+—

( P, = 1Re(E, xH;):o)




Chap. 10| TE & TM waves within a guide (Difference)

* Wave impedance at f > fc

Since yzjﬁzjkVI (fcj :

“Purely imaginary”
— Propagating modes

A

™ : .
joe  jwe\
S _Jou_jou 1 _
TE — - . >
Y 1E Jk | ( f ]
Vo)
f<fc f>fc
Evanescent Propagating
modes modes

(a) Wave impedances for both TE and
TM are real & purely resistive!

(b) Zte > Z1m for all f > fc

(c) At very high f, both asymptotically
converge to n




Chap. 10| Propagating TE & TM waves within a guide

- Summary for propagating mode

Mode Wave impedance Waveguide Phase velocity Group velocity

TEM n:\/E A, =—=A4 p="2= u: =
£ k B Jue 1 dB/de  \Jue

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2
™ n,/1 (fj
: : : 2
......................... VAT hym A uy = >u N A
d \/1_(fc/f) \/1—(fc/f) L8 V f
TE 1 (fc T
V' \f
* w-0 relationship (Frequency dependence of §) W
- Determining characteristics of propagating waves along a waveguide
TEM B =w.ue
f 2 o 2 h a)c
TE&TM =k, |1 < | =wJue, |l c | where @, = —F—
g \ (f j a (a)j VHE

h (eigenvalue) depends on a particular TE or TM mode in a waveguide of given cross-section

/\» slope: O/ =u,

slope: dw/df =u,

~ )
vy = j3 where
f 2
=k, |1 :
P4 (fj
(when f > f))
9 y
1




