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Chap. 10 |  Contents for 1st class of week 6

Sec 1. Introduction 

• Difference between Chap. 9 (Transmission lines) and Chap. 10 (Waveguides)


• General wave behaviors (TEM, TE, TM) in the guiding structures


• Various waveguides

- Parallel-plate, rectangular, circular and dielectric-slab waveguides


• Cavity resonators


Sec 2. General wave behaviors along a uniform guiding structures 

• For TEM and TM waves




Parallel plate Two-wire Coaxial

Chap. 10 |  Difference between Chap. 9 and Chap. 10

• In <Chapter 9> Theory and Applications of Transmission Lines,

- Propagation of TEM wave in parallel-plate, two-wire, and coaxial transmission lines

• In <Chapter 10> Waveguides and Cavity resonators,

- Propagation of all TEM, TM,TE wave not only in parallel plate, but also in other waveguides

1. These are NOT THE ONLY wave-guiding structures (=waveguides)

2. TEM is NOT THE ONLY mode that these structures can support

• Attenuation coefficient for a general transmission line

- Low-loss line (R << ωL, G << ωL)

α ≅ 1
2

R C
L
+G L

C
⎛

⎝⎜
⎞

⎠⎟

- Distortionless line (R/L = G/C)

α = R C
L

α ∝ R ∝ f
where R results from finite 
conductivity of the lines

→ TEM not supported at 
microwave range!

2
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Parallel plate Two-wire CoaxialTR Lines
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π fµc

σ c



Chap. 10 |  Overview (1/2)
• Section 10.2 – Wave definition and general behavior 

- TEM wave: No field components in the propagation direction (Both E ⊥ k and H ⊥ k)


- TE wave: Having a longitudinal H-field (Only E ⊥ k)


- TM wave: Having a longitudinal E-field (Only H ⊥ k)


• Characteristics of TE and TM waves 
- Have a cut-off frequency (fc)

- Power & Signal transmission only possible when f > fc (→ High-pass filters)

• Section 10.3 – Parallel-plate waveguides with TE & TM modes  
- Transverse components (i.e., x and y) of the fields expressed in terms Longitudinal components (i.e., z)

‣ For TM modes: Ex, Ey, Hx, Hy = f(Ez) (Ez: longitudinal E-field, Hz = 0)

‣ For TE modes: Ex, Ey, Hx, Hy = f(Hz) (Hz: longitudinal H-field, Ez = 0)


- Attenuation coefficient α due to imperfect conducting walls 
‣ Depends on the mode of propagating wave and frequency

‣ For TM modes: f↑ → α↑

‣ For TE modes: f↑ → α↓
* Mode: A wave propagating in the structure with a particular frequency and energy

TE mode TM mode

Parallel-plate transmission line

Parallel-plate waveguides



Rectangular waveguide 
(Only TE and TM)

Circular waveguide 
(Only TE and TM)

Coaxial transmission line 
(All TE, TM, and TEM)

Dielectric slab waveguide 
(Img src: Aalto Univ., ELEC-E3240)

Optical fiber 
(Img src: tiaonline)

Chap. 10 |  Overview (2/2)

• Section 10.4 & 10.5 – Hollow metal-pipe of an arbitrary cross-sections  
- TEM CANNOT BE supported in such waveguides!

- Only TM & TE waves are possible to pass


• Section 10.6: Dielectric slab waveguide 
- Fields are confined within the dielectric (core)

- Fields decay rapidly away from the slab surface in the transverse 

plane (cladding)

- TE & TM waves in dielectric slab wave-guide = “Surface waves”


• Section 10.7: Cavity resonator 
- Resonator: Device or system exhibiting resonance (Waves oscillating 

at SOME frequency with greater amplitude than others)

- A hollow metal box with proper dimension → “Resonant device”

- Box walls providing large areas for current flow with extremely small 

losses → Resonance with very high Q-factor

e.g. 1) Acoustic resonator in musical instruments

e.g. 2) Quartz crystals in radio transmitter

e.g. 3) Quartz watches for oscillation of precise frequencies

Metal box resonator



Chap. 10 |  Waves within a uniform waveguide
• Characteristics for waves within a uniform dielectric waveguide


- Time-harmonic electromagnetic wave

E x, y, z,t( ) = Re E x, y, z( )e jωt⎡⎣ ⎤⎦ where

γ =α + jβ is a propagation constantHere,

E x, y, z( ) = E 0 x, y( )e−γ z

- Homogenous wave eqns in “charge-free dielectric region”

∇2E + k2E = 0
∇2H + k2H = 0

⎧
⎨
⎪

⎩⎪ where ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is Laplacian operator

where k =ω µε is the wavenumber

- Decomposition of Laplacian

∇2 = ∇xy
2 +∇z

2

“Longitudinal” coordinate

“Cross-sectional” coordinate

→∇2E = ∇xy
2 E +∇z

2E = ∇xy
2 E + ∂2E

∂z2

= ∇xy
2 E + γ 2E

∇xy
2 E + γ 2 + k2( )E = 0

∇xy
2 H + γ 2 + k2( )H = 0

⎧
⎨
⎪

⎩⎪

- New form of Homogenous wave eqns.

: Solution depends on 

(i) cross sectional geometry 
(ii) cladding-dielectric boundary condition

* Still 6 equations for Ex, Ey, Ez, Hx, Hy, Hz 

* but in different notation

<Uniform dielectric waveguide>

z

O

y

x

• transverse plane: xy plane 
• Propagation direction: z



Chap. 10 |  Transverse & longitudinal fields
• Inter-relationship among six components


- E and H components are partly dependent and no need to 
solve all 6 equations!

∇× E = − jωµH

ax ay az
∂
∂x

∂
∂y

∂
∂z

Ex
0e−γ z Ey

0e−γ z Ez
0e−γ z

= − jωµ axHx
0 + ayHy

0 + azHz
0( )e−γ z

E x, y, z( ) = E 0 x, y( )e−γ z = axEx
0 + ayEy

0 + azEz
0( )e−γ z

H x, y, z( ) = H 0 x, y( )e−γ z = axHx
0 + ayHy

0 + azHz
0( )e−γ z

⎧
⎨
⎪

⎩⎪

• Assumptions

- All the field quantities in the phasor depend only on x, y 
- Only propagation factor e-γz depends on z

∇× H = jωεE

ax ay az
∂
∂x

∂
∂y

∂
∂z

Hx
0e−γ z Hy

0e−γ z Hz
0e−γ z

= jωε axEx
0 + ayEy

0 + azEz
0( )e−γ z

Maxwell’s Equations

Transverse components

(Ex, Ey, Hx, Hy)


can be expressed in terms of

longitudinal components!


(Ez, Hz)

 ∂Ez
0

∂y
+ γ Ey

0 = − jωµHx
0    !(a)

 − ∂Ez
0

∂x
− γ Ex

0 = − jωµHy
0    !(b)

 
∂Ey

0

∂x
− ∂Ex

0

∂y
= − jωµHz

0    !(c)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 ∂Hz
0

∂y
+ γ Hy

0 = jωεEx
0    !(e)

 − ∂Hz
0

∂x
− γ Hx

0 = jωεEy
0    !(f)

 
∂Hy

0

∂x
− ∂Hx

0

∂y
= jωεEz

0    !(g)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Curl Equations



Chap. 10 |  General behavior of wave within a guide
• Transverse (Ex, Ey, Hx, Hy) components in terms of longitudinal (Ez, Hz) components

where h2 = γ 2 + k2

• Procedures to determine EM wave within a waveguide

∇xy
2 E + γ 2 + k2( )E = 0

∇xy
2 H + γ 2 + k2( )H = 0

⎧
⎨
⎪

⎩⎪

1. Solve the wave eqns for Ez, Hz 
with given boundary conditions

2. Substitute Ez, Hz into  
above eqns to obtain Ex, Ey, Hx, Hy

Ex
0 = ℑ Ez

0,Hz
0( )

Ey
0 = ℑ Ez

0,Hz
0( )

⎧
⎨
⎪

⎩⎪
,    

Hx
0 = ℑ Ez

0,Hz
0( )

Hy
0 = ℑ Ez

0,Hz
0( )

⎧
⎨
⎪

⎩⎪

i.e., (Ex, Ey, Hx, Hy) are functions of (Ez, Hz)!!

• Classification of EM wave in terms of (Ez, Hz)

- TEM wave: No longitudinal components, Hz, Ez = 0 (wave in unbounded medium [Chap. 8], wave in transmission lines [Chap. 9])

- Transverse Magnetic (TM) wave: Hz = 0, but nonzero Ez

- Transverse Electric (TE) wave: Ez = 0, but nonzero Hz

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨
⎪
⎪

⎩
⎪
⎪



 ∂Hz
0

∂y
+ γ Hy

0 = jωεEx
0    !(e)

 − ∂Hz
0

∂x
− γ Hx

0 = jωεEy
0    !(f)

 
∂Hy

0

∂x
− ∂Hx

0

∂y
= jωεEz

0    !(g)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 ∂Ez
0

∂y
+ γ Ey

0 = − jωµHx
0    !(a)

 − ∂Ez
0

∂x
− γ Ex

0 = − jωµHy
0    !(b)

 
∂Ey

0

∂x
− ∂Ex

0

∂y
= − jωµHz

0    !(c)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Chap. 10 |  TEM wave within a guide (1/3)
• TEM wave within a guide

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Ez
0,  Hz

0 = 0Since for TEM,

1. Trivial case: All (Ex0, Ey0,Hx0, Hy0) are zero 
(meaningless!)


2. Nontrivial case: h2 = γ 2 + k2 = 0

• Characteristics of TEM waves within a guide 
- Propagation constant γTEM

h2 = γ TEM
2 + k2 = 0   →    γ TEM = jk = jω µε * Exactly same as γ for uniform plane wave in an unbounded medium 

or in lossless transmission lines!

- Velocity of propagation (phase velocity)

up(TEM ) =
ω
k
= 1

µε
   (m/s)

- Wave impedance

ZTEM = Ex
0

Hy
0 = jωµ

γ TEM

= γ TEM

jωε
= µ

ε
=η    (Ω)

In the Curl eqns (b) and (e), set Ez0 = 0 and Hz0 = 0

γ TEMEx
0 = jωµHy

0 γ TEMHy
0 = jωεEx

0



 ∂Hz
0

∂y
+ γ Hy

0 = jωεEx
0    !(e)

 − ∂Hz
0

∂x
− γ Hx

0 = jωεEy
0    !(f)

 
∂Hy

0

∂x
− ∂Hx

0

∂y
= jωεEz

0    !(g)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 ∂Ez
0

∂y
+ γ Ey

0 = − jωµHx
0    !(a)

 − ∂Ez
0

∂x
− γ Ex

0 = − jωµHy
0    !(b)

 
∂Ey

0

∂x
− ∂Ex

0

∂y
= − jωµHz

0    !(c)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Chap. 10 |  TEM wave within a guide (2/3)

• Characteristics of TEM wave within a guide

up(TEM ) =
ω
k
= 1

µε
   (m/s) ZTEM = µ

ε
=η    (Ω)

Both phase velocity & wave impedance 
independent of frequency!

by setting Ez0 = 0 and Hz0 = 0 in the Curl equations (b) and (e),

ZTEM !
Ex

0

Hy
0 = µ

ε
   (Ω) →  Hy

0 = 1
ZTEM

Ex
0    !(1)

by setting Ez0 = 0 and Hz0 = 0 in the Curl equations (a) and (f),

Ey
0

Hx
0 = − µ

ε
= −ZTEM    (Ω) →  Hx

0 = − 1
ZTEM

Ey
0    !(2)

by combining (1) and (2), we get

H = 1
ZTEM

az × E    (A/m)

c.f.) E and H in an unbounded medium

H = 1
η
az × E    (A/m)

• Relationship between E and H via ZTEM



Chap. 10 |  TEM wave within a guide (3/3)

Rectangular waveguide 
(Only TE and TM) 

<Fig. 1>

Circular waveguide 
(Only TE and TM) 

<Fig. 2>

Coaxial transmission line 
(All TE, TM, and TEM) 

<Fig. 3>

• “single conductor” waveguide cannot support TEM wave!

(see <Fig.1>, <Fig.2>)

∵∇⋅B = 0 (Magnetic flux lines close upon themselves)

- According to Ampere’s circuital law (see <Fig. 4> and <Fig.5>),

H ⋅d l
C!∫ = J + ∂D

∂t
⎛
⎝⎜

⎞
⎠⎟ ⋅dsS∫

Line integral of H around any closed loop C in a transverse plane 
= 

Longitudinal conduction & displacement currents through the loop C

- By definition, TEM wave does not have longitudinal Ez

→ No longitudinal current (J and δD/δt) can flow

→ Thus, B and H do not exist in a transverse plane

→ Thus, E and D also do not exist in a transverse plane

∴ TEM cannot exist in a single conductor waveguide!

• However, if there is an inner conductor as in <Fig. 3>, TEM can be supported!

• Proof of the statement 
- Suppose that TEM wave exists in such a guide

- Its B and H should form a closed loop in a transverse plane (xy)

Ampere’s circuital law 
<Fig. 4> 

(Img src: Toppr)

Ampere’s circuital law 
<Fig. 5> 

(img src: Pearson Education)



Chap. 10 |  TM wave within a guide (1/5)

• Transverse Magnetic (TM) waves within a uniform guide 
- H-field = 0 in the propagation direction → Hz = 0

- E-field has a non-zero longitudinal component → Ez ≠ 0

A( )−  ∇xy
2 Ez

0 + γ 2 + k2( )Ez
0 = 0{

→ By combining (1)’ and (2)’, we get

axEx
0 + ayEy

0 ! ETM
0⎡⎣ ⎤⎦ = − γ

h2
ax

∂
∂x

+ ay
∂
∂y

⎛
⎝⎜

⎞
⎠⎟
Ez
0 ! − γ

h2
∇T Ez

0⎡

⎣
⎢

⎤

⎦
⎥

∴ETM
0 = − γ

h2
∇T Ez

0

′B( )−

 Ex
0 = − γ

h2
∂Ez

0

∂x
   !(1 ′)

 Ey
0 = − γ

h2
∂Ez

0

∂y
   !(2 ′)

 Hx
0 = jωε

h2
∂Ez

0

∂y
   !(3 ′)

 Hy
0 = − jωε

h2
∂Ez

0

∂x
   !(4 ′)

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

B( )−

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

• Procedure to determine the actual field components 
- Solve the homogeneous equation for longitudinal Ez0 [Eqn. (A)] with given B.C. 
- Plug Ez into Eqns. (B) to find transverse Ex0, Ey0, Hx0, Hy0 

‣ Since Hz = 0, Eqns. (B) reduce to Eqns. (B’) as

where ETM
0 is transverse electric field

where ∇T Ez
0 is the gradient of Ez0 in the transverse plane

formula for finding Ex0 and Ey0 from Ez0



Chap. 10 |  TM wave within a guide (2/5)

• Wave impedance 
- By combining equations (1)’ and (4)’, or (2)’ and (3)’,

′B( )−

 Ex
0 = − γ

h2
∂Ez

0

∂x
   !(1 ′)

 Ey
0 = − γ

h2
∂Ez

0

∂y
   !(2 ′)

 Hx
0 = jωε

h2
∂Ez

0

∂y
   !(3 ′)

 Hy
0 = − jωε

h2
∂Ez

0

∂x
   !(4 ′)

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

ZTM = Ex
0

Hy
0 = −

Ey
0

Hx
0 = γ

jωε
   (Ω) H = 1

ZTM
az × E( )    (A/m)

• Solutions to homogeneous wave eqn. (A) 
- Subject to B.C. of a given waveguide

A( )−  ∇xy
2 Ez

0 + γ 2 + k2( )Ez
0 = 0{

- Solution only possible for discrete values of h! 
- Each eigenvalue determines the characteristics of a particular mode of the given waveguide 
- Eigenvalues in many cases are real numbers

Characteristic values or eigenvalues of the boundary-value problem

Will be covered in greater detail with a particular waveguide! (next class)



Chap. 10 |  TM wave within a guide (3/5)

γ = h2 − k2 = h2 −ω 2µε = 0   →    ω c
2µε = h2    →    fc =

h
2π µε

• Frequency-dependence of TM waves 
- f where [propagation constant (γ) = 0] is given by

: cut-off frequency 
(depending on the eigenvalue)

∴γ = h 1− f
fc

⎛
⎝⎜

⎞
⎠⎟

2

• When f > fc → γ: purely imaginary

γ = jβ = jk 1− h
k

⎛
⎝⎜

⎞
⎠⎟
2

= jk 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

propagating mode with β = k 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

   (rad/m)

- Corresponding wavelength in the guide

λg =
2π
β

= λ

1− fc f( )2
> λ, where λ = 2π

k
= 1
f µε

= u
f

is a wavelength of a plane wave in an unbounded dielectric medium (μ, ε)

where u is the velocity of light in that medium



Chap. 10 |  TM wave within a guide (4/5)

• When f > fc → γ: purely imaginary 
- Phase velocity of the propagating wave in the guide

up =
ω
β
= u

1− fc f( )2
> u (1) up within a waveguide is always higher than u in an unbounded medium


(2) up is frequency-dependent

→ Waveguide for TM = dispersive system

- Group velocity

ug =
1

dβ dω
= u 1− fc

f
⎛
⎝⎜

⎞
⎠⎟

2

< u ∴u2 = upug
Group velocity in a lossless medium

= Velocity of signal propagation (or energy transport) [will be discussed in next class]

- Wave impedance ZTM

ZTM = γ
jωε

,γ = jk 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

By plugging into ∴ZTM =η 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2 (1) Purely resistive

(2) Always smaller than intrinsic impedance of 

the dielectric



Chap. 10 |  TM wave within a guide (5/5)

• When f < fc → γ: real 
- Propagation constant (γ)

: Attenuation constantγ =α = h 1− f
fc

⎛
⎝⎜

⎞
⎠⎟

2

e−γ z = e−αzWave propagating with (Rapidly decaying with z → Evanescent mode)

- Wave with f < fc attenuates

- Wave with f > fc propagates with β

a waveguide for TM wave acts like a high-pass filter!

- Wave impedance ZTM

ZTM = γ
jωε

,γ = h 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

By plugging into ∴ZTM = − j h
ωε

1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

Purely reactive below cutoff frequency

→ E and H in a phase quadrature

→ No power flow associated with such an evanescent wave because

Pav =
1
2
Re E × H*( ) = 0
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Chap. 10 |  Contents for 2nd class of week 6

Review of the last class 

• General wave behavior along a uniform dielectric guide


Sec 2. General wave behaviors along a uniform guiding structures (Cont’d.) 

• TE and TM wave characteristics, commonality and difference




Chap. 10 |  General wave behavior within a uniform dielectric guide (1/2)

• Propagating waves along a uniform dielectric waveguide

 E x, y, z( ) = E 0 x, y( )e−γ z = axEx
0 x, y( )+ ayEy

0 x, y( )+ azEz
0 x, y( )⎡⎣ ⎤⎦e

−γ z

 H x, y, z( ) = H 0 x, y( )e−γ z = axHx
0 x, y( )+ ayHy

0 x, y( )+ azHz
0 x, y( )⎡⎣ ⎤⎦e

−γ z

⎧
⎨
⎪

⎩⎪

∇× E = − jωµH ∇× H = jωεEMaxwell’s Equations

Transverse components

(Ex, Ey, Hx, Hy)


can be expressed in terms of

longitudinal components!


(Ez, Hz)

 ∂Ez
0

∂y
+ γ Ey

0 = − jωµHx
0    !(a)

 − ∂Ez
0

∂x
− γ Ex

0 = − jωµHy
0    !(b)

 
∂Ey

0

∂x
− ∂Ex

0

∂y
= − jωµHz

0    !(c)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 ∂Hz
0

∂y
+ γ Hy

0 = jωεEx
0    !(e)

 − ∂Hz
0

∂x
− γ Hx

0 = jωεEy
0    !(f)

 
∂Hy

0

∂x
− ∂Hx

0

∂y
= jωεEz

0    !(g)

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

<Uniform dielectric waveguide> 
• Uniform cross-section & composition 
• transverse plane: xy plane 
• Propagation direction: z

∇2E + k2E = 0
∇2H + k2H = 0

⎧
⎨
⎪

⎩⎪

∇xy
2 E + γ 2 + k2( )E = 0

∇xy
2 H + γ 2 + k2( )H = 0

⎧
⎨
⎪

⎩⎪

y
x

z

O

We have to solve 
“source-free” 

Non-homogeneous 
wave equations!



Chap. 10 |  General wave behavior within a uniform dielectric guide (2/2)

• Transverse (Ex, Ey, Hx, Hy) components in terms of longitudinal (Ez, Hz) components

where h2 = γ 2 + k2

• Procedure to determine EM wave within a waveguide

∇xy
2 E + γ 2 + k2( )E = 0

∇xy
2 H + γ 2 + k2( )H = 0

⎧
⎨
⎪

⎩⎪

1. Solve the wave eqns for Ez, Hz 
with given boundary conditions

2. Substitute Ez, Hz into  
above eqns to obtain Ex, Ey, Hx, Hy

Ex
0 = ℑ Ez

0,Hz
0( )

Ey
0 = ℑ Ez

0,Hz
0( )

⎧
⎨
⎪

⎩⎪
,    

Hx
0 = ℑ Ez

0,Hz
0( )

Hy
0 = ℑ Ez

0,Hz
0( )

⎧
⎨
⎪

⎩⎪

(Ex, Ey, Hx, Hy) are functions of (Ez, Hz)!!

• Classification of EM wave in terms of (Ez, Hz)

- TEM wave: No longitudinal components → H, E ⊥ k → Hz, Ez = 0

- Transverse Magnetic (TM) wave: H ⊥ k → Hz = 0, but nonzero Ez

- Transverse Electric (TE) wave: E ⊥ k → Ez = 0, but nonzero Hz

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨
⎪
⎪

⎩
⎪
⎪



Chap. 10 |  TE wave within a guide (1/2)

• Transverse Electric (TE) waves 
- E ⊥ k → Ez = 0 (Longitudinal component of E-field = 0)

- Nonzero Hz

Solve non-homogenous equation for Hz0 with given B.C. of a guide

(Will be dealt in greater details in section 10.2~7)

• Characterization of TE waves 
- i.e. How to obtain Ex0, Ey0, Ez0, Hx0, Hy0, Hz0?

∇xy
2 Hz

0 + γ 2 + k2( )Hz
0 = 0

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

STEP 1

STEP 2 Use Hz0 from STEP 1 and Ez0 = 0 to determine transverse H-field components

If we combine eqns. (3) and (4),

HT
0( )TE ! axHx

0 + ayHy
0⎡⎣ ⎤⎦ = − γ

h2
ax

∂
∂x

+ ay
∂
∂y

⎛
⎝⎜

⎞
⎠⎟
Hz

0 ! − γ
h2

∇T Hz
0⎡

⎣
⎢

⎤

⎦
⎥

∴ HT
0( )TE = − γ

h2
∇T Hz

0

: Transverse H-fields (Hx0 and Hy0) can be obtained by longitudinal H-field (Hz0)!

Gradient of Hz0 in a transverse plane



Chap. 10 |  TE wave within a guide (2/2)
• Characterization of TE waves 

- i.e. How to obtain Ex0, Ey0, Ez0, Hx0, Hy0, Hz0?

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

STEP 3 By using a wave impedance, obtain transverse E-fields from transverse H-fields

Wave impedance 
- A ratio of transverse components of the E and H-fields

- By using eqns. (1)/(4) or eqns. (2)/(3),

ZTE =
Ex

0

Hy
0 = −

Ey
0

Hx
0 = jωµ

γ
   Ω( ) ∴ET = −ZTE az × HT( )

• Wave impedance is defined according to “right-hand” rule for propagating waves 
• “Right-hand” rule 

- Determining the directions of E, H, and k associated with a EM wave

- Steps


‣ Point the fingers of your right hand in E-field direction

‣ Bend them in the H-field direction

‣ Then, your thumb points in the k direction

z

x

y

z

x

y
Ex0

|k|

Hy0 Ey0

-Hx0
|k|

∴ZTE =
Ex
0

Hy
0 ∴ZTE =

Ey
0

−Hx
0



Chap. 10 |  TM wave within a guide (1/2)

• Transverse Magnetic (TM) waves 
- H ⊥ k → Hz = 0 (Longitudinal component of H-field = 0)

- Nonzero Ez

Solve non-homogenous equation for Ez0 with given B.C. within a guide

• Characterization of TM waves 
- i.e. How to obtain Ex0, Ey0, Ez0, Hx0, Hy0, Hz0?

∇xy
2 Ez

0 + γ 2 + k2( )Ez
0 = 0

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

STEP 1

STEP 2 Use Ez0 from STEP 1 and Hz0 = 0 to obtain transverse E-field components

If we combine eqns. (1) and (2),

ET
0( )TM ! axEx

0 + ayEy
0⎡⎣ ⎤⎦ = − γ

h2
ax

∂
∂x

+ ay
∂
∂y

⎛
⎝⎜

⎞
⎠⎟
Ez
0 ! − γ

h2
∇T Ez

0⎡

⎣
⎢

⎤

⎦
⎥

∴ ET
0( )TE = − γ

h2
∇T Ez

0

: Transverse E-fields (Ex0 and Ey0) can be obtained by longitudinal E-field (Ez0)!

Gradient of Ez0 in a transverse plane



Chap. 10 |  TM wave within a guide (2/2)
• Characterization of TM waves 

- i.e. How to obtain Ex0, Ey0, Ez0, Hx0, Hy0, Hz0?

 Ex
0 = − 1

h2 γ ∂Ez
0

∂x
+ jωµ ∂Hz

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(1)

 Ey
0 = − 1

h2 γ ∂Ez
0

∂y
− jωµ ∂Hz

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(2)

 Hx
0 = − 1

h2 γ ∂Hz
0

∂x
− jωε ∂Ez

0

∂y
⎛
⎝⎜

⎞
⎠⎟

   !(3)

 Hy
0 = − 1

h2 γ ∂Hz
0

∂y
+ jωε ∂Ez

0

∂x
⎛
⎝⎜

⎞
⎠⎟

   !(4)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

STEP 3

By using a wave impedance, obtain transverse H-fields from transverse E-fields

Wave impedance 
- By having eqns. (1)/(4) or (2)/(3),

ZTM = Ex
0

Hy
0 = −

Ey
0

Hx
0 =

γ TM

jωε
   Ω( ) ∴ HT( )TM = 1

ZTM
az × ET( )TM( )

ZTE =
Ex
0

Hy
0 = −

Ey
0

Hx
0 =

jωµ
γ TE

   Ω( ) ET( )TE = −ZTE az × HT( )TE( )

ZTEM = Ex
0

Hy
0 =

jωµ
γ TEM

= µ
ε
=η    (Ω) HT( )TEM = 1

η
az × ET( )TEM( )

- c.f.) For TE and TEM,

• Wave impedance for TEM vs. TE / TM 
- ZTEM is independent of frequency


- ZTE and ZTM are frequency-dependent

γ TEM = jk = jω µε

γ TE  and γ TM ≠ jk

h2 = γ TEM
2 + k2 = 0



∴ fc =
h

2π µε

∇xy
2 E + γ 2 + k2( )E = 0

∇xy
2 H + γ 2 + k2( )H = 0

⎧
⎨
⎪

⎩⎪

Chap. 10 |  TE & TM waves within a guide (Commonality, 1/2)
• Cut-off frequency 

- frequency at which [γ = 0] is given by

γ = h2 − k2 = h2 −ω 2µε = 0   →    ω c
2µε = h2

“cut-off frequency”

γ = h 1− f
fc

⎛
⎝⎜

⎞
⎠⎟

2

• When f > fc → γ: purely imaginary 
- Phase constant (β)

γ =α + jβ = jk 1− h
k

⎛
⎝⎜

⎞
⎠⎟
2

= jk 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

propagating mode with β = k 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

   (rad/m)

- Corresponding wavelength

λg =
2π
β

= λ

1− fc f( )2
> λ, where λ = 2π

k
= 1
f µε

= u
f

λ: wavelength of a plane wave in an unbounded dielectric medium (μ, ε) 
u: velocity of light in that medium

• h: Characteristic values or eigenvalues determined by boundary condition

- Only discrete & real values are allowed! 
- Each eigenvalue determines the characteristics of a particular mode of 

the given waveguide

h2



Chap. 10 |  TE & TM waves within a guide (Commonality, 2/2)
• When f > fc → γ: purely imaginary (cont’d) 

- Phase velocity

up =
ω
β
= u

1− fc f( )2
> u (1) up within a waveguide is “always faster” than u in an unbounded medium


(2) up is frequency-dependent

→ Waveguides for TE/TM = “dispersive systems”

- Group velocity

ug =
1

dβ dω
= u 1− fc

f
⎛
⎝⎜

⎞
⎠⎟

2

< u ∴u2 = upug
Group velocity in a lossless medium

= Velocity of signal propagation (or energy transport) [will be discussed later]

• When f < fc → γ: real 
- Waves become “attenuating” or “evanescent” modes 
- Waveguides for TE/TM = “high-pass” filters (f > fc propagating, f < fc attenuated)

γ = h 1− f
fc

⎛
⎝⎜

⎞
⎠⎟

2

β = k 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

(when  f > fc )

γ =α = h 1− f
fc

⎛
⎝⎜

⎞
⎠⎟

2  ZTM = γ TM

jωε

 ZTE =
jωµ
γ TE

⎧

⎨
⎪⎪

⎩
⎪
⎪

Wave impedance for evanescent TM and TE modes 
• Purely Imaginary → Purely “reactive”

Z = j Z = Z e jπ 2 = ET

HT

• ET and HT are in phase-quadrature

∴ No power flow for evanescent waves ∵Pav =

1
2
Re ET × HT

*( ) = 0⎛
⎝⎜

⎞
⎠⎟



Chap. 10 |  TE & TM waves within a guide (Difference)

• Wave impedance at f > fc

γ = jβ = jk 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

,

ZTM = γ TM

jωε
= jk
jωε

1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

=η 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

Since

ZTE =
jωµ
γ TE

= jωµ
jk

1

1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2
= η

1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2“Purely imaginary” 
→ Propagating modes

(a) Wave impedances for both TE and 
TM are real & purely resistive! 

(b) ZTE > ZTM for all f > fc 

(c) At very high f, both asymptotically 
converge to η

1

Z
η

f
fc1

ZTE
η

ZTM
η

Evanescent 
modes

f < fc f > fc

Propagating 
modes



Chap. 10 |  Propagating TE & TM waves within a guide
• Summary for propagating mode

γ = jβ

β = k 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

(when  f > fc )

where

u = ω
β
= 1

µε

η 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

η

1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

η = µ
ε

λg =
2π
k

= λ

λg =
λ

1− fc f( )2
> λ up =

u

1− fc f( )2
> u

u = 1
dβ dω

= 1
µε

ug = u 1− fc
f

⎛
⎝⎜

⎞
⎠⎟

2

< u

Mode

TEM

TM

TE

Wave impedance Waveguide Phase velocity Group velocity

•ω-β relationship (Frequency dependence of β) 
- Determining characteristics of propagating waves along a waveguide

β

ω

ω c

P

slope:

slope:

ω β = up

ω
β

⎛
⎝⎜

⎞
⎠⎟ TEM

= uTEM = 1
µε

dω dβ = ug
β = k 1− fc

f
⎛
⎝⎜

⎞
⎠⎟

2

=ω µε 1− ω c

ω
⎛
⎝⎜

⎞
⎠⎟
2

ω c =
h
µε

β =ω µεTEM

TE&TM where

h (eigenvalue) depends on a particular TE or TM mode in a waveguide of given cross-section


