Electromagnetics <Chap. 10> Waveguides and Cavity Resonators Section 10.3 ~ 10.4

Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

(1st of **week 7**)

Chap. 10 Contents for 1st class of week 7

Sec 3. Parallel-plate waveguide

- Characteristics of TE and TM wave propagation
- Energy transport velocity
- Attenuation in the waveguide

Chap. 10 Parallel-plate waveguide and "TM" waves (1/6)

- Infinite parallel plate waveguide
- Two "*perfectly conducting*" plates separated by a "*dielectric*" medium (μ , ε)
- All TEM, TM, TE waves can be supported
- *"Infinite in extent"* in *x*-direction
 - Fields do not vary in x-direction \rightarrow

$$\frac{\partial \boldsymbol{E}}{\partial x} = 0, \ \frac{\partial \boldsymbol{H}}{\partial x} = 0 \ \left(\boldsymbol{E} \neq 0, \ \boldsymbol{H} \neq 0 \right)$$

Edge effects negligible

• TM waves between parallel plates

- Longitudinal components

$$H_z^0 = 0, E_z^0 \neq 0$$

- Phasor notation for longitudinal *E*-field

$$E_z(y,z) = E_z^0(y)e^{-\gamma z}$$
 (no dependence of x!)

- V

$$\begin{bmatrix} z - dependence taken care by \gamma^2 \\ k^2 = \gamma^2 + k^2 \end{bmatrix} \begin{bmatrix} h^2 \triangleq \gamma^2 + k^2 \\ k^2 \equiv \gamma^2 + k^2 \end{bmatrix} = 0 \quad \rightarrow \quad \nabla_{xy}^2 E_z^0(y) + (\gamma^2 + k^2) E_z^0(y) = 0 \quad \rightarrow \quad \frac{d^2 E_z^0(y)}{dy^2} + h^2 E_z^0(y) = 0$$

- Boundary condition

 $E_{z}^{0}(y) = 0$ at y = 0 and y = b (: *E-field vanishes at the conducting interface!*)

Chap. 10 Parallel-plate waveguide and "TM" waves (2/6)

• TM waves between parallel plates

- Solution to the wave equation

 $\frac{d^2 E_z^0(y)}{dy^2} + h^2 E_z^0(y) = 0 \quad \text{with boundary condition} \quad E_z^0(y) = 0$ $\therefore E_z^0(y) = A_n \sin(hy) = A_n \sin\left(\frac{n\pi y}{h}\right), \quad n = 0, 1, 2 \cdots \text{ when}$

Longitudinal E-field for TM mode

- Transverse E and H-field components

Transverse components in terms of longitudinal components

0 at
$$y = 0$$
 and $y = b$

 $n = 0, 1, 2 \cdots$ where $A_n \sim$ strength of a particular TM mode (*not our interest here*)

$$=\frac{n\pi}{b}, n=0,1,2\cdots$$

h

Eigenvalues (Depending on geometry!)

$$\begin{cases} E_x^0(y) = 0\\ E_y^0(y) = -\frac{\gamma}{h^2} A_n \cos\left(\frac{n\pi y}{b}\right)\\ H_x^0(y) = \frac{j\omega\varepsilon}{h} A_n \cos\left(\frac{n\pi y}{b}\right)\\ H_y^0(y) = 0\end{cases}$$

Chap. 10 Parallel-plate waveguide and "TM" waves (3/6)

• TM waves between parallel plates

- Propagation constant

$$\gamma = \sqrt{h^2 - k^2} = j\sqrt{k^2 - h^2} = j\sqrt{\omega^2 \mu \varepsilon - \left(\frac{n\pi}{b}\right)^2} \quad \rightarrow \quad \left(\therefore \beta = \sqrt{\omega^2 \mu \varepsilon - \left(\frac{n\pi}{b}\right)^2} \right)^2$$

- Cut-off frequency ($\gamma = 0$)

$$f_c = \frac{h}{2\pi\sqrt{\mu\varepsilon}} = \frac{n}{2b\sqrt{\mu\varepsilon}} \quad (\text{Hz}) \qquad f > f_c: \text{ Propagate with a pl} \\ f < f_c: \text{ Evanescent wave}$$

• Possible TM wave (= eigenmode, TM_n)

- Characterized by eigenvalue $h = \frac{n\pi}{h}$, $n = 0, 1, 2\cdots$

• TM₀ mode (n=0)

$$\begin{bmatrix}
Longitudinal \\
H_z^0(y) = 0 \\
E_z^0(y) = A_n \sin\left(\frac{n\pi y}{b}\right) = 0
\end{bmatrix} \begin{bmatrix}
E_x^0(y) = 0 \\
E_y^0(y) = -1 \\
H_x^0(y) = -1 \\
H_y^0(y) = -1
\end{bmatrix}$$

hase constant β

* Cut-off frequency is determined by geometry & material composition of a waveguide!

(Typically, microwave (0.3~300GHz) used in

waveguide for communications. Why?)

Zero longitudinal E and H-fields

Non-zero transverse E and H-fields

→ TEM mode!

 \rightarrow *f*_c = 0 (No cutoff frequency)

Chap. 10 Parallel-plate waveguide and "TM" waves (4/6)

- $TM_0 \mod (n = 0)$
- $TM_0 = TEM$ with $f_c = 0$
- The mode with *lowest cutoff frequency* = "*Dominant mode*" of the waveguide (→ *lowest attenuation, why?*)
- \therefore Dominant mode for parallel-plate waveguides = TM₀ mode (TEM mode)
- *TM_n* mode (n > 0) - Cut-off frequency $f_c = \frac{h}{2\pi\sqrt{\mu\varepsilon}} = \frac{n}{2b\sqrt{\mu\varepsilon}}$ (Hz)
 - Each mode (*n*) has its own λ_g , u_p , u_g , and Z_{TMn}

$$\lambda_{g} = \frac{2\pi}{\beta} = \frac{\lambda}{\sqrt{1 - (f_{c}/f)^{2}}} \quad \text{where} \quad \lambda = \frac{2\pi}{k} = \frac{1}{f\sqrt{\mu\varepsilon}}$$

$$u_p = \frac{\omega}{\beta} = \frac{u}{\sqrt{1 - (f_c/f)^2}}$$

$$u_{p} = \frac{1}{d\beta/d\omega} = u_{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} \qquad Z_{TM_{n}} = \eta_{\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}}$$

of the waveguide (→ *lowest attenuation, why?*) (TEM mode)

$$\beta \text{ in terms of fc}$$

$$\beta = \sqrt{\omega^2 \mu \varepsilon} - \left(\frac{n\pi}{b}\right)^2 = \omega \sqrt{\mu \varepsilon} \sqrt{1 - \left(\frac{n\pi}{b\omega\sqrt{\mu \varepsilon}}\right)^2}$$

$$= k \sqrt{1 - \left(\frac{\omega_c}{\omega}\right)^2} = k \sqrt{1 - \left(\frac{f_c}{f}\right)^2}$$

Conclusion: ∴Each TM_n mode has its own propagating characteristics with distinct f_c , λ_g , u_p , u_g , and Z_{TMn} !

Chap. 10 Parallel-plate waveguide and "TM" waves (5/6)

Example 10-4

Propagating TM_1 wave in a parallel plate waveguide = Superposition of two plane waves bouncing back and forth obliquely between two plates

• Longitudinal electric field for TM₁ mode

$$E_{z}(y,z) = E_{z}^{0}(y)e^{-\gamma z} = A_{1}\sin\left(\frac{\pi y}{b}\right)e^{-j\beta z} = \frac{A_{1}}{2j}\left(e^{j\frac{\pi y}{b}} - e^{-j\frac{\pi y}{b}}\right)$$

Chap. 10 Parallel-plate waveguide and "TM" waves (6/6)

Example 10-4

Propagating TM_1 wave in a parallel plate waveguide = Superposition of two plane waves bouncing back and forth obliquely between two plates

• Total E-field for TM wave from Chap. 8-7.2

$$E_{1}(x,z) = -2E_{i0}\left[a_{x}j\cos\theta_{i}\sin(\beta_{1}z\cos\theta_{i}) + a_{z}\sin\theta_{i}\cos(\beta_{1}z\cos\theta_{i})\right]e^{-j\beta_{1}c\sin\theta_{i}}$$

$$= a_{x}E_{x}(x,z) + a_{z}E_{z}(x,z) \longrightarrow E_{x}(x,z) = -j2E_{i0}\cos\theta_{i}\sin(\beta_{1}z\cos\theta_{i})e^{-j\beta_{1}c\sin\theta_{i}}$$
From previous page
(notation used in *Chap. 10*)
$$E_{x}(x,z) \rightarrow E_{z}(z,y) = -j2E_{i0}\cos\theta_{i}\sin(\beta_{1}y\cos\theta_{i})e^{-j\beta_{1}c\sin\theta_{i}}$$
Fourier set
$$\theta_{1}(x,z) = -j2E_{i0}\cos\theta_{i}\sin\theta_{i} = -j2E_{i0}\cos\theta_{i}\sin\theta_{i}^{2}(x,z)$$
Fourier set
$$\theta_{1}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z)$$
Fourier set
$$\theta_{1}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z)$$
Fourier set
$$\theta_{1}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z)$$
Fourier set
$$\theta_{1}(x,z) = -j2E_{i0}\cos\theta_{i}a^{2}(x,z) = -j2E_{i0}\cos\theta$$

b

$$a_{x}E_{x}(x,z) + a_{z}E_{z}(x,z) \longrightarrow E_{x}(x,z) = -j2E_{i0}\cos\theta_{i}\sin(\beta_{1}z\cos\theta_{i})e^{-j\beta_{1}z\sin\theta_{1}}$$
From previous page
(notation used in *Chap. 10*)
replacing x with z and z with -y, $E_{x}(x,z)$ becomes
$$E_{x}(x,z) \longrightarrow E_{z}(z,y) = -j2E_{i0}\cos\theta_{i}\sin(\beta_{1}y\cos\theta_{i})e^{-j\beta_{1}z\sin\theta_{1}} \longrightarrow E_{z}(y,z) = A_{1}\sin\left(\frac{\pi y}{b}\right)e^{-j\beta_{2}z}$$
(notation used in *Chap. 10*)
$$E_{z}(y,z) = A_{1}\sin\left(\frac{\pi y}{b}\right)e^{-j\beta_{2}z}$$
** Solution condition**
• θ_{1} exists only if $\lambda/2b \le 1$
• at $\lambda/2b = 1$
 $\Rightarrow f = \frac{u}{\lambda} = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$: Cut-off frequency for $n = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{\varepsilon}$. Propagation in z direction!
... Propagation only possible when $\lambda < 2b = \lambda_{\varepsilon}$ or $f > 1$.

S

$$\begin{cases} \beta_1 \sin \theta_i = \beta \\ \beta_1 \cos \theta_i = \frac{\pi}{b} \end{cases}$$

$$\sin(\beta_{1}z\cos\theta_{i}) + \boldsymbol{a}_{z}\sin\theta_{i}\cos(\beta_{1}z\cos\theta_{i})]e^{-j\beta_{i}z\sin\theta_{i}}$$
From previous page
(notation used in *Chap. 10*)
$$F_{x}(x,z) = -j2E_{i0}\cos\theta_{i}\sin(\beta_{1}y\cos\theta_{i})e^{-j\beta_{i}z\sin\theta_{i}}$$

$$-j2E_{i0}\cos\theta_{i}\sin(\beta_{1}y\cos\theta_{i})e^{-j\beta_{i}z\sin\theta_{i}}$$

$$E_{z}(y,z) = A_{1}\sin\left(\frac{\pi y}{b}\right)e^{-j\beta_{z}}$$
** *Solution condition***
$$\theta_{i} exists only if \lambda/2b \le 1$$

$$at \lambda/2b = 1$$

$$\Rightarrow f = \frac{u}{\lambda} = \frac{1}{2b\sqrt{\mu\varepsilon}} = f_{c}: \text{Cut-off frequency for } n = \frac{u}{(\cos\theta_{i} = 1, \sin\theta_{i} = 0)}$$

$$\Rightarrow \text{Waves bounding back & forth in y direction}$$

$$\Rightarrow \text{No propagation only possible when } \lambda < 2b = \lambda_{c} \text{ or } f > z$$

Chap. 10 Parallel-plate waveguide and "TE" waves (1/2)

• TE waves between parallel plates

- Longitudinal components

$$E_z^0 = 0, H_z^0 \neq 0$$

- Phasor notation for longitudinal *H*-field

$$H_z(y,z) = H_z^0(y)e^{-\gamma z}$$
 (no dependence of x!) $\leftarrow \because \frac{\partial H_z^0}{\partial x}$

- Wave equation

$$\left(\nabla_{xy}^{2} + \nabla_{z}^{2} \right) H_{z}(y,z) + k^{2} H_{z}(y,z) = 0 \quad \rightarrow \quad \nabla_{xy}^{2} H_{z}^{0}(y) + \left(\gamma^{2} + k^{2} \right) H_{z}^{0}(y) = 0 \quad \rightarrow \quad \frac{d^{2} H_{z}^{0}(y)}{dy^{2}} + h^{2} H_{z}^{0}(y) = 0$$

- Boundary condition

$$\frac{(y)}{c} = 0$$

$$E_{x}^{0}(y) = -\frac{j\omega\mu}{h^{2}} \frac{dH_{z}^{0}(y)}{dy} = 0 \bigg|_{y=0 \text{ and } y=b}$$

(at the surface of conducting plates)

$$\oint \frac{dH_z^0(y)}{dy} = 0 \text{ at } y = 0 \text{ and } y = b$$

Chap. 10 Parallel-plate waveguide and "TE" waves (2/2)

• TE waves between parallel plates

- Solution to the wave equation

 $\frac{d^2 H_z^0(y)}{dy^2} + h^2 H_z^0(y) = 0 \text{ with boundary condition } \frac{d H_z^0(y)}{dy}$ $\therefore H_z^0(y) = B_n \cos(hy) = B_n \cos\left(\frac{n\pi y}{b}\right), \quad n = 0, 1, 2 \cdots \text{ where } B_n \sim \text{strength of a particular TE mode (not our interest here)}$

Longitudinal H-field for TE mode

- Transverse E and H-field components

$$\begin{cases} E_x^0(y) = -\frac{j\omega\mu}{h^2} \frac{dH_z^0(y)}{dy} = \frac{j\omega\mu}{h} B_n \sin\left(\frac{n\pi y}{b}\right) \\ H_y^0(y) = -\frac{\gamma}{h^2} \frac{dH_z^0(y)}{dy} = \frac{\gamma}{h} B_n \sin\left(\frac{n\pi y}{b}\right) \end{cases}$$
 Here, $\gamma = \sqrt{h^2 - k^2} = j\sqrt{k^2 - h^2} = j\sqrt{\omega^2 \mu \varepsilon - \left(\frac{n\pi}{b}\right)^2}$ (Same as that for TM modes!)

- Cut-off frequency ($\gamma = 0$)

$$f_c = \frac{h}{2\pi\sqrt{\mu\varepsilon}} = \frac{n}{2b\sqrt{\mu\varepsilon}}$$
 (Hz) (Same as that for TM mode

$$\frac{b}{x} = 0$$
 at $y = 0$ and $y = b$

- Dominant mode?

 $rac{}$ n = 0 \rightarrow All transverse fields vanish!

No TE₀ exists in a parallel-plate waveguide

▶ $n = 1 \rightarrow$ However, $TE_1 \neq$ dominant mode! (Why?)

es!)

Chap. 10 Energy transport velocity (1/2)

• Energy transport velocity

- Velocity at which energy propagates along a waveguide • Energy transport velocity $(u_{en}) = group$ velocity (u_g) in "lossless medium" *In lossy media, group velocity loses its physical meaning (beyond our scope)
- Definition

$$u_{en} \triangleq \frac{\left(P_{z}\right)_{av}}{W'_{av}} = \frac{\int_{S} P_{av} \cdot ds}{\int_{V} \left[\left(w_{e}\right)_{av} + \left(w_{m}\right)_{av}\right] dv} \qquad \text{Ratio of time-average store}$$

*u*_{ev} for *TM*_n mode in a lossless parallel-plate waveguide Example 10-6

• Time-average Poynting vector

$$\boldsymbol{P}_{av} = \frac{1}{2} \operatorname{Re} \left(\boldsymbol{E} \times \boldsymbol{H}^{*} \right) \text{ where } \begin{cases} \boldsymbol{E} = \boldsymbol{a}_{y} E_{y}^{0}(y) + \boldsymbol{a}_{z} E_{z}^{0}(y) \\ \boldsymbol{H} = \boldsymbol{a}_{x} H_{x}^{0}(y) \end{cases}$$
$$= \frac{1}{2} \operatorname{Re} \left(-\boldsymbol{a}_{z} E_{y}^{0} H_{x}^{0*} + \boldsymbol{a}_{y} E_{z}^{0} H_{x}^{0*} \right)$$

ed energy within the volume of unit length (l = 1)

• Integration of P_{av} across the cross-section of a unit width (w = 1)

$$\int_{S} \boldsymbol{P}_{av} \cdot d\boldsymbol{s} = w \int_{0}^{b} \left(\boldsymbol{P}_{av} \cdot \boldsymbol{a}_{z} \right) dy = -\frac{1}{2} \int_{0}^{b} E_{y}^{0} H_{x}^{0*} dy$$
where
$$\begin{cases} E_{y}^{0}(y) = -\frac{\gamma}{h^{2}} A_{n} \cos\left(\frac{n\pi y}{b}\right) \\ H_{x}^{0}(y) = \frac{j\omega\varepsilon}{h} A_{n} \cos\left(\frac{n\pi y}{b}\right) \end{cases}$$

Chap

Exa

• In:

$$\begin{aligned} \mathbf{u}_{ex} &\triangleq \frac{\left(P_{z}\right)_{ex}}{W_{ex}^{0}} = \frac{\int_{x} \mathbf{P}_{ex} \cdot ds}{\int_{s} \left[\left(w_{e}\right)_{ex} + \left(w_{e}\right)_{ex}\right]_{ex}} \\ &= \frac{1}{2} \int_{0}^{b} \operatorname{Re}\left[\frac{j\omega\varepsilon\gamma}{h^{2}} - \frac{1}{2} \int_{0}^{b} E_{y}^{0} H_{y}^{0x} dy \\ &= -\frac{1}{2} \int_{0}^{b} \operatorname{Re}\left[\frac{j\omega\varepsilon\gamma}{h^{2}} - A_{x}^{2} \cos^{2}\left(\frac{n\pi y}{b}\right)\right] dy = \frac{\omega\varepsilon\beta}{2h^{2}} A_{x}^{2} \int_{0}^{b} \cos^{2}\left(\frac{n\pi y}{b}\right) dy = \frac{\omega\varepsilon\beta\beta}{4h^{2}} A_{x}^{2} \\ &= -\frac{1}{2} \int_{0}^{b} \operatorname{Re}\left[\frac{j\omega\varepsilon\gamma}{h^{2}} - A_{x}^{2} \cos^{2}\left(\frac{n\pi y}{b}\right)\right] dy = \frac{\omega\varepsilon\beta}{2h^{2}} A_{x}^{2} \int_{0}^{b} \cos^{2}\left(\frac{n\pi y}{b}\right) dy = \frac{\omega\varepsilon\beta\beta}{4h^{2}} A_{x}^{2} \\ &= -\frac{1}{2} \varepsilon E^{2} = \frac{1}{2} \varepsilon E \cdot E^{*} \\ &\to \\ &= -\frac{1}{2} \left[\frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} \\ &= -\frac{1}{2} \int_{0}^{b} \operatorname{Re}\left[\frac{j\omega\varepsilon\gamma}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} \\ &= -\frac{1}{2} \varepsilon E^{2} = \frac{1}{2} \varepsilon E \cdot E^{*} \\ &\to \\ &= -\frac{1}{2} \varepsilon E^{2} = \frac{1}{2} \varepsilon E \cdot E^{*} \\ &\to \\ &= -\frac{1}{2} \left[\frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} \\ &= -\frac{\varepsilon}{h^{2}} + \frac{\varepsilon}{h^{2}} \\ &= -\frac{\varepsilon$$

• *Tiı*

p. 10 Energy transport velocity (2/2)
ample 10-6
$$u_{ev}$$
 for TM_n mode in a lossless parallel-plate waveguide
aregration of P_{av} across the cross-section of a unit width (w = 1)

$$\int_{S} P_m \cdot ds = w \int_{0}^{b} (P_m \cdot a_z) dy = -\frac{1}{2} \int_{0}^{b} E_v^0 H_x^{0e} dy$$

$$= -\frac{1}{2} \int_{0}^{b} \operatorname{Re} \left[\frac{j\omega \varepsilon \gamma}{h^2} A_n^2 \cos^2 \left(\frac{n\pi y}{b} \right) \right] dy = \frac{\omega \varepsilon \beta}{2h^2} A_n^2 \int_{0}^{b} \cos^2 \left(\frac{n\pi y}{b} \right) dy = \frac{\omega \varepsilon \beta \beta}{4h^2} A_n^2 \quad \dots (1)$$

$$\begin{bmatrix} E = a_y E_v^0 (y) + a_z E_v^0 (H + a_z) dy = -\frac{1}{2} \int_{0}^{b} E_v^0 H_x^{0e} dy$$

$$= -\frac{1}{2} \int_{0}^{b} \operatorname{Re} \left[\frac{j\omega \varepsilon \gamma}{h^2} A_n^2 \cos^2 \left(\frac{n\pi y}{b} \right) \right] dy = \frac{\omega \varepsilon \beta}{2h^2} A_n^2 \int_{0}^{b} \cos^2 \left(\frac{n\pi y}{b} \right) dy = \frac{\omega \varepsilon \beta \beta}{4h^2} A_n^2 \quad \dots (1)$$

$$\begin{bmatrix} E = a_y E_v^0 (y) + a_z E_v^0 (H + a_z) dy = -\frac{1}{2} \int_{0}^{b} E_v^0 (y) = -\frac{\gamma}{2} A_z \cos^2 \left(\frac{n\pi y}{b} \right) dy = \frac{\omega \varepsilon \beta}{4h^2} A_n^2 \int_{0}^{b} \cos^2 \left(\frac{n\pi y}{b} \right) dy = \frac{\omega \varepsilon \beta \beta}{4h^2} A_n^2 \quad \dots (1)$$

$$\begin{bmatrix} w_v = \frac{1}{2} \varepsilon E^2 = \frac{1}{2} \varepsilon E \cdot E^* \quad \rightarrow \quad (w_v)_{wv} = \frac{\varepsilon}{4} \operatorname{Re} (E \cdot E^*) = \frac{\varepsilon}{4} A_n^2 \left[\sin^2 \left(\frac{n\pi y}{b} \right) + \frac{\beta^2}{h^2} \cos^2 \left(\frac{n\pi y}{b} \right) \right]$$

$$w_m = \frac{1}{2} \mu H^2 = \frac{1}{2} \mu H \cdot H^* \quad \rightarrow \quad (w_m)_{wv} = \frac{\mu}{4} \operatorname{Re} (H \cdot H^*) = \frac{\mu}{4} \left(\frac{\omega^2 \varepsilon^2}{h^2} \right) A_n^2 \cos^2 \left(\frac{n\pi y}{b} \right)$$

$$\int_v \left[(w_v)_{wv} + (w_m)_{wm} \right] dv = tw \int_0^{b} \left[(w_v)_{wv} + (w_m)_{wm} \right] dy = 2 \times \frac{\varepsilon b}{8h^2} k^2 A_n^2 \quad \dots (2)$$

$$\psi = u_w \sqrt{1 - \left(\frac{f}{f} \right)^2} = u_s$$

Chap. 10 Attenuation in parallel-plate waveguides (1/4)

- Attenuation in any waveguide caused by...
- (1) lossy dielectric
- (2) Imperfectly conducting walls
- Assumed *E* and *H*-fields are not altered by such losses
- TEM modes (Mostly from Chap. 9)

$$\alpha = \frac{1}{2R_0} \left(R + G |Z_0|^2 \right) \cong \frac{R}{2R_0} + \frac{GR_0}{2} = \alpha_c + \alpha_d$$

- Attenuation in dielectric (a_d)

$$\alpha_{d} = \frac{GR_{0}}{2} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}} = \frac{\sigma}{2} \eta \quad \text{for a low-loss dielectric}$$

- Attenuation in parallel plates (α_c) [Frequency-dependent]

$$\alpha_{c} = \frac{R}{2R_{0}} = \frac{2}{b} \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}} \cdot \frac{1}{2\eta} = \frac{1}{b} \sqrt{\frac{\pi f \varepsilon}{\sigma_{c}}} \quad (::non-magnetic media)$$
$$\therefore \alpha = \alpha_{d} + \alpha_{c} = \frac{\sigma}{2} \eta + \frac{1}{b} \sqrt{\frac{\pi f \varepsilon}{\sigma_{c}}} \quad \left\{ \begin{array}{l} \alpha_{d} \to 0 \quad \text{as} \quad \sigma \to 0\\ \alpha_{c} \to 0 \quad \text{as} \quad \sigma_{c} \to \infty \end{array} \right.$$

 $\alpha = \alpha_c + \alpha_d$ where α_d : Losses in the dielectric

 $a_{\rm c}$: Ohmic losses in the imperfectly conducting walls

$$Transmission line modeling in Chap. 9$$

for a low-loss line ($R << \omega L$, $G << \omega C$)
$$Z_0 = R_0 + jX_0 = \sqrt{\frac{L}{C}} \left(1 + \frac{R}{j\omega L}\right)^{\frac{1}{2}} \left(1 + \frac{G}{j\omega C}\right)^{-\frac{1}{2}}$$
$$\cong \sqrt{\frac{L}{C}} \left[1 + \frac{1}{2j\omega} \left(\frac{R}{L} - \frac{G}{C}\right)\right] \cong \sqrt{\frac{L}{C}} = \sqrt{\frac{n}{\varepsilon}} = R_0$$
$$R = \frac{2}{w} \sqrt{\frac{\pi f \mu_c}{\sigma_c}}, \ L = \mu \frac{d}{w}, \ G = \sigma \frac{w}{d}, \ C = \varepsilon \frac{w}{d}$$

nedia)

0

* At high frequency (i.e. microwave), ac dominates and TEM cannot be supported in a parallel-plate waveguide!

Chap. 10 Attenuation in parallel-plate waveguides (2/4)

• TM modes

- attenuation constant (a_d) due to losses in dielectric at $f > f_c$

- Let's express above in terms of cut-off frequency (f_c)

$$f_{c} = \frac{n}{2b\sqrt{\mu\varepsilon}} \rightarrow \frac{n\pi}{b} = \omega_{c}\sqrt{\mu\varepsilon} \rightarrow \sqrt{\omega^{2}\mu\varepsilon} - \left(\frac{n\pi}{b}\right)^{2} = \omega\sqrt{\mu\varepsilon}\sqrt{1 - \left(\frac{\omega_{c}}{\omega}\right)^{2}} = 2\omega\sqrt{\mu\varepsilon}\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}$$

$$\gamma \approx \frac{\sigma}{2}\sqrt{\frac{\mu}{\varepsilon}}\frac{1}{\sqrt{1 - \left(f_{c}/f\right)^{2}}} + j\omega\sqrt{\mu\varepsilon}\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}$$

$$\triangleq \alpha_{d} \qquad \triangleq \beta$$

$$(1 - \left(\frac{m\pi}{b}\right)^{2}) = 2\omega\sqrt{\mu\varepsilon}\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}} + \frac{1}{2\omega\sqrt{\mu\varepsilon}\sqrt{1 - \left(\frac{f_{c}}{f}\right)^{2}}} + \frac{1}{2\omega\sqrt{1 - \left(\frac{f_$$

Chap. 10 Attenuation in parallel-plate waveguides (3/4)

• TM modes

- attenuation constant (a_c) due to imperfectly conducting walls

$$\alpha_c = \frac{P_L(z)}{2P(z)}$$
 (from Law of conservation)

- P(z): Time-average *power flowing through cross-section* of width w
 P_L(z): Time-average *power lost in two plates* per unit length
- From Example 10-6,

$$P(z) = \int_{S} \mathbf{P}_{av} \cdot d\mathbf{s} = w \int_{0}^{b} (\mathbf{P}_{av} \cdot \mathbf{a}_{z}) dy = -\frac{w}{2} \int_{0}^{b} E_{y}^{0} H_{x}^{0*} dy$$
$$= \frac{w \omega \varepsilon \beta b}{4h^{2}} A_{n}^{2} = w \omega \varepsilon \beta b \left(\frac{bA_{n}}{2n\pi}\right)^{2} \cdots (1)$$

- Surface current densities on two plates (of same magnitude!)

$$\left|J_{S_{z}}^{0}\right| = \left|H_{x}^{0}\left(y=0\right)\right| = \frac{\omega \varepsilon A_{n}}{h} = \frac{\omega \varepsilon b A_{n}}{n\pi}$$

- Total power loss per unit length in two plates of width w

$$P_L(z) = 2w \left(\frac{1}{2} |J_{Sz}^0|^2 R_s\right) = w \left(\frac{\omega \varepsilon b A_n}{n\pi}\right)^2 R_s \quad \cdots (2)$$

Chap. 9-3 $P(z) = \frac{1}{2} \operatorname{Re} \left[V(z) I^{*}(z) \right] = \frac{V_{0}^{2}}{2 |Z_{0}|^{2}} R_{0} e^{-2\alpha z} \begin{cases} V(z) = V_{0} e^{-(\alpha + j\beta)z} \\ I(z) = I_{0} e^{-(\alpha + j\beta)z} \\ Z_{0} = R_{0} + jX_{0} \end{cases}$

h w Law of conservation

$$\frac{z}{z} = P_L(z) = 2\alpha P(z)$$
 : Rate of decrease of P(z) with
distance along the line = time-ave
power loss per unit length

$$TM in parallel-plate$$

$$\begin{cases}
E_z^0(y) = A_n \sin\left(\frac{n\pi y}{b}\right) \\
E_y^0(y) = -\frac{\gamma}{h^2} A_n \cos\left(\frac{n\pi y}{b}\right) \\
H_x^0(y) = \frac{j\omega\varepsilon}{h} A_n \cos\left(\frac{n\pi y}{b}\right)
\end{cases}$$

Chap. 10 Attenuation in parallel-plate waveguides (4/4)

• TM modes

- By having Eqns. (1) and (2) into a_c ,

$$\alpha_{c} = \frac{P_{L}(z)}{2P(z)} = \frac{2\omega\varepsilon R_{s}}{\beta b} = \frac{2R_{s}}{\eta b\sqrt{1 - (f_{c}/f)^{2}}} = \frac{2}{\eta b}\sqrt{\frac{\pi\mu_{c}}{\sigma_{c}}}\sqrt{\frac{1}{1 - (f_{c}/f)^{2}}}$$

- TE modes
- Since $\gamma_{\text{TE}} = \gamma_{\text{TM}} \rightarrow (a_{\text{d}})_{\text{TE}} = (a_{\text{d}})_{\text{TM}} = \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}} \frac{1}{\sqrt{1 (f_{c}/f)^{2}}}$ (Due to dielectric loss)
- *a_c* due to imperfectly conducting walls

$$P(z) = \int_{S} \mathbf{P}_{av} \cdot d\mathbf{s} = w \int_{0}^{b} (\mathbf{P}_{av} \cdot \mathbf{a}_{z}) dy = \frac{w}{2} \int_{0}^{b} E_{x}^{0} H_{y}^{0*} dy = \frac{w \omega \mu \beta}{2} \left(\frac{bB_{n}}{n\pi} \right)^{2} \int_{0}^{b} \sin^{2} \left(\frac{n\pi y}{b} \right) dy = w \omega \mu \beta b \left(\frac{bB_{n}}{2n\pi} \right)^{2}$$

$$P_{L}(z) = 2w \left(\frac{1}{2} \left| J_{Sx}^{0} \right|^{2} R_{s} \right) = w \left| H_{z}^{0}(y=0) \right|^{2} R_{s} = w B_{n}^{2} R_{s}$$

$$\therefore \alpha_{c} = \frac{P_{L}(z)}{2P(z)} = \frac{2R_{s}}{\omega \mu \beta b} \left(\frac{n\pi}{b} \right)^{2} = \frac{2R_{s}f_{c}^{2}}{\eta b f^{2} \sqrt{1 - (f_{c}/f)^{2}}} = \frac{2}{\eta b} \sqrt{\frac{\pi \mu_{c}}{\sigma_{c}}} \frac{f_{c}^{2}}{f_{z}^{3} \sqrt{1 - (f_{c}/f)^{2}}}}$$

$$The modes is the two production of the two productions of two productions$$

$$rac{f}{-ig(f_c/fig)^2}$$

$$TE in parallel-plate$$

$$\begin{cases}
H_z^0(y) = B_n \cos\left(\frac{n\pi y}{b}\right) \\
E_x^0(y) = \frac{j\omega\mu}{h} B_n \sin\left(\frac{n\pi}{b}\right) \\
H_y^0(y) = \frac{\gamma}{h} B_n \sin\left(\frac{n\pi y}{b}\right)
\end{cases}$$

$$R_{s} = \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}} \quad (\Omega) \quad Eq. (9-26)$$

1 modes

Electromagnetics <Chap. 10> Waveguides and Cavity Resonators Section 10.3 ~ 10.4

Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

(1st of **week 7**)

Chap. 10 Contents for 2nd class of week 7

Sec 4. Rectangular waveguide

- Characteristics of TE and TM wave propagation
- Attenuation in the waveguide

Chap. 10 Introduction

- Previously in a parallel-plate waveguide...
- Two assumptions
 - Infinite in extent in x direction \rightarrow Fields do not vary in x-direction
 - Edge effects negligible
- In practical cases
 - Dimensions are always *finite* (i.e. finite width)
 - Fringing fields exist \rightarrow i) EM leak through the sides of a guide, ii) Undesirable coupling to other circuits and systems
 - Practical waveguide: A uniform dielectric enclosed by metallic skin
- Simplest structures

<Rectangular waveguide>

<Circular waveguide>

- Wave behavior in such waveguides
 - TM & TE modes are supported
- *microwave* than circular waveguide
 - allowed mode (i.e. a dominant mode)
 - single mode

$$\rightarrow \frac{\partial \boldsymbol{E}}{\partial x} = 0, \ \frac{\partial \boldsymbol{H}}{\partial x} = 0 \ \left(\boldsymbol{E} \neq 0, \ \boldsymbol{H} \neq 0 \right)$$

• TEM mode CANNOT be supported (why?)

- Rectangular waveguide *more commonly used in RF/*

It is desirable to operate waveguides with only one

Rectangular has a larger bandwidth than circular for a

Chap. 10 TM waves in rectangular waveguide (1/4)

Rectangular waveguide

- A waveguide of *rectangular cross-section* of widths *a* and *b*
- Dielectric (μ and ε) enclosed by metallic skin
- Longitudinal field components
- $H_{z^0} = 0$ (**By definition**)
- Wave equation for E_{z^0}

$$\nabla_{xy}^{2} E_{z}^{0} + h^{2} E_{z}^{0} = 0 \quad \rightarrow \quad \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + h^{2}\right) E_{z}^{0} = 0 \quad \cdots (1)$$

- Separation of variables
 - $E_z^0(x,y) = X(x)Y(y) \quad \cdots (2)$
- By substituting (2) into (1), we have

$$Y(y)\frac{d^2X(x)}{dx^2} + X(x)\frac{d^2Y(y)}{dy^2} + X(x)Y(y)h^2 = 0 \quad \rightarrow \quad -$$

c.f.) $E_z^0(y,z) = E_z^0(y)e^{-\gamma z}$ for a parallel plate waveguide

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} = \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} + h^2$$
$$\triangleq k_x^2 \qquad \triangleq -k_y^2$$

Both sides are equal to constants to hold for all *x*, *y*!

Chap. 10 TM waves in rectangular waveguide (2/4)

• Longitudinal field components

- Two separable ODEs

$$E_z^0(x,y) = X(x)Y(y) \quad \rightarrow \quad \begin{cases} \frac{d^2X(x)}{dx^2} + k_x^2X(x) = 0\\ \frac{d^2Y(y)}{dy^2} + k_y^2Y(y) = 0 \end{cases} \quad \text{wr}$$

- Form of solution determined by *boundary condition*

At the lateral walls, (x-direction) $\begin{bmatrix} E_z^0(0,y) = 0 \\ E_z^0(a,y) = 0 \end{bmatrix}$ At the vertical walls, $\begin{bmatrix} E_z^0(x,0) = 0 \\ E_z^0(x,b) = 0 \end{bmatrix}$

- $\rightarrow X(x)$ and Y(y) should be in *sinusoidal forms*, because *E*-fields vanish at both ends!
- \rightarrow Other forms, sinh(kx) and cosh(kx) do not vanish, except at x = 0

Possible solution forms of $\frac{d^2 X(x)}{dx^2} + k_x^2 X(x) = 0$

Condition	k_{x}	X(x)	Exponential for
$k_{x}^{2} = 0$	0	$A_0 x + B_0$	
$k_x^2 > 0$	k	$A_1 \sin kx + B_1 \cos kx$	$C_1 e^{jkx} + D_1 e^{-jkx}$
$k_x^2 < 0$	jk	$A_2 \sinh kx + B_2 \cosh kx$	$C_2 e^{kx} + D_2 e^{-k}$

Chap. 10 TM waves in rectangular waveguide (3/4)

• Longitudinal field components

$$\begin{cases} X(x) \text{ and } Y(y) \\ \begin{cases} X(x) \rightarrow \sin k_x x = \sin\left(\frac{m\pi}{a}x\right), & m = 1, 2, 3, \cdots \end{cases} \\ Y(y) \rightarrow \sin k_y y = \sin\left(\frac{n\pi}{b}y\right), & n = 1, 2, 3, \cdots \end{cases}$$

- Eigenvalues

$$h^2 = k_x^2 + k_y^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$

Depending on the geometry of a waveguide!

- Meaning of integer *m*, *n*

$$\sin(k_x x) = \sin\left(\frac{m\pi}{a}x\right) \rightarrow \lambda_x = \frac{2\pi}{k_x} = \frac{2a}{m}$$

 $\begin{bmatrix} E_z^0(\mathbf{0}, y) = 0\\ E_z^0(\mathbf{a}, y) = 0 \end{bmatrix} \therefore E_z^0(x, y) = X(x)Y(y) = E_0 \sin\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)$ $\begin{bmatrix} E_z^0(x,0) = 0 \\ E_z^0(x,b) = 0 \end{bmatrix}$ where $m = 1, 2, 3, \cdots$ $n = 1, 2, 3, \cdots$

- ▶ *m* and *n*: *Number of half-cycle variations* of the fields in *x*, *y* directions
- A combination of *m* and *n* determines TM_{*mn*} mode characteristics!

Chap. 10 TM waves in rectangular waveguide (4/4)

• Transverse field components

$$\begin{cases} E_x^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial E_z^0}{\partial x} + j\omega\mu \frac{\partial H_z^0}{\partial y} \right) \\ E_y^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial E_z^0}{\partial y} - j\omega\mu \frac{\partial H_z^0}{\partial x} \right) \\ H_x^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial H_z^0}{\partial x} - j\omega\epsilon \frac{\partial E_z^0}{\partial y} \right) \\ H_y^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial H_z^0}{\partial y} + j\omega\epsilon \frac{\partial E_z^0}{\partial x} \right) \end{cases}$$

$$H_{z}^{0}(x,y) = 0$$

$$E_{z}^{0}(x,y) = E_{0}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)$$
where $\gamma = j\beta = j\sqrt{k^{2}-h^{2}}$

$$= j\sqrt{\omega^{2}\mu\varepsilon - \left(\frac{m\pi}{a}\right)^{2} - \left(\frac{n\pi}{b}\right)^{2}}$$

$$\begin{bmatrix} E_{x}^{0}(x,y) = -\frac{\gamma}{h^{2}}\left(\frac{m\pi}{a}\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \\ E_{y}^{0}(x,y) = -\frac{\gamma}{h^{2}}\left(\frac{n\pi}{b}\right)E_{0}\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right) \\ H_{x}^{0}(x,y) = \frac{j\omega\varepsilon}{h^{2}}\left(\frac{n\pi}{b}\right)E_{0}\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}y\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}y\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}y\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right) \\ H_{y}^{0}(x,y) = -\frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}y\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right)$$

$$H_{z}^{0}(x,y) = 0$$

$$E_{z}^{0}(x,y) = E_{0}\sin\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)$$
where $\gamma = j\beta = j\sqrt{k^{2}-h^{2}}$

$$= j\sqrt{\omega^{2}\mu\varepsilon - \left(\frac{m\pi}{a}\right)^{2} - \left(\frac{n\pi}{b}\right)^{2}}$$

$$\begin{cases}
E_{x}^{0}(x,y) = -\frac{\gamma}{h^{2}}\left(\frac{m\pi}{a}\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{m\pi}{b}y\right)$$

$$H_{x}^{0}(x,y) = \frac{j\omega\varepsilon}{h^{2}}\left(\frac{n\pi}{b}\right)E_{0}\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)$$

$$H_{x}^{0}(x,y) = \frac{j\omega\varepsilon}{h^{2}}\left(\frac{m\pi}{a}\right)E_{0}\cos\left(\frac{m\pi}{a}x\right)\cos\left(\frac{m\pi}{b}y\right)$$

• Cutoff frequency ($\gamma = 0$)

$$(f_c)_{mn} = \frac{h}{2\pi\sqrt{\mu\varepsilon}} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

Cutoff wavelength

$$\left(\lambda_{c}\right)_{mn} = \frac{u}{f} = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}}}$$

• Lowest cutoff frequency

- If either m = 0 or $n = 0, E_{z^0} = 0 \rightarrow TM_{00}, TM_{01}, TM_{10} = TEM$

- TEM mode CANNOT be supported by a single-conductor waveguide!

.:. TM₁₁ mode = lowest cutoff frequency "among TM modes"

 \rightarrow Is it a dominant mode or not? (\rightarrow cannot know yet)

Chap. 10 TE waves in rectangular waveguide (1/2)

Longitudinal components

- $-E_{z^{0}}=0$ (**By definition**)
- Wave equation for H_{z^0}

$$\nabla_{xy}^{2}H_{z}^{0} + h^{2}H_{z}^{0} = 0 \quad \rightarrow \quad \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + h^{2}\right)H_{z}^{0} = 0 \quad \cdots (1)$$

where $H_{z}^{0}(x,y,z) = H_{z}^{0}(x,y)e^{-\gamma z}$

- *B.C.* provided by transverse fields components • At the lateral walls (x = 0 and x = a) • At the vertical walls (y = 0 and y = b) $\int E_x^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial E_z^0}{\partial x} + j\omega \mu \frac{\partial H_z^0}{\partial y} \right) \quad \dots (2)$ $\frac{\partial H_z^0}{\partial x}$ $E_{y}^{0} = -\frac{1}{h^{2}} \left(\gamma \frac{\partial E_{z}^{0}}{\partial y} - j\omega \mu \frac{\partial H_{z}^{0}}{\partial x} \right) \quad \dots (1)$ (1) $\frac{\partial H_z^0}{\partial x}$ $\left(E_x^0(x,y) = -\frac{\gamma}{h^2} \left(\frac{m\pi}{a}\right) E_0 \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right)\right)$ $\frac{\partial H_z^0}{\partial x}$ $\int E_y^0(x,y) = -\frac{\gamma}{h^2} \left(\frac{n\pi}{b}\right) E_0 \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right)$

$$\begin{vmatrix} \frac{h^2}{j\omega\mu} E_y^0(0,y) = 0 \\ |_{(0,y)} = \frac{h^2}{j\omega\mu} E_y^0(0,y) = 0 \\ |_{(a,y)} = \frac{h^2}{j\omega\mu} E_y^0(a,y) = 0 \end{aligned} (2) \begin{cases} \frac{\partial H_z^0}{\partial y} |_{(x,0)} = -\frac{h^2}{j\omega\mu} E_x^0(x,0) = 0 \\ \frac{\partial H_z^0}{\partial y} |_{(x,b)} = -\frac{h^2}{j\omega\mu} E_x^0(x,b) = 0 \\ \frac{\partial H_z^0}{\partial y} |_{(x,b)} = -\frac{h^2}{j\omega\mu} E_x^0(x,b) = 0 \end{cases}$$

$$\therefore H_z^0(x,y) = H_0 \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}x\right)$$

Chap. 10 TE waves in rectangular waveguide (2/2)

• Transverse components

$$\begin{cases} E_x^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial E_z^0}{\partial x} + j\omega\mu \frac{\partial H_z^0}{\partial y} \right) & E_z^0(x,y) = 0 \\ E_y^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial E_z^0}{\partial y} - j\omega\mu \frac{\partial H_z^0}{\partial x} \right) & H_z^0(x,y) = H_0 \cos\left(\frac{m\pi}{a}x\right) \\ H_x^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial H_z^0}{\partial x} - j\omega\varepsilon \frac{\partial E_z^0}{\partial y} \right) & \text{where } \gamma = j\beta = j\sqrt{k^2 - h^2} \\ H_y^0 = -\frac{1}{h^2} \left(\gamma \frac{\partial H_z^0}{\partial y} + j\omega\varepsilon \frac{\partial E_z^0}{\partial x} \right) & = j\sqrt{\omega^2 \mu\varepsilon - \left(\frac{m\pi}{a}\right)} \end{cases}$$

$$E_z^0(x,y) = 0$$
$$H_z^0(x,y) = H_0 \cos\left(\frac{m\pi}{a}x\right)$$

$$= j \sqrt{\omega^2 \mu \varepsilon} - \left(\frac{m\pi}{a}\right)$$

Cutoff frequency

- Either *m* or *n* can be zero (Not both! \rightarrow Why?)
- Lowest cutoff frequency: If a > b, TE_{10} mode has the lowest f_c

$$(f_c)_{mn} = \frac{h}{2\pi\sqrt{\mu\varepsilon}} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

$$\therefore (f_c)_{10} = \frac{1}{2a\sqrt{\mu\varepsilon}} = \frac{u}{2a} \quad (\text{Hz}) \qquad \leftrightarrow \qquad (\lambda_c)_{10} = 2a \quad (\text{mz})$$

$$\int \cos\left(\frac{n\pi}{b}y\right) = \frac{j\omega\mu}{h^2}\left(\frac{n\pi}{b}\right)H_0\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)$$
$$= \frac{j\omega\mu}{h^2}\left(\frac{m\pi}{a}\right)H_0\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)$$
$$= \frac{\gamma}{h^2}\left(\frac{m\pi}{a}\right)H_0\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)$$
$$= \frac{\gamma}{h^2}\left(\frac{m\pi}{a}\right)H_0\sin\left(\frac{m\pi}{a}x\right)\cos\left(\frac{n\pi}{b}y\right)$$
$$= \frac{\gamma}{h^2}\left(\frac{n\pi}{b}y\right)H_0\cos\left(\frac{m\pi}{a}x\right)\sin\left(\frac{n\pi}{b}y\right)$$

- *Is* TE₁₀ *mode a dominant mode?*
- Yes! (Although it was not shown why yet)
- TE₁₀ has the *lowest attenuation coefficient* (Shown later)

Longest wavelength that can propagate!

Chap. 10 Surface current for TE mode

Example 10-8 For TE₀₁ mode, obtain the surface current on the guide walls at t = 0

- Surface current provided by boundary condition for the H-field, $J_s = a_n \times H$
- Expressions for *instantaneous field components* are given by

$$\begin{cases} E_x^0(x,y,z,t) = 0\\ E_y^0(x,y,z,t) = \frac{\omega\mu}{h^2} \left(\frac{\pi}{a}\right) H_0 \sin\left(\frac{\pi}{a}x\right) \sin(\omega t - \beta z)\\ E_z^0(x,y,z,t) = 0 \quad \longleftarrow \text{By definition}\\ \begin{cases} H_x^0(x,y,z,t) = -\frac{\beta}{h^2} \left(\frac{\pi}{a}\right) H_0 \sin\left(\frac{\pi}{a}x\right) \sin(\omega t - \beta z)\\ H_y^0(x,y,z,t) = 0\\ H_z^0(x,y,z,t) = H_0 \cos\left(\frac{\pi}{a}x\right) \cos(\omega t - \beta z) \end{cases}$$

(1)
$$\boldsymbol{J}_{s}(x=0) = \boldsymbol{a}_{x} \times \boldsymbol{a}_{z}H_{z}^{0}(0,y,z,0) = -\boldsymbol{a}_{y}\cos\beta z$$

(2) $\boldsymbol{J}_{s}(x=a) = -\boldsymbol{a}_{x} \times \boldsymbol{a}_{z}H_{z}^{0}(a,y,z,0) = -\boldsymbol{a}_{y}\cos\beta z$
(3) $\boldsymbol{J}_{s}(y=0) = \boldsymbol{a}_{y} \times \boldsymbol{a}_{z}H_{z}^{0}(x,0,z,0) + \boldsymbol{a}_{y} \times \boldsymbol{a}_{x}H_{x}^{0}(x,0,z,0)$
 $= \boldsymbol{a}_{x}H_{0}\cos\left(\frac{\pi}{a}x\right)\cos\beta z - \boldsymbol{a}_{z}\frac{\beta}{h^{2}}\left(\frac{\pi}{a}\right)H_{0}\sin\left(\frac{\pi}{a}x\right)$
(4) $\boldsymbol{J}_{s}(y=b) = -\boldsymbol{J}_{s}(y=0)$

<Surface current for TE₁₀ mode>

Chap. 10 Operating frequency range for TE₀₁ mode

Example 10-9 Obtain the range of operating frequency for a standard air-filled waveguide for radar bands "X" WG-16 for X-band, a certain type of the rectangular waveguide, has widths of a = 2.29 (cm), b = 1.02 (cm). WG-16 has to operate only in the dominant TE₁₀ mode & its frequency should be $1.25(f_c)_{TE_{10}} \le f \le 0.95(f_c)_{TE_{mn}}$ Here, TE_{mn} is the mode of the next higher cutoff frequency.

$$\left(f_{c}\right)_{mn} = \frac{1}{2\sqrt{\mu\varepsilon}}\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}} = \frac{c}{2}\sqrt{\left(\frac{m}{a}\right)^{2} + \left(\frac{n}{b}\right)^{2}} \quad \text{where } c$$

c is the speed of light

$$\begin{array}{ll} \text{nt" mode} & 1.25 (f_c)_{TE_{10}} \leq f \leq 0.95 (f_c)_{TE_{nn}} \\ & \rightarrow 1.25 \, \times \, 6.55 \, (GHz) \, \leq f \, \leq \, 0.95 \, \times \, 13.1 \, (GHz) \\ & \therefore \, 8.19 \, (GHz) \, \leq f \, \leq \, 12.5 \, (GHz) \end{array}$$

X band (8.0~12.0GHz) is used for radar, satellite communication, and wireless computer networks.

Chap. 10 Attenuation in rectangular waveguides (1/4)

- Attenuation for propagating modes
 - Loss in *dielectric*
 - Loss in *imperfectly conducting wall*
- Loss in "dielectric"

$$\varepsilon \rightarrow \varepsilon_d = \varepsilon + \frac{\sigma}{j\omega} \Rightarrow \gamma_d = j\beta_d = j\sqrt{\omega^2 \mu \varepsilon_d - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2} = \alpha_d + j\beta$$

For derivation, please refer to last lecture note

$$\therefore \alpha_d = \frac{\sigma \eta}{2\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

where σ : conductivity, η : intrinsic impedance of a dielectric

Chap. 10 Attenuation in rectangular waveguides (2/4)

- Loss due to imperfectly conducting wall
- Attenuation coefficient is given by

$$\alpha_c = \frac{P_L(z)}{2P(z)} \quad (\because \text{Law of conservation})$$

- P(z): Time-average power flow through cross section
- P_L(z): Time-average power lost in the walls per unit length
- a_c for TM_{mn} is very complicated and not useful
- a_c for TE₁₀, the dominant mode, is more important!

•
$$P(z)$$

 $P(z) = \int_{S} \mathbf{P}_{av} \cdot d\mathbf{s} = \int_{S} \mathbf{P}_{av} \cdot \mathbf{a}_{z} \, ds = \int_{0}^{b} \int_{0}^{a} \frac{1}{2} \operatorname{Re}(\mathbf{E} \times \mathbf{H}^{*}) \cdot \mathbf{a}_{z} \, dx \, dy$
 $\frac{1}{2} \operatorname{Re}(\mathbf{E} \times \mathbf{H}^{*}) = \left[\mathbf{a}_{y} C_{y} \sin\left(\frac{\pi}{a}x\right) \times \left\{\mathbf{a}_{x} C_{x} \sin\left(\frac{\pi}{a}x\right) + \mathbf{a}_{z} C_{z}^{*} \cos\left(\frac{\pi}{a}x\right)\right\}$
 $= \mathbf{a}_{z} C_{x} C_{y} \sin^{2}\left(\frac{\pi}{a}x\right)$

$$P(z) = C_x C_y \int_0^b \int_0^a \sin^2\left(\frac{\pi}{a}x\right) dx \, dy = \omega \mu \beta a b \left(\frac{aH_0}{2\pi}\right)^2 \quad \dots (1)$$

Chap. 9-3 Law of conservation

$$P(z) = \frac{1}{2} \operatorname{Re} \left[V(z) I^{*}(z) \right] = \frac{V_{0}^{2}}{2|Z_{0}|^{2}} R_{0} e^{-2\alpha z} \begin{cases} V(z) = V_{0} e^{-(\alpha + j\beta)z} \\ I(z) = I_{0} e^{-(\alpha + j\beta)z} \\ Z_{0} = R_{0} + jX_{0} \end{cases}$$
Law of conservation

$$-\frac{\partial P(z)}{\partial z} = P_{L}(z) = 2\alpha P(z) \quad : \text{Rate of decrease of } P(z) \text{ with distance along the line = time-average power loss per unit length}}$$

Field for
$$TE_{10}$$
 models $\begin{cases} E_x^0(x,y) = 0 \\ E_y^0(x,y) = -\frac{j\omega\mu}{h^2} \left(\frac{\pi}{a}\right) H_0 \sin\left(\frac{\pi}{a}\right) \\ E_z^0(x,y) = 0 \\ H_x^0(x,y) = -\frac{j\beta}{h^2} \left(\frac{\pi}{a}\right) H_0 \sin\left(\frac{\pi}{a}\right) \\ H_y^0(x,y) = 0 \\ H_z^0(x,y) = H_0 \cos\left(\frac{\pi}{a}x\right) \end{cases}$

P(z)

Chap. 10 Attenuation in rectangular waveguides (3/4)

- $P_L(z)$: Time-average power loss in the walls per unit length
- Consider surface current flowing in all four walls $J_s = a_n \times H$

(1)
$$\boldsymbol{J}_{s}(x=0) = \boldsymbol{a}_{x} \times \boldsymbol{a}_{z} H_{z}^{0}(0,y) = -\boldsymbol{a}_{y} H_{0}$$
 (A/m)
(2) $\boldsymbol{J}_{s}(x=a) = -\boldsymbol{a}_{x} \times \boldsymbol{a}_{z} H_{z}^{0}(a,y) = -\boldsymbol{a}_{y} H_{0}$
(3) $\boldsymbol{J}_{s}(y=0) = \boldsymbol{a}_{y} \times \left[\boldsymbol{a}_{z} H_{z}^{0}(x,0) + \boldsymbol{a}_{x} H_{x}(x,0)\right]$
 $= \boldsymbol{a}_{x} H_{0} \cos\left(\frac{\pi}{a}x\right) - \boldsymbol{a}_{z} \frac{j\beta a}{\pi} H_{0} \sin\left(\frac{\pi}{a}x\right) = \boldsymbol{a}_{x} J_{sx}(x,0)$
(4) $\boldsymbol{J}_{s}(y=b) = -\overline{\boldsymbol{J}}_{s}(y=0)$

- Total power losses in the walls

$$P_{L}(z) = 2[P_{L}(z)]_{x=0} + 2[P_{L}(z)]_{y=0}$$

where $[P_{L}(z)]_{x=0} = \int_{0}^{b} \frac{1}{2} |J_{s}(x=0)|^{2} R_{s} dy = \frac{b}{2} H_{0}^{2} R_{s}$
 $[P_{L}(z)]_{y=0} = \int_{0}^{a} \frac{1}{2} |J_{sx}(y=0)|^{2} R_{s} + \frac{1}{2} |J_{sz}(y=0)|^{2} R_{s} dy$
 $= \frac{a}{4} \left[1 + \left(\frac{\beta a}{\pi}\right)^{2} \right] H_{0}^{2} R_{s} \cdots (2)$

wall (1)

Chap. 10 Attenuation in rectangular waveguides (4/4)

• Attenuation coefficient a_c for TE₀₁ mode

$$\sqrt{\frac{\pi f \mu_c}{\sigma_c}} \quad (\Omega) \qquad \text{c.f.} \quad \left(\alpha_c\right)_{TM_{11}} = \frac{2R_s \left[\frac{b}{a^2} + \frac{a}{b^2}\right]}{\eta a b \left(\frac{1}{a^2} + \frac{1}{b^2}\right) \sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

Please try it at home!

- Analysis on a_c
- $-b\downarrow \rightarrow a_c\downarrow$ with a given width of *a* (Good!)
- But, $b \downarrow \rightarrow f_c \downarrow$ of next higher order mode (TM₁₁ or TE₂₀) (Bad!) \rightarrow Available *bandwidth for TE*₁₀, a dominant mode, reduced (Bandwidth: frequency range where only TE₁₀ mode allowed)

 \therefore Compromise made at $b/a \ge 1/2$

- $(a_c)_{TE10} < (a_c)_{TM11}$ for all *frequency* → Reason why the *dominant mode is used as an operating mode* over others

