
Chapter 2. Two-Dimensional Wave Equations and Wave 
Characteristics 

 

2.1 Surface Gravity Waves 
 

− Classification of waves (See handout, Shore Protection Manual, 1984, Fig. 2-1): 
 • capillary waves: s; surface tension is important  1.0≤T
 • gravity waves (or wind waves): s301 ≤≤ T ; mostly generated by wind, and gravity 

 is primary restoring force; the most important in coastal engineering 
- seas (풍파): waves generated by local wind 
- swell (너울): waves propagating out of storms 

 
 • infragravity waves: ; important for surf beat and harbor oscillation min5s30 ≤≤ T
 • long-period waves: ; storm surge, tsunamis, tides min5≥T
 
− Regular versus irregular waves: 
 • regular ( or sinusoidal, monochromatic) waves: uniform period and amplitude 
 • irregular ( or random) waves: superposition of a number of sinusoidal waves with  

different periods, amplitudes, directions, and phases (See handout, Goda, 2000,  
Fig. 2.8): 

 



2.2 Small-Amplitude (or Linear) Wave Theory 
 

 
d = water depth; L = wavelength; T = wave period; = wave celerity (speed); C
H = wave height; = wave amplitude; 2/Ha = η = surface displacement; 
δ = boundary layer thickness; tν = eddy viscosity 

 
Assuming inviscid and incompressible fluid and irrotational flow motion, velocity 
potential ),,( tzxφ  exists, which satisfies the Laplace equation (cf. Elementary Fluid 
Mechanics, Street et al.): 
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Boundary value problem 

 
 
Assume the free surface varies sinusoidally in both space and time so that 
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Small-amplitude wave theory assumes 
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Taylor series expansion about  gives 0=z
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Assume 
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Substitution into the Laplace equation and applying BBC and LDFSBC give 
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Order of magnitude analysis and Taylor series expansion about 0=z  gives 
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Using LDFSBC, 
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Using zw ∂∂= /φ , 
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Dispersion Relationship 
 
Substitution of φ  into LKFSBC gives 
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Waves disperse due to difference of )/2( σπ=T  ⇒ frequency dispersion 



The wave period  is constant as a wave propagates from deep to shallow water (i.e., 
 varies). But 

)(T
d L  and C  vary as  varies. d
 
The dispersion relationship should be solved for  (or k L ) for given  and d σ  (or 

) by iteration using Newton-Raphson method. Approximate formulas are available. T
 
Eckart (1951): 
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Hunt (1979): 
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2.3 Wave Classification 
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In deep water, , so that 1tanh ≅kd
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2.4 Wave Kinematics and Pressure 
 
Particle velocity 
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Acceleration 
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Acceleration is  out of phase with velocity so that °90
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Particle orbit 
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In deep water, 
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Diameter of the circle decreases exponentially with depth 
→ No wave effect on sea bed (See Figure 2.2 in textbook) 

 
In shallow water, 
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The ellipse becomes flatter and flatter with depth (see Figure 2.2 in textbook) 
 

 

Water particle motions in deep, shallow, and intermediate-depth waters 

 
Wave pressure 
 
The unsteady Bernoulli equation for wave motion is 
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we have 
 

)cos(
cosh

)(cosh
2

tkx
kd
zdkHggz

t
gzp

σρρ

φρρ

−
+

+−=

∂
∂

−−=
 

 
The first term is the hydrostatic pressure and the second term is the dynamic pressure 
due to wave motion. The dynamic pressure is positive under the wave crest but it is 
negative under the trough. See Figure 2.3 of textbook. The above equation is valid 
below the still water level. Above the still water level, the pressure is assumed to be 
hydrostatic so that 
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the dynamic pressure is related to the free surface elevation by 
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Therefore the surface waves can be measured using a pressure transducer. 



2.5 Energy, Power, and Group Velocity 
 

Total energy ( E ) = potential energy ( ) due to displacement of free surface pE

                + kinetic energy ( ) due to water particle movement kE
 
Potential energy 
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Potential energy per unit surface area is 
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Kinetic energy 
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Now the total energy per unit surface area is 
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Wave power 
 

  Wave power (P ) = rate of work done = energy flux ( ) = F
s
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Average power over one wave period 
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Defining the group velocity as 
 

nCCg =  

 
we have 
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Now, the group velocity is the velocity at which wave energy is transferred. When we 
generate waves using a wavemaker in a wave flume, the leading edge of the generated 
waves propagates at the speed of group velocity. 
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Wave shoaling 
 

 
 
In steady state, energy conservation equation is 
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where  is the shoaling coefficient given by sK
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The shoaling coefficient is shown in Figure 2.5 of textbook as a function of the relative 
depth, . Ld /
 
2.6 Radiation Stress and Wave Setup 
 
Radiation stress = excess momentum flux due to waves 
             = pressure force (due to dynamic pressure) 
             + momemtum transfer (analogous to Reynolds stress of turbulent flow) 
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When a wave is propagating with an angle θ  with respect to x -axis, 
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Likewise, 
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Wave setup and setdown 
 

 

 
Outside surf zone, 
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Force-momentum flux balance gives 
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Taylor series expansion about center line gives 
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Wave setdown outside surf zone is given by  
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Inside surf zone, wave height is assumed to be proportional to water depth, that is 
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Substituting in (2.52), 
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Integration gives 
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where  is the wave setdown at breaking point, given by Eq. (2.53). Now, the 
wave setup at the still water line contour is given by 
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2.7 Standing Waves, Wave Reflection 
 

 
perfect reflection ( )             partial reflection (ir HH = ir HH < ) 
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Under the pure standing wave, at 2/or0 Tt = , the water particle motion stops for an 
instant so that only potential energy exists, while at 4/3or4/ TTt = , the water surface 
becomes flat so that only kinetic energy exists. Also, 0=w  at nodes, while  at 
antinodes. 
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2.8 Wave Profile Asymmetry and Breaking 
 
Read text for profile asymmetry. 
 

 
 
Wave breaking 
 
In deep water,  
 

Huc ∝ , :   → wave breaking if  )(HfC ≠ ↑→↑ cuH Cuc >

 
In shallow water, 
 

↑cu  and  as  → wave breaking  ↓C ↓d

 
Miche (1944) formula ← for any constant depth 
 

L
d

L
H π2tanh

7
1

max

=⎟
⎠
⎞

⎜
⎝
⎛  

 
In deep water, , while in shallow water, ( ) 7/1/ max00 =LH ( ) )/2)(7/1(/ max LdLH π≅ , 
thus ( ) 9.02)7/1(/ max ≅≅ πdH . 



On sloping beach, 
 

Spilling breaker: small  and  (beach slope) 00 / LH m
Plunging breaker           ↓ 
Surging breaker: large  and  00 / LH m

 

Given , ,  →  (Fig. 2.11) →  (Fig. 2.12), where  is the 

unrefracted deepwater wave height, which is the deepwater wave height of the waves 
propagating normal to the shore with straight and parallel bottom contours where no 
wave refraction but only wave shoaling occurs. If wave refraction occurs as well, then 

 should be 

'0H T m bH bd sKHH /'0 =

'0H
 

r
s

rs

s

KH
K
KKH

K
HH 0

0
0 ' ===  

 
It is the most dangerous for coastal structures when plunging breaker hits the structures. 
 

 

The most dangerous point is about  from the breaker initiation point, where  

is the distance from breaker initiation to plunging point. Therefore, it is needed to 

design the structure for the waves breaking at  seaward of the structure. For 

plane slope, 

pX5.0 pX

pX5.0

 
25.0

00 /
95.3 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

m
LH

H
X

b

p  



 
For slope with submerged bar, 
 

81.1
/

63.0 00 +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

m
LH

H
X

b

p  

 

 
 
2.9 Wave Runup 
 

 

 
Smooth, impermeable slope 
 
Saville (1957): Laboratory experiments with 1.0tan =β  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'
,

'
,cot

' 0
2

0

0 H
d

gT
H

fn
H
R sα   (Figure 2.15 of textbook) 

↑
'0H

R  as ↓2
0 '

gT
H

 (milder waves) and  (steeper structure slope) ↓αcot

If 0.1cot ≤α  (or steeper than 1:1 slope), slope effect is negligible. 



Rough, permeable slope 
 

sirp rRR =  

 

where  is runup on rough, permeable slope,  is runup on smooth, impermeable 

slope, and  is the coefficient representing the effect of roughness and 
permeability of the slope (See Table 2.1 of textbook). 

rpR siR

0.1<r
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