Chapter 2. Two-Dimensional Wave Equations and Wave
Characteristics

2.1 Surface Gravity Waves

— Classification of waves (See handout, Shore Protection Manual, 1984, Fig. 2-1):
e capillary waves: T <0.1s; surface tension is important
e gravity waves (or wind waves): 1< T <30 s; mostly generated by wind, and gravity
is primary restoring force; the most important in coastal engineering
- seas (% 3}): waves generated by local wind
- swell (11-2): waves propagating out of storms

M swell

Seas

e infragravity waves: 30s < T <5 min ; important for surf beat and harbor oscillation
e long-period waves: 7 >5 min; storm surge, tsunamis, tides

— Regular versus irregular waves:
e regular ( or sinusoidal, monochromatic) waves: uniform period and amplitude
e irregular ( or random) waves: superposition of a number of sinusoidal waves with
different periods, amplitudes, directions, and phases (See handout, Goda, 2000,
Fig. 2.8):



2.2 Small-Amplitude (or Linear) Wave Theory
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d = water depth; L =wavelength; 7 =wave period; C =wave celerity (speed);
H =wave height; a = H/2=wave amplitude; 7= surface displacement;
o = boundary layer thickness; v,= eddy viscosity

Assuming inviscid and incompressible fluid and irrotational flow motion, velocity
potential ¢(x,z,¢) exists, which satisfies the Laplace equation (cf. Elementary Fluid
Mechanics, Street et al.):
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Boundary value problem
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Assume the free surface varies sinusoidally in both space and time so that
n(x.1) = %cos(kx _ot)
where

k = 277[ (wave number)

o= 277[ (wave angular frequency) X f= % (wave frequency)

At t=0, n(x0) = %coskx




Small-amplitude wave theory assumes
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Taylor series expansion about z=0 gives
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g77+%20 at z=0 (LDFSBC)

Assume
o(x,z,t) = Z(z)sin(kx — o)

Substitution into the Laplace equation and applying BBC and LDFSBC give
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Order of magnitude analysis and Taylor series expansion about z=0 gives
w= %—? at z=0 (LKFSBC)

Using LDFSBC,



Using w=0¢/0z,
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Dispersion Relationship

Substitution of ¢ into LKFSBC gives

o’ =gktanhkd (dispersion relationship)
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Waves disperse due to difference of 7(=2x/c) = frequency dispersion



The wave period (7) is constant as a wave propagates from deep to shallow water (i.e.,
d varies).But L and C varyas d varies.

The dispersion relationship should be solved for & (or L) for given d and o (or
T') by iteration using Newton-Raphson method. Approximate formulas are available.

Eckart (1951):
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Hunt (1979):
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where

y=0c%dlg and c, =0.6666666666, c, = 0.3555555555, c, = 0.1608465608,

¢, =0.0632098765, ¢, =0.0217540484, c, = 0.0065407983.



2.3 Wave Classification
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In deep water, tanhkd =1, so that
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In shallow water, tanhkid = kd , so that

C=.,/gd — Nodependence on T (Shallow water wave is non-dispersive)
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2.4 Wave Kinematics and Pressure

Particle velocity
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Figure II-1-3. Profiles of particle velocity and acceleration
by Airy theory in relation to the surface elevation



Particle orbit
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Diameter of the circle decreases exponentially with depth
— No wave effect on sea bed (See Figure 2.2 in textbook)

In shallow water,

A= 71 # f(z) <« A isconstant over depth
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The ellipse becomes flatter and flatter with depth (see Figure 2.2 in textbook)

Water particle motions in deep, shallow, and intermediate—depth waters

Wave pressure

The unsteady Bernoulli equation for wave motion is
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we have

s 90
p Pg Pat
H coshk(d + z)
=- + pg———>——"2cos(kx — ot
rEz pg2 cosh kd ( )

The first term is the hydrostatic pressure and the second term is the dynamic pressure
due to wave motion. The dynamic pressure is positive under the wave crest but it is
negative under the trough. See Figure 2.3 of textbook. The above equation is valid
below the still water level. Above the still water level, the pressure is assumed to be
hydrostatic so that

p=pg(n—z) for 0<z<p

Since
n= %cos(kx —ot)

the dynamic pressure is related to the free surface elevation by
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Therefore the surface waves can be measured using a pressure transducer.



2.5 Energy, Power, and Group Velocity

Total energy (£) = potential energy (£ ,) due to displacement of free surface

+ Kinetic energy ( £, ) due to water particle movement

Potential energy
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Another view

potential energy
<o meeded

Kinetic energy

ST« dEg= polxdz uz-w"‘

0—d2
_k:ﬂzﬁ 2
L 16
EP_Ek

Now the total energy per unit surface area is
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Wave power

Wave power ( P) = rate of work done = energy flux (F) = Iod pudz N-m or J
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Average power over one wave period
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Defining the group velocity as

we have

P=F=EC,

Now, the group velocity is the velocity at which wave energy is transferred. When we
generate waves using a wavemaker in a wave flume, the leading edge of the generated
waves propagates at the speed of group velocity.
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Wave shoaling
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In steady state, energy conservation equation is

Py = P, = constant
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If the location 1 is in deep water,
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where K is the shoaling coefficient given by



The shoaling coefficient is shown in Figure 2.5 of textbook as a function of the relative
depth, d/L.

2.6 Radiation Stress and Wave Setup

Radiation stress = excess momentum flux due to waves
= pressure force (due to dynamic pressure)
+ momemtum transfer (analogous to Reynolds stress of turbulent flow)
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w u, =0, pressure force L plane
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When a wave is propagating with an angle 6 with respect to x -axis,

S

%

S an = af cosb
AS A Y
a5= Al smb
Y L .
; Saxy
” . A‘n‘
/
Ses

AIS . =S, CcosOAn+S, sinfAs =S cos’ A+ S, sin® OAl

S.=8,cos’0+S, sin*6

- F 2n—%jcosze+f(n—%jsin29

:(Zn - %j cos” 0 + (n —%j(l— cos’ 6’)}

=E n(cos2 0 +1)—ﬂ

I
|

Likewise,

S, = E[n(sin 20 +1)—ﬂ

S, = Ensin@cosd



Wave setup and setdown
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Inside surf zone, wave height is assumed to be proportional to water depth, that is
H=y(d+d)

where y is a constant of about 0.9. Also, inside surf zone where the shallow water
condition is satisfied, » =1 so that
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Integration gives
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where d'(d,) is the wave setdown at breaking point, given by Eq. (2.53). Now, the
wave setup at the still water line contour is given by
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2.7 Standing Waves, Wave Reflection
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Under the pure standing wave, at ¢ =0or 7'/ 2, the water particle motion stops for an
Instant so that only potential energy exists, while at ¢ =T7/4 or 3T/ 4, the water surface

becomes flat so that only kinetic energy exists. Also, w=0 at nodes, while © =0 at

antinodes.



Hg/H: = 1.00, pure standing wave

Fig. 2.32. Water particle mortions of pure swell, partially reflected
waves, and pure standing wave (after Wallet and
Ruellan, 1950)
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Reflection coefficient, C, = F

For pure standing wave, (7,) =0, thus H,=H, =(n,) , =H, /2 and C, =10

(perfect reflection).
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Transmission coefficient, C, :F’.

If there is no energy dissipation through the structure, C? +C? =1 or H?+H? = H}

(energy is conserved)



2.8 Wave Profile Asymmetry and Breaking

Read text for profile asymmetry.

Pe‘kﬂ( crests end f/a‘é érpu:‘s;
Sinuso,dat Priched forward

Wave breaking

In deep water,
u,cH, C#f(H): HT — u, T — wavebreakingif u, >C
In shallow water,

u, T and Cl as d 1 — wave breaking

Miche (1944) formula < for any constant depth
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In deep water, (H,/L,),. =1/7, while in shallow water, (H/L),, =@/7)(2zd /L),
thus (H/d),, =@/7)2z=0.9.
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On sloping beach,

Spilling breaker: small H,/L, and m (beach slope)

Plunging breaker \s
Surging breaker: large H,/L, and m

Given H,", T, m — H, (Fig.2.11) > d, (Fig.2.12), where H,'=H/K_ isthe

unrefracted deepwater wave height, which is the deepwater wave height of the waves
propagating normal to the shore with straight and parallel bottom contours where no

wave refraction but only wave shoaling occurs. If wave refraction occurs as well, then
H," should be

H K K
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It is the most dangerous for coastal structures when plunging breaker hits the structures.

os¢ a(m:enaur
Xp 7 .

Plan io"g

breaker [€
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The most dangerous point is about 0.5X , from the breaker initiation point, where X

is the distance from breaker initiation to plunging point. Therefore, it is needed to

design the structure for the waves breaking at 0.5X, seaward of the structure. For

plane slope,
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For slope with submerged bar,

D = crest elevation

o .zf R> a(c R overt-oppa‘n; occurs

Smooth, impermeable slope

Saville (1957): Laboratory experiments with tan g =0.1

i:fn cota,H—O, q, (Figure 2.15 of textbook)
H,' gT’ ' H,'

0

H,' .
%T as T02 4 (milder waves) and cota 4 (steeper structure slope)
0 8

If cota <1.0 (or steeper than 1:1 slope), slope effect is negligible.



Rough, permeable slope

w Si

where R, is runup on rough, permeable slope, R is runup on smooth, impermeable

slope, and »<1.0 is the coefficient representing the effect of roughness and
permeability of the slope (See Table 2.1 of textbook).
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