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Monte Carlo Reactor Analysis

 A simple decay chain of I-135 & Xe-135 can be shown as below.

 And the corresponding deletion equations can be written by

 And from initial conditions of the clean state at t=0, the two nuclide densities can be 
obtained by

Problem: Depletion Eq. for Xe-135
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 For simplicity, Eqs. (A.1) & (A.2) can be rewritten by

 Solve Eqs. (A.5) & (A.6) under the following conditions[*] by the kinetic Monte 
Carlo method.

Densities of I-135 & Xe-135
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[*] D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, Inc., La Grange Park, IL (1993).
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CASE #1: Density of I-135 – Algorithm

Begin: t=0, NI=0

Calculate ktot:
C D

tot I I Ik k N   
135

135 5

construction rate of I=1.68 / cc sec,

destruction rate of I=2.9 10 / sec

C
I

D
I

k

k 

 

 

Sample Dt: 1ln ,  tott k t tD     D

Select a transition type:
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CASE #1: Density of I-135 – Implementation
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Algorithm for Xe-135

Begin with t=0, NI=0, NX=0

Calculate k:
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Sample Dt: 1ln ,  t k t tD     D

Select a transition event i satisfying:
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Creation of 135I by a fis.:
NI+= 1

Beta decay of 135I:
NI－= 1, NX+= 1

t<tend

End

No

Yes

Creation of 135Xe by a fis.:
NX+= 1

Destruction of 135Xe:
NX－= 1

When i=1, When i=2, When i=3, When i=4,
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Numerical Results
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 K. A. Fichthorn and W. H. Weinberg [1] presented the theoretical basis for a 
dynamical Monte Carlo method in terms of the theory of Poisson process.

 They showed that if

1. A “dynamical hierarchy” of transition probabilities is created which also satisfy 
the detailed-balance criterion;

2. Time increments upon successful events are calculated appropriately;

3. The effective independence of various events comprising the system can be 
achieved,

then Monte Carlo methods may be utilized to simulate the Poisson process.

[1] K. A. Fichthorn and W.H Weinberg, “Theoretical Foundations of Dynamical 
Monte Carlo Simulations,” J. Chem. Phys., 95(2), 1090 (1991).

Kinetic Monte Carlo vs. Poisson Process
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 They stated that under a dynamical interpretation, the Monte Carlo method provides 
a numerical solution to the Master equation:

where X and X′ are successive states of the system.

PX,t) is the probability that the system is in state X at time t.

K(X′→ X) is the probability per unit time that the system will undergo a transition 
from state X′ to state X.

 The kinetic Monte Carlo method is explained as

• The solution of the Master equation is achieved computationally by choosing 
randomly among various possible transitions with appropriate probabilities.

• Upon each successful transition, time is typically incremented in integral units 
of Monte Carlo steps.

Kinetic Monte Carlo vs. Poisson Process (Contd.)
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 We are going to derive a mathematical formulation corresponding to the kinetic 
Monte Carlo method from the general kinetic equation as

and the initial condition at t=0 given by

 For simplicity, we rewrite Eq. (2) as

Mathematical Foundation of KMC
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 Equation (4) with the initial condition of Eq. (3) is seen to be a first-order linear 
partial differential equation which has a unique solution. By introducing an 
integrating factor, Eq. (4) becomes

 Then an integration of Eq. (7) from t=0 yields

 Eq. (8) implies that the probability of state X is made up of the state appeared in the 
previous time multiplied by the attenuation factor of              .

Derivation of KMC Algorithm
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 The transition probability can be defined by

 Then by multiplying  kX on the both sides of Eq. (8), it can be expressed as

 By introducing the time-flight kernel, T defined by

Eq. (10) becomes

is named the first transition source.

Transition Probability Equation
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 And we define another kernel named the event kernel as

 Using the event kernel C and the transition probability , S(X,t) of Eq. (6) can be 
expressed  as

 The introduction of Eq. (15) into Eq. (12) yields

Transition Density Equation (Contd.)
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 Let’s consider the solution of Eq. (16) obtained by iteration; thus

Clearly y0 is the first-transition source. y1 means the transition probability from the 
second-transition state. Similarly, y2 indicates the contribution of the third-

transition state, and so on. If the series                      converges, it represents a 
solution to Eq. (16).

Series Solution
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 The solution of Eq. (16) can be expressed by the Neumann series:

From Eq. (18), we can find that the transition probability is the sum of the 
contributions from transition at (X,t) first and after a transition or more.

 The Monte Carlo kinetic analysis is based on Eqs. (18) & (19).

Neumann Series Solution
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Interpretation of KMC by MC Sim. of Series Sol.

Begin: t=0, NI=0

Calculate ktot:
C D

tot I I Ik k N   

Sample Dt: 1ln ,  tott k t tD     D

Select a transition type:
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Simulate a construction:
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Simulate a destruction:
NI－= 1

t<tend

Yes No

End
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