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Monte Carlo Reactor Analysis

= A simple decay chain of [-135 & Xe-135 can be shown as below.

1 7x

1351 135Xe
B

= And the corresponding deletion equations can be written by

dN
—1=7/,2f¢—/1,N,, ____________________ (A.l)
dt
dN,
i = 7/X2f¢+ﬂ‘INI —(Ay + O P)N (A.2)
= And from initial conditions of the clean state at /=0, the two nuclide densities can be
obtained by
ViZ 9 iy
N,(t)= I/If (l—e & ) .................... (A.3)

N, (1) = YxZ Pty X P (l_e—uX+oX¢)t)_ N (e—/llt _e—uXmX;zﬁ)r) .................... (A.4)
ZX+O_X¢ /?’X+GX¢_X’I
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Monte Carlo Reactor Analysis

= For simplicity, Egs. (A.1) & (A.2) can be rewritten by
dN,
dt

:k)g‘l'KIDN]_K)?NX .................... (A.6)

:kIC_K;)NI’ .................... (A.5)

dN,
dt

= Solve Egs. (A.5) & (A.6) under the following conditions[*] by the kinetic Monte
Carlo method.

ki =y,2,¢= (0.056)><(3><10‘3 cm'1)><(104cm'2 sec'l) =1.68/cc-sec

k) =1, =29%107/sec

ky =72 = (0.003)><(3>< 107 cm'1)><(104c:m'2 sec'l) =9x107*/ cc-sec

Ky =4, +0,¢=2.1x107 sec_1+(3.5><10_180m2)><<104(:m'2 sec'l)
=2.1000000035x107 / sec

[*] D. L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, Inc., La Grange Park, IL (1993).
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Monte Carlo Reactor Analysis

[ Begin: =0, N~=0 }

k{ = construction rate of '’I=1.68/ cc-sec,

Calculate k: k,, =ky +N,xx? ' 5
k, = destruction rate of '°1=2.9x107 /sec

tot

Sample At: At =—In¢& [k, , t+=At

clect a transition type:

c
< kl / kto
Simulate a construction: Simulate a destruction:
NI = 1 NI_ =
Yes
t<tend
No
End
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Monte Carlo Reactor Analysis

do §
féCalculate the total conversion rate
totallLambda = genRatel + lambdal+amount]:

féSample delta_time
deltaT = -log(RNG.GetRN{ )i totalLanbda;

fé%elect a conversion type
i FCRMG. GetRNC d<genRatel ftotallambda) {
Fé%imulate a generation of 1-135

amount | += 1.:

i

else |
féSimulate a destruction of 1-135
amount!| -= 1..

i

déllpdate time
time += deltaT.

ifitime==chkTime) {
out==setwi 10 )<<t ime<<setwi{ 15 )<<anount | <<end|;
chkTime += binTime:

}

AéCheck the end of simulation time
if(time = 1.e-3) bEnd = true:
Ywhilef !bEnd )
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Monte Carlo Reactor Analysis

[ Begin with =0, N~0, N,=0 ]

4
Calculate £: k=zk,~; ki=ki,k,=AN,, k,=ky, k,=xLN,

i=1

Sample Ar: At =—Iné [k, t+=At

When i=1, = When i=3, When i=4,
Creation of 3] by a fis.: Beta decay of 13°I: Creation of 133Xe by a fis.: Destruction of 133Xe:
N=1 N—=1,N+=1 Nyt=1 Ny—=
| | | |

Yes
t<tend
No
End
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Monte Carlo Reactor Analysis
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Monte Carlo Reactor Analysis
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Monte Carlo Reactor Analysis

= K. A. Fichthorn and W. H. Weinberg [1] presented the theoretical basis for a
dynamical Monte Carlo method in terms of the theory of Poisson process.

= They showed that if

1. A “dynamical hierarchy” of transition probabilities is created which also satisfy
the detailed-balance criterion;

2. Time increments upon successful events are calculated appropriately;

3. The effective independence of various events comprising the system can be
achieved,

then Monte Carlo methods may be utilized to simulate the Poisson process.

[1] K. A. Fichthorn and W.H Weinberg, “Theoretical Foundations of Dynamical
Monte Carlo Simulations,” J. Chem. Phys., 95(2), 1090 (1991).
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Monte Carlo Reactor Analysis

= They stated that under a dynamical interpretation, the Monte Carlo method provides
a numerical solution to the Master equation:

oP(X,t)
or

where X and X' are successive states of the system.
P(X,?) 1s the probability that the system is in state X at time ¢.

K(X'— X)) is the probability per unit time that the system will undergo a transition
from state X' to state X.

= The kinetic Monte Carlo method 1s explained as

Y KX > X)P(X,1)- ) KXo X)P(X,t) (1)

* The solution of the Master equation is achieved computationally by choosing
randomly among various possible transitions with appropriate probabilities.

* Upon each successful transition, time is typically incremented in integral units
of Monte Carlo steps.
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Monte Carlo Reactor Analysis

=  We are going to derive a mathematical formulation corresponding to the kinetic
Monte Carlo method from the general kinetic equation as

OP(X, 1)

_ Z kX’_)XP(X,, l,) . Z kX_)X'P(Xa t), .................... (2)
8t X' X'

and the initial condition at /=0 given by

Q(X) _ P(X, O) .................... (3)
= For simplicity, we rewrite Eq. (2) as
GP(;(, t) FhPX0)=SX,0 (4)
kX — ZkX—>X’9 .................... (5)
~

S(X,1) = ka'axP(X'a Hn. (6)

<

12 SNU Monte Carlo Lab.



Monte Carlo Reactor Analysis

= Equation (4) with the initial condition of Eq. (3) is seen to be a first-order linear
partial differential equation which has a unique solution. By introducing an
integrating factor, Eq. (4) becomes

%[ekxt P(X, t):| _ ekxt S(X, t) .................... (7)

= Then an integration of Eq. (7) from =0 yields

P(X,0)e —O(X) = jo e S(X, 1)t

» P(X,t) = Q(X)e_kxt +J'; e Ix(=1) -S(X,t')dt' .................... (8)

= Eq. (8) implies that the probability of state X is made up of the state appeared in the
previous time multiplied by the attenuation factor of ¢ (™).
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Monte Carlo Reactor Analysis

= The transition probability can be defined by

YX,0)=kPXt) (9)

= Then by multiplying £y on the both sides of Eq. (8), it can be expressed as
Y(X,1) = kye ™ O(X) + j 0 ke S0 LS(Xhdt (10)

= By introducing the time-flight kernel, 7' defined by
Tt —>t|X)= kxe"‘x("t') .................... (11)
Eq. (10) becomes

WX =0X.0)+ [ T —>1|X)-SX,0hde's (12)
OX,)=TO—->1|X)0X) e (13)

O(X,?) is named the first transition source.
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Monte Carlo Reactor Analysis

=  And we define another kernel named the event kernel as

C(Xl SN X) _ kX’_>X .................... (14)
ky
= Using the event kernel C and the transition probability ‘¥, S(X,7) of Eq. (6) can be
expressed as

S(X,1) = kyC(X' > X)P(X', 1)

_ ZC(XI N X)T(X’, t) .................... (15)
~
= The introduction of Eq. (15) into Eq. (12) yields
V(X0 = 0X,0)+ [ T KX > X WXL (16)
<
KX, t'->X,n)=T{t »>t|X)-CX'>X) - (17)
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Monte Carlo Reactor Analysis

Y(X.0) = 0(X.0)+ [ T KXt > XWX, | (16)

= Let’s consider the solution of Eq. (16) obtained by iteration; thus
l/jo (Xa t) = Q(Xa t)
! / ! ! ! !
p,(X,0) = | 3K (X1 = X, 0o (X, 1)
0

t
v, (X,0) = [ D KXt = X, 0y, (X1l
=

Clearly y 1s the first-transition source. y; means the transition probability from the
second-transition state. Similarly, v, indicates the contribution of the third-

transition state, and so on. If the series Zl// /(X,1) converges, it represents a
solution to Eq. (16). j=0
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Monte Carlo Reactor Analysis

V(X0 =0X.0)+ [ Y KX 5> XWX, d | (16)
0
= The solution of Eq. (16) can be expressed by the Neumann series:
\P(X’ t) - ZO Y (X’ t); .................... (18)
=

t A

WJ(X’t):jodtOZKj(Xoato _)Xat)Q(Xoato)a .................... (19)
XO

K, (X,.t, = X,1) = 5(X, —X)5(t, —1),
K (X,,1, > X, 1) = K(X,,1, = X, 1),

KXoty > Xo) = [ dt, Y K(Xpot, = XK (Xt = X,.0),
0 Xl

KXoty > X,0) = [ty - [dt D KXoty > XOK(X 0t > X)) K (Xt = X,8)
X X

1 j-1

From Eq. (18), we can find that the transition probability is the sum of the
contributions from transition at (X,¢) first and after a transition or more.

= The Monte Carlo kinetic analysis is based on Egs. (18) & (19).
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Monte Carlo Reactor Analysis

{ Begin: =0, N~=0 J

Calculate k: k,, =k, +N,xx?

tot

T(@) = ke = | ke de' =4

Sample Ar: At =—1In¢, / k, ,t+=At _ In&

=>T=
k

tot

clect a transition type:

<kf/k, | k
Simulate a construction: Simulate a destruction: X
N] — 1 NI_ =
Yes
t<tend
No
End
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