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1. Mathematician’s Viewpoint

2. Code-User’s Viewpoint

Contents of Comparisons between MC and Det.

… As Wigner pointed out, neutron transport can be analyzed from two 
distinct points of view, analgous to the Lagrangian and Eulerian
formulations of hydrodynamics. One can either consider the particle 
density in a unit volume of phase space or one can focus attention on the 
individual particles and consider their motion. … 

<Laurence B. Miller, 1967>

An estimate of a physical quantity calculated by the Monte Carlo method 
inevitably has its statistical uncertainty.
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 M&C 2013, Monte Carlo Transport – Hybrid Methods
• UM, Improved Convergence of Monte Carlo Generated Multi-Group Scattering Moments

• NCSU, Extending the Subspace Hybrid Method for Eigenvalue Problems in Reactor 
Physics Calculations

• NCSU/LANL, A Hybrid Approach to the Neutron Transport k-Eigenvalue Problem Using 
NDA-based Algorithms

• KAIST, Refinement of the Overlapping/Global Iteration Method based on Monte 
Carlo/p-CMFD Calculations

• UNIST, Hybrid Method of Deterministic and Probabilistic Approaches for the 
Continuous Energy Neutron Transport Problem

• UM, A New “Implicit Correlation” Method for Cross-Correlation Sampling in MCNPX-
PoliMi

• ...

• KAIST, Feasibility of a Monte Carlo-Deterministic Hybrid Method for Fast Reactor  
Analysis

Motivation

… Nowadays the trend in the development of general-purpose transport 
methods is to combine the use of both the integrodifferential and 
integral equations. …

<Sanchez and McCormick , 1982>
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… When we speak about reactor theory, we still mean only that 
comparatively narrow set of problems the solution of which immediately 
preceded and made possible the establishment of the chain reaction and 
which concerns itself with the calculation of the neutron densities or neutron 
fluxes as functions of the position, time, and energy of the neutron. …

Objective of Reactor Theory

<Wigner, 1961>
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 The transport theory which permits one to calculate the neutron densities or fluxes is 
an essentially statistical theory because the behavior of individual neutrons is 
subject to statistical laws. Note that the theory goes back to the Boltzmann’s book 
on the kinetic theory of gases.

(L. Boltzmann, Vorlesungen über Gastheorie, Leipzig, J. A. Barth (1896)).

 The fundamental concept of the Boltzmann equation is the neutron flux (r,E,W,t) 
which gives for the time t the number of neutrons, multiplied by their speed, which 
satisfy the following conditions:

(a) They are in unit volume at r.

(b) Their energy is in unit range at E.

(c) The direction of their velocity lies within a unit solid angle about the direction 
defined by the unit vector W.

Boltzmann Equation
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1.  is a continuous function.
• The number of neutrons is so large that they can be considered to form a 

statistical assembly and a continuous flux function  can describe them 
adequately. This appears to imply such high neutron densities that the time 
behavior of  is governed by the law of averages.

2. Linearity
• The neutron fluxes do not affect the medium of the reactor so that the transport 

equation for the flux is linear. This also implies the neglect of neutron-neutron 
collisions.

3. Disregard of the wave nature of the neutrons
• Classical mechanics forms the basis of the transport equation disregarding the 

wave nature of the neutrons, for example, the simultaneous specification of 
energy and position in flux. The only case in which the wave nature of the 
neutrons plays a macroscopic role is the diffraction in crystalline media which 
can be overcome by the use of anisotropic cross sections.

4. Disregard of the spin dependency of the flux
• It is assumed that r and l, the fluxes due to neutrons of spin parallel and 

antiparallel, respectively, to velocity are equal.

The Assumptions of Transport Theory
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The great variety of methods used to solve the transport equations can be 
divided, from the point of view of the mathematician, into two groups, 
which are analogous to the Eulerian and Lagrangian formulations of 
hydrodynamics. 

Two Methods of Transport Theory

<Wigner, 1961>

 The Lagrangian specification is a way of looking at fluid motion where the 
observer follows an individual fluid parcel.

 The Eulerian specification of the flow field is a way of looking at fluid motion 
that focuses on specific locations in the space as time passes.  

 For the mathematical representations of fluid flow, in the Lagrangian picture we 
keep track of the locations of individual fluid particles while coordinates are fixed in 
space in the Eulerian picture.

 The Euler’s and Lagrange’s equations are in the same relation as the story of the 
man, who describes the contents of his chest of drawers by starting at the left side of 
his top drawer and going down to the right side of the bottom drawers, is related to 
the story of the man who tells where his shirts are, where his socks are, and so on.
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 The link between the Eulerian and Lagragian descriptions of fluid motion is the 
“material derivative”

which represents the time rate of change of the property f following a fluid element.

 In the neutron transport equation, the above relation for the angular neutron density 
N is expressed as

where s means the travel distance along the characteristic curve.

Material Derivative (Lagrangian Derivative)
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Two ways for Derivations of the Streaming Term
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 Eulerian Form

• One can focus one’s attention on a volume element and an energy-direction 
range, and obtain the change of the number of neutrons in this volume element 
and energy-direction range in unit time.

 Lagrangian Form

• Alternatively, one can focus one’s attention on a neutron balance along with its 
characteristic curve.

Eulerian & Lagrangian Formulations
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Third Form of Transport Equation

 A third form of the transport equation, namely, its spherical harmonics form, can be 
obtained by expanding the angular flux as

0

2 1
( , , ) ( , ) ( , );

4

l
m
l lm

l m l

l
E E Y  





 

       r Ω r

1
1

1
1

1
1

1 1
( 2)( 1) ( , )

2 1 2

1
          + ( 2)( 1) ( , )

2

1
          + ( )( 1) ( , )

2

1
          + ( )( 1)

2

m
l

m
l

m
l

l

l m l m i E
l x y

l m l m i E
x y

l m l m i E
x y

l m l m i
x y




















   
          

  
        

  
       

  
       

r

r

r

1
1

1 1

0
0 0 ,

( , )

          + ( 1)( 1) ( , )+ ( )( ) ( , )

( , ) ( , )

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

m

m m
l l

m
t l

l m m
s l l f ex lE E

E

l m l m E l m l m E
z z

E E

dE E E E E dE E E Q E

 



    



 

 

          


           

r

r r

r r

r r r r r r (3)



13 SNU Monte Carlo Lab.

McCARD

 The discrete ordinate equation is derived by considering a particle balance equation 
in an infinitesimal volume for neutrons moving in the direction (Wm) in energy 
group g.

 An application of the finite difference method for the one-dimensional SN equation  
yields

Discrete Ordinate Multi-group Transport Eq.
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 Note that the derivative in the Lagrangian form of Eq. (2) is a derivative along a 
characteristic curve.

 Eq. (2) is seen to be a linear first-order ordinary differential equation of which 
integration yields

 The most widely used technique for solving integral transport equations is the 
method of collision probabilities.

Integral Equation
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 Complicated geometry can be easily treated in the integral transport method.

 However, in the case of standard treatment (i.e., collision probability method), the 
integral transport method has drawbacks due to its formulation in which the 
transport equation is integrated for the angle. Especially in the collision probability 
method, the treatment of anisotropic scattering is very difficult. 

 The method of characteristics first proposed by Askew combining desirable features 
of the integral transport and SN methods has been considered as an effective method 
for the complicated geometry problems.

(J. R. Askew, “A Characteristics Formulation of the Neutron Transport Equation in 
Complicated Geometries,” AEEW-M-1108, U.K. Atomic Energy Authority.)

Method of Characteristics
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Derivation of 
Monte Carlo Solution

… let’s first note that all problems solved by Monte Carlo are 
essentially equivalent to integrations. …

F. James, Monte Carlo Phase Space, CERN 68-15 report (1968).
Lux and Koblinger, (1990).
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Collision Density Equation

 The collision density can be written, from its definition, as

 Then introducing the transport kernels into Eq. (6) gives
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 Consider the solution of Eq. (7) obtained by iteration; thus

Clearly 0 is the first-collision source. 1 means the collision density from the 
second-collision neutrons. Similarly, 2 indicates the contribution of the third-

collision neutrons, and so on. If the series                   converges, it represents a 
solution to Eq. (7).

Series Solution
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 From the Neumann series solution for the integral transport equation, the 
neutron flux can be written as 

Neumann Series Solution
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2. Statistical Uncertainty
in Monte Carlo Calculations
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Error vs. Uncertainty

 When we measure a physical quantity with an instrument or obtain a 
numerical value, we want to know how close the estimated value is 
to the true value.

 The difference between the estimated and true values is the error.

est trueError Q Q 

Unfortunately, the true value is unknown and 
unknowable.

 We can only estimate the error.

 The estimate of the error is called the uncertainty.

Uncertainty can be expressed in either absolute or percentage terms for 
typically 95% confidence interval, for example,

5 Volts ±0.5 Volts, 5 Volts ±10%, etc.
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 Random, Stochastic or Precision Error

• tend to be random in nature by effects 
of uncontrolled variables

 Bias or Systematic Error (Accuracy) 

• Error that remains with repeated 
measurements by a faulty equipment or 
consistent human errors

• difference between your measurement 
(mean value) and the truth.

Types of Errors: Bias & Random Error
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 Aside from uncertainties in the cross section data, the computing errors of 
the deterministic methods are systematic from

• discretization of the time-space-angle-energy phase space,

• simplified representation of 3D configuration with rare exceptions.

 In contrast, the Monte Carlo method is capable of directly treating the very 
complex 3D configuration as well as the continuous-energy cross section 
data.

 However the stochastic simulation of particle histories inevitably produce 
the stochastic uncertainties.

Deterministic vs. Monte Carlo
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Importance of Considering the Uncertainty
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Uncertainty Quantification – Sampling Method
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input sets. 

 Then from the results, the variance of z can be estimated by

 This methodology is called the stochastic sampling method or Brute force method.
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…
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(xi,yi) iz( , )i i iz f x y

… …

(B.2)
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 Let’s assume that      is determined from the best estimates of input variables as

 The Taylor series expansion of Eq. (B.1),                          to the first order of input 
variations about their mean values,                in Eq. (B.2), the sample variance 
formulation, leads to 

 The substitution of Eq. (B.4) into Eq. (B.2) results in 

Uncertainty Quantification – S/U Analysis

z

( , )z f x y (B.3)
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3. Monte Carlo
Hybrid Methods
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1. Monte Carlo variance reduction using deterministic adjoint

• J. C. Wagner, A. Haghighat, “Automated Variance Reduction of Monte Carlo 
Shielding Calculations Using the Discrete Ordinates Adjoint Function,” Nucl. 
Sci. Eng., 128, 186 (1998).

2. Solving an equivalent equation with phase discretization

• T. Kitada, T. Takeda, “Effective Convergence of Fission Source Distribution in 
Monte Carlo Simulation,” J. Nucl. Sci. Technol., 38 [5] (2001).

• M. J. Lee, H. G. Joo, D. Lee, K. Smith, “Coarse Mesh Finite Difference 
Formulation for Accelerated Monte Carlo Eigenvalue Calculation,” Ann. Nucl. 
Energy, 65, 101 (2014).

3. Unbiased modification of the neutron simulation

• T. Yamamoto, Y. Miyoshi, “Reliable Method for Fission Source  Convergence 
of Monte Carlo Criticality Calculation with Wielandt’s method,” J. Nucl. Sci. 
Technol., 41 (2), 99 (2004).

Approaches to Combine MC and Det. Methods
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Monte Carlo Wielandt Method
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< Integro-differential Eq. > < Integral Eq. >

T. Yamamoto, “Development of Monte Carlo Wielandt Method,” 2014 Monte Carlo Workshop,
Beijing, China (2014).
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Conclusion in Monte Carlo vs. Deterministic Methods

 Mathematician’s viewpoints

 An estimate of a tallied mean should be interpreted considering its statistical 
uncertainty.

 Uncertainty (random error and bias) in new Monte Carlo methods should be 
carefully examined.

Neutron Balance in Volume:
Eulerian Formulation

Neutron Balance in CC:
Lagrangian Formulation

Integral Formulation

Monte Carlo method as
an integrator

Neumann Series 
Solution of CDE


