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Course schedule (tentative)

Lecture # Date Contents
1 3-SepIntroduction
2 5-Sep1. Thermodynamics: Basic concepts of thermodynamics
3 10-Sep1. Thermodynamics: The first law of thermodynamics
4 12-Sep1. Thermodynamics: Thermodynamic process and cycle
5 17-Sep1. Thermodynamics: The second and third laws of thermodynamics-1
6 19-Sep1. Thermodynamics: The second and third laws of thermodynamics-2

24-Sep No lecture (holiday)
26-Sep No lecture (holiday)

7 1-Oct
1. Thermodynamics: The second and third laws of thermodynamics-3
(1. Equation of state of gas will be covered in future)

3-Oct No lecture (holiday)
8 8-OctAnswer of homework-1
9 10-OctExam-01 (2 hour)

10 15-Oct2. Introduction to equilibrium theory
11 17-Oct2. Free energy-1
12 22-Oct2. Free energy-2
13 24-Oct2. Calculation of thermodynamic quantities

29-Oct No lecture
31-Oct



(Review) 1.3.1. The 2nd law of thermodynamics
- description-

 “The entropy of an isolated system never decreases, because isolated systems 
always evolve toward thermodynamic equilibrium—the state with the 
maximum possible entropy.” (wikipedia) 

 “Heat cannot spontaneously flow from cold regions to hot regions without 
external work being performed on the system.” (Clausius statement)

 “The efficiency of a quasi-static or reversible Carnot cycle depends only on the 
temperatures of the two heat reservoirs, and is independent of the working 
substance. A Carnot engine operated in this way is the most efficient possible 
heat engine using those two temperatures.” (Carnot’s principle)

 “There is no thermodynamic cycle that can absorb energy (>0) from a sole 
thermostat and then convert all the absorbed energy to a work to the 
surroundings.” (Thomson’s statement)
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from low-T to high-T 
with no work input)

𝑄𝑄1 > 0

𝑄𝑄2 > 0

∆𝑈𝑈 = −𝑄𝑄1 + 𝑄𝑄2 = 0



(Review) 1.3.1. The 2nd law of thermodynamics
- Definition of entropy -

We derived the following equation which is applicable for any cycle in a 
closed system, based on the 2nd law statement:

�
𝛿𝛿𝛿𝛿
𝑇𝑇
≤ 0

where equal sign is for reversible process and the unequal is for irreversible.

The efficiency of a (general) cycle using 2 thermostats is less than the 
efficiency of Carnot cycle.

The equal sign is achieved when the cycle is reversible.

𝜂𝜂 ≤ 𝜂𝜂𝑐𝑐 = 1 −
𝑇𝑇𝐿𝐿
𝑇𝑇𝐻𝐻

𝜂𝜂 = 1 −
𝑄𝑄2
𝑄𝑄1

The efficiency (𝜂𝜂) of a general cycle (engine) can be defined as 
𝜂𝜂 =

𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

𝑄𝑄1
=
𝑄𝑄1 − 𝑄𝑄2
𝑄𝑄1

= 1 −
𝑄𝑄2
𝑄𝑄1

For Carnot cycle, the efficiency is rewritten as 
𝜂𝜂𝐶𝐶 = 1 −

𝑄𝑄2
𝑄𝑄1

= 1 −
𝑇𝑇𝐿𝐿
𝑇𝑇𝐻𝐻



(Review) 1.3.1. The 2nd law of thermodynamics
- Carnot cycle -

http://science.sbcc.edu/~physics/flash/heatengines/Carnot%20cycle.html



(Review) 1.3.1. The 2nd law of thermodynamics
- Comparison with other statements -

<another important statement of the Second Law of Thermodynamics>
There is a thermodynamic state function of a system called as entropy, S, 
such that for any change in the thermodynamic state of the system,

where the equality sign applies if the change is carried out reversibly and the 
inequality sign applies if the change is carried out irreversibly at any stage. 

𝑑𝑑𝑑𝑑 ≥
𝛿𝛿𝛿𝛿
𝑇𝑇



(Appendix) The 1st law equation for reversible processes

 This is similar to 𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝑤𝑤, where the left side is of a 
state function while the right side is of path functions.

 In addition, 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = −𝑃𝑃𝑑𝑑𝑃𝑃 is also a similar condition.

Here, we reconsider the form of 1st law.
 The general format of the 1st law is always correct (either reversible or 

irreversible process):
𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝑤𝑤

 If we only consider P-V work and consider the process is reversible, then:
𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = −𝑃𝑃𝑟𝑟𝑒𝑒𝑜𝑜𝑑𝑑𝑃𝑃 = −𝑃𝑃𝑑𝑑𝑃𝑃

𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

= 𝑑𝑑𝑑𝑑 then 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

𝑑𝑑𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃 (for reversible process)

*Indeed, this equation is also correct for some irreversible processes 
as far as these thermodynamic quantities are definable throughout 
the process. This is because there quantities are state functions.

(Question) Is it OK that 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

is of a state function while 𝛿𝛿𝛿𝛿 is of a path function?



V-P and S-T diagrams

𝑑𝑑𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃 [derivative],  ∆𝑈𝑈 = ∫𝑇𝑇𝑑𝑑𝑑𝑑 − ∫𝑃𝑃𝑑𝑑𝑃𝑃 [integral]  (reversible proc.)

For reversible processes, the area surrounded by a circle (clockwise) in V-P diagram 
corresponds to the energy transferred from the system to the surroundings as 
work, while that in S-T diagram corresponds to the energy transferred from the 
surroundings to the system as heat.

*If you have time, please check V-P and S-T diagrams for several 
typical cycles in : http://www.mpoweruk.com/heat_engines.htm

V

P

S

T



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise -

Assuming 𝑛𝑛 mole of idea gas (𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and
𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿, (3) w, for each process.

 [Path-A] Reversible isothermal expansion: s-1 (P1, V1, T1)→ s-2 (P2, V2, T1)
 [Path-B] Reversible adiabatic expansion: s-1 (P1, V1, T1) → s-3 (P3, V2, T2)
 [Path-C] Reversible constant-V heating: s-3 (P3, V2, T2) → s-2(P2, V2, T1)
 [Path-D] Reversible constant-V heating: s-2 (P2, V2, T1) → s-4 (P1, V2, T3)
 [Path-E] Reversible constant-P cooling: s-4 (P1, V2, T3) → s-1 (P1, V1, T1)

P

V

B

A

C

D

E

State-1
(P1, V1, T1)

State-3 (P3, V2, T2)

State-4 (P1, V2, T3)

State-2 (P2, V2, T1)

1st law: [derivative form] d𝑈𝑈 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝑤𝑤 ;  [integral form] ∆𝑈𝑈 = 𝛿𝛿 + 𝑤𝑤



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise (path-A)-

[Path-A] Reversible 
isothermal expansion: 

s-1 (P1, V1, T1)→
s-2 (P2, V2, T1)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

∆𝑈𝑈𝐴𝐴 = 0

𝛿𝛿𝐴𝐴 = 𝑛𝑛𝑛𝑛𝑇𝑇1 × ln
𝑃𝑃2

𝑃𝑃1

𝑤𝑤𝐴𝐴 = −𝑛𝑛𝑛𝑛𝑇𝑇1 × ln
𝑃𝑃2

𝑃𝑃1
∆𝑑𝑑𝐴𝐴 =



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise (path-A)-

[Path-A] Reversible 
isothermal expansion: 

s-1 (P1, V1, T1)→
s-2 (P2, V2, T1)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

As the energy of ideal gas only depends on temperature and 𝑑𝑑𝑇𝑇 = 0, 𝑑𝑑𝑈𝑈 = 0.

The first law can be re-written as δ𝛿𝛿𝐴𝐴 = −δ𝑤𝑤𝐴𝐴, then

∆𝑑𝑑𝐴𝐴 = �
𝑠𝑠−1

𝑠𝑠−2 δ𝛿𝛿𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇
= −�

𝑠𝑠−1

𝑠𝑠−2 δ𝑤𝑤𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇
= �

𝑉𝑉2

𝑉𝑉2 𝑃𝑃
𝑇𝑇
𝑑𝑑𝑃𝑃

= 𝑛𝑛𝑛𝑛�
𝑉𝑉2

𝑉𝑉2 𝑑𝑑𝑃𝑃
𝑃𝑃

= 𝑛𝑛𝑛𝑛× ln
𝑃𝑃2

𝑃𝑃1

∆𝑈𝑈𝐴𝐴 = 0

𝛿𝛿𝐴𝐴 = 𝑛𝑛𝑛𝑛𝑇𝑇1 × ln
𝑃𝑃2

𝑃𝑃1

𝑤𝑤𝐴𝐴 = −𝑛𝑛𝑛𝑛𝑇𝑇1 × ln
𝑃𝑃2

𝑃𝑃1

∆𝑑𝑑𝐴𝐴 = 𝑛𝑛𝑛𝑛× ln
𝑃𝑃2

𝑃𝑃1

*In this case, as 𝑇𝑇 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐. you can also simply 
estimate as ∆𝑑𝑑𝐴𝐴 = ∫𝑠𝑠−1

𝑠𝑠−2 δ𝑞𝑞𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

= 1
𝑇𝑇1
∫𝑠𝑠−1
𝑠𝑠−2 δ𝛿𝛿𝐴𝐴,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑞𝑞𝐴𝐴

𝑇𝑇1



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-B)-

[Path-B] Reversible 
adiabatic expansion: 

s-1 (P1, V1, T1) → 
s-3 (P3, V2, T2)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

∆𝑈𝑈𝐵𝐵 = 𝐶𝐶𝑉𝑉 𝑇𝑇2 − 𝑇𝑇1
𝛿𝛿𝐵𝐵 = 0

𝑤𝑤𝐵𝐵 = 𝐶𝐶𝑉𝑉 𝑇𝑇2 − 𝑇𝑇1

∆𝑑𝑑𝐵𝐵 =



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-B)-

[Path-B] Reversible 
adiabatic expansion: 

s-1 (P1, V1, T1) → 
s-3 (P3, V2, T2)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

As adiabatic process ( 𝛿𝛿𝛿𝛿 = 0): 

∆𝑑𝑑𝐵𝐵 = �
𝑠𝑠−1

𝑠𝑠−3 δ𝛿𝛿𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇
= 0 ∆𝑈𝑈𝐵𝐵 = 𝐶𝐶𝑉𝑉 𝑇𝑇2 − 𝑇𝑇1

𝛿𝛿𝐵𝐵 = 0
𝑤𝑤𝐵𝐵 = 𝐶𝐶𝑉𝑉 𝑇𝑇2 − 𝑇𝑇1

∆𝑑𝑑𝐵𝐵 = 0



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-C)-

[Path-C] Reversible 
constant-V heating: 
s-3 (P3, V2, T2) →

s-2(P2, V2, T1)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

∆𝑈𝑈𝐶𝐶 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇2
𝛿𝛿𝑐𝑐 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇2

𝑤𝑤𝑐𝑐 = 0

∆𝑑𝑑𝐶𝐶 =



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-C)-

[Path-C] Reversible 
constant-V heating: 
s-3 (P3, V2, T2) →

s-2(P2, V2, T1)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

As constant-V process (𝑑𝑑𝑃𝑃 = 0), 𝛿𝛿𝑤𝑤𝐶𝐶 = −𝑃𝑃𝑟𝑟𝑒𝑒𝑜𝑜𝑑𝑑𝑃𝑃 = 0. 
Then, the first law is: 𝑑𝑑𝑈𝑈𝐶𝐶 = 𝛿𝛿𝛿𝛿𝐶𝐶
As we assume the system is of an ideal gas 
(𝑑𝑑𝑈𝑈 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇):

∆𝑈𝑈𝐶𝐶 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇2
𝛿𝛿𝑐𝑐 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇2

𝑤𝑤𝑐𝑐 = 0

∆𝑑𝑑𝐶𝐶 = 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇1

𝑇𝑇2

∆𝑑𝑑𝐶𝐶 = �
𝑠𝑠−3

𝑠𝑠−2 δ𝛿𝛿𝐶𝐶,𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇
= �

𝑠𝑠−3

𝑠𝑠−2 𝑑𝑑𝑈𝑈
𝑇𝑇

= 𝐶𝐶𝑉𝑉 �
𝑠𝑠−3

𝑠𝑠−2 𝑑𝑑𝑇𝑇
𝑇𝑇

= 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇1

𝑇𝑇2



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-D)-

[Path-D] Reversible 
constant-V heating:

s-2 (P2, V2, T1) → 
s-4 (P1, V2, T3)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

∆𝑈𝑈𝐷𝐷 = 𝐶𝐶𝑉𝑉 𝑇𝑇3 − 𝑇𝑇1
𝛿𝛿𝐷𝐷 = 𝐶𝐶𝑉𝑉 𝑇𝑇3 − 𝑇𝑇1

𝑤𝑤𝐷𝐷 = 0

∆𝑑𝑑𝐷𝐷 =



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-D)-

[Path-D] Reversible 
constant-V heating:

s-2 (P2, V2, T1) → 
s-4 (P1, V2, T3)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

∆𝑈𝑈𝐷𝐷 = 𝐶𝐶𝑉𝑉 𝑇𝑇3 − 𝑇𝑇1
𝛿𝛿𝐷𝐷 = 𝐶𝐶𝑉𝑉 𝑇𝑇3 − 𝑇𝑇1

𝑤𝑤𝐷𝐷 = 0

∆𝑑𝑑𝐷𝐷 = 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇3

𝑇𝑇1

As constant-V process (𝑑𝑑𝑃𝑃 = 0), 𝛿𝛿𝑤𝑤𝐶𝐶 = −𝑃𝑃𝑟𝑟𝑒𝑒𝑜𝑜𝑑𝑑𝑃𝑃 = 0. 
Then, the first law is: 𝑑𝑑𝑈𝑈𝐷𝐷 = 𝛿𝛿𝛿𝛿𝐷𝐷
As we assume the system is of an ideal gas 
(𝑑𝑑𝑈𝑈 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇):

∆𝑑𝑑𝐷𝐷 = �
𝑠𝑠−2

𝑠𝑠−4 δ𝛿𝛿𝐷𝐷,𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇
= �

𝑠𝑠−2

𝑠𝑠−4 𝑑𝑑𝑈𝑈
𝑇𝑇

= 𝐶𝐶𝑉𝑉 �
𝑠𝑠−2

𝑠𝑠−4 𝑑𝑑𝑇𝑇
𝑇𝑇

= 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇3

𝑇𝑇1



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-E)-

[Path-E] Reversible 
constant-P cooling: 
s-4 (P1, V2, T3) → 

s-1 (P1, V1, T1)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

∆𝑈𝑈𝐸𝐸 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇3
𝛿𝛿𝐸𝐸 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇3 + 𝑃𝑃1 𝑃𝑃1 − 𝑃𝑃2

𝑤𝑤𝐸𝐸 = −𝑃𝑃1 𝑃𝑃1 − 𝑃𝑃2
∆𝑑𝑑𝐸𝐸 =



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (path-E)-

[Path-E] Reversible 
constant-P cooling: 
s-4 (P1, V2, T3) → 

s-1 (P1, V1, T1)

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

Assuming 𝑛𝑛 mole of idea gas 
(𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑇𝑇 , 𝑈𝑈 = 𝑈𝑈 𝑇𝑇 , d𝑈𝑈 =
𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 and  𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.), 
please evaluate (1) ∆𝑈𝑈, (2) 𝛿𝛿,
(3) w, for each process.

As reversible constant-P process (𝑃𝑃 = 𝑃𝑃𝑟𝑟𝑒𝑒𝑜𝑜 and 𝑑𝑑𝑃𝑃 = 0), 
𝑤𝑤𝐸𝐸 = −∫𝑃𝑃𝑑𝑑𝑃𝑃 = −𝑃𝑃1 ∫𝑑𝑑𝑃𝑃 = −𝑃𝑃1 𝑃𝑃1 − 𝑃𝑃2 . 
As we assume the system is of an ideal gas 
(𝑑𝑑𝑈𝑈 = 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇 ). Then using the first law:

∆𝑈𝑈𝐸𝐸 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇3
𝛿𝛿𝐸𝐸 = 𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇3 + 𝑃𝑃1 𝑃𝑃1 − 𝑃𝑃2

𝑤𝑤𝐸𝐸 = −𝑃𝑃1 𝑃𝑃1 − 𝑃𝑃2

∆𝑑𝑑𝐸𝐸 = 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇1

𝑇𝑇3
+ 𝑛𝑛𝑛𝑛× ln

𝑃𝑃1

𝑃𝑃2
∆𝑑𝑑𝐸𝐸 = �

𝑠𝑠−4

𝑠𝑠−1 δ𝛿𝛿𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟

𝑇𝑇
= �

𝑠𝑠−4

𝑠𝑠−1 𝑑𝑑𝑈𝑈𝐸𝐸 − 𝛿𝛿𝑤𝑤𝐸𝐸
𝑇𝑇

= 𝐶𝐶𝑉𝑉 �
𝑠𝑠−4

𝑠𝑠−1 𝑑𝑑𝑇𝑇
𝑇𝑇

+ �
𝑠𝑠−4

𝑠𝑠−1 𝑃𝑃
𝑇𝑇
𝑑𝑑𝑃𝑃 = 𝐶𝐶𝑉𝑉 × ln

𝑇𝑇1

𝑇𝑇3
+ 𝑛𝑛𝑛𝑛× ln

𝑃𝑃1

𝑃𝑃2



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (summary)-

Path ∆𝑺𝑺 𝒒𝒒
A 𝑛𝑛𝑛𝑛× ln

𝑃𝑃2

𝑃𝑃1
𝑛𝑛𝑛𝑛𝑇𝑇1 × ln

𝑃𝑃2

𝑃𝑃1

B 0 0
C 𝐶𝐶𝑉𝑉 × ln

𝑇𝑇1

𝑇𝑇2

𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇2

D 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇3

𝑇𝑇1

𝐶𝐶𝑉𝑉 𝑇𝑇3 − 𝑇𝑇1

E 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇1

𝑇𝑇3
+ 𝑛𝑛𝑛𝑛× ln

𝑃𝑃1

𝑃𝑃2

𝐶𝐶𝑉𝑉 𝑇𝑇1 − 𝑇𝑇3
+ 𝑃𝑃1 𝑃𝑃1 − 𝑃𝑃2

 ∆𝑑𝑑 is not equal to ⁄𝑞𝑞 𝑇𝑇 if either 𝑑𝑑𝑇𝑇 = 0 (isothermal) or 𝛿𝛿𝛿𝛿 = 0 (adiabatic) 
is not kept during the process. The paths C,D ad E are such cases.

 [Path-A] Reversible isothermal expansion: s-1 (P1, V1, T1)→ s-2 (P2, V2, T1)
 [Path-B] Reversible adiabatic expansion: s-1 (P1, V1, T1) → s-3 (P3, V2, T2)
 [Path-C] Reversible constant-V heating: s-3 (P3, V2, T2) → s-2(P2, V2, T1)
 [Path-D] Reversible constant-V heating: s-2 (P2, V2, T1) → s-4 (P1, V2, T3)
 [Path-E] Reversible constant-P cooling: s-4 (P1, V2, T3) → s-1 (P1, V1, T1)

P

V

B

A

C

D

Es-1

s-2
s-3

s-4



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (summary)-

Path ∆𝑺𝑺
A 𝑛𝑛𝑛𝑛 × ln ⁄𝑃𝑃2 𝑃𝑃1
B 0
C 𝐶𝐶𝑉𝑉 × ln ⁄𝑇𝑇1 𝑇𝑇2

D 𝐶𝐶𝑉𝑉 × ln ⁄𝑇𝑇3 𝑇𝑇1

E 𝐶𝐶𝑉𝑉 × ln ⁄𝑇𝑇1 𝑇𝑇3 + 𝑛𝑛𝑛𝑛× ln ⁄𝑃𝑃1 𝑃𝑃2

(1) [Path-A] v.s. [Path-B+C] 

For adiabatic process,  𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓

𝛼𝛼
= 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓

𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓
where 𝛼𝛼 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐. and 𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑛𝑛𝑛𝑛

(e.g. 𝛼𝛼 = 3
2

for He) for ideal gas. Thus,

∆𝑑𝑑𝐵𝐵+𝐶𝐶 = 0 + 𝐶𝐶𝑉𝑉 × ln
𝑇𝑇1

𝑇𝑇2
= 𝐶𝐶𝑉𝑉 × ln

𝑇𝑇1

𝑇𝑇2
= 𝛼𝛼𝑛𝑛𝑛𝑛 × ln

𝑇𝑇1

𝑇𝑇2
= 𝑛𝑛𝑛𝑛 × ln

𝑃𝑃2

𝑃𝑃1
=∆𝑑𝑑𝐴𝐴

 This result is consistent with the fact that 𝑑𝑑 is a state function.

P

V

B

A

C

D

Es-1

s-2
s-3

s-4



1.3.1. The 2nd law of thermodynamics 
- entropy in a thermodynamic cycle: exercise  (summary)-

(2) [Cycle: 1 → 2 → 4 → 1]

∆𝑑𝑑𝑎𝑎 = ∆𝑑𝑑𝐴𝐴 + ∆𝑑𝑑𝐷𝐷 + ∆𝑑𝑑𝐸𝐸 = 𝑛𝑛𝑛𝑛× ln
𝑃𝑃2

𝑃𝑃1
+ 𝐶𝐶𝑉𝑉 × ln

𝑇𝑇3

𝑇𝑇1
+ 𝐶𝐶𝑉𝑉 × ln

𝑇𝑇1

𝑇𝑇3
+ 𝑛𝑛𝑛𝑛× ln

𝑃𝑃1

𝑃𝑃2
= 0

Path ∆𝑺𝑺
A 𝑛𝑛𝑛𝑛 × ln ⁄𝑃𝑃2 𝑃𝑃1
B 0
C 𝐶𝐶𝑉𝑉 × ln ⁄𝑇𝑇1 𝑇𝑇2

D 𝐶𝐶𝑉𝑉 × ln ⁄𝑇𝑇3 𝑇𝑇1

E 𝐶𝐶𝑉𝑉 × ln ⁄𝑇𝑇1 𝑇𝑇3 + 𝑛𝑛𝑛𝑛× ln ⁄𝑃𝑃1 𝑃𝑃2

P

V

B

A

C

D
E

State-1(P1, V1, T1)

State-3 
(P3, V2, T2)

State-4 
(P1, V2, T3)

State-2
(P2, V2, T1)

 This result is again consistent with the fact that 𝑑𝑑 is a state function.



1.3.1. The 2nd law of thermodynamics 
- Some additional examples for entropy change calculation-

(Example-1) Determine the entropy change for a constant volume 
reversible process in a closed system (not isolated). Then, again 
determine it with further assuming the system is of an ideal gas.

In following examples, we assume reversible processes. Thus, according to 
the first and the second laws

𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

As constant-volume (𝑑𝑑𝑃𝑃 = 0):  𝑑𝑑𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑑𝑑
From the definition of constant-volume heat capacity:   𝐶𝐶𝑉𝑉 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑇𝑇 𝑉𝑉,𝑁𝑁
, then

∆𝑑𝑑 = 𝑑𝑑 𝑇𝑇2,𝑃𝑃 − 𝑑𝑑 𝑇𝑇1,𝑃𝑃 = �
𝑇𝑇1

𝑇𝑇2 𝑑𝑑𝑈𝑈
𝑇𝑇

𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.𝑃𝑃,𝑁𝑁 = �
𝑇𝑇1

𝑇𝑇2 𝐶𝐶𝑉𝑉
𝑇𝑇
𝑑𝑑𝑇𝑇 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.𝑃𝑃,𝑁𝑁

If we further assume an ideal gas (which means Cv is a constant), 
then: ∆𝑑𝑑 = 𝐶𝐶𝑉𝑉 ln 𝑇𝑇2

𝑇𝑇1
*Because the system is closed, not isolated, d𝑑𝑑 can be less than 0, and 
thus ∆𝑑𝑑 can be less than 0. (but during the process, 𝑑𝑑𝑑𝑑 ≥ 𝛿𝛿𝑞𝑞

𝑇𝑇
is needed.)



1.3.1. The 2nd law of thermodynamics 
- Some additional examples for entropy change calculation-

(Ex.2) Determine the entropy change for a constant pressure reversible 
process in a closed system (not isolated). Then, again determine it with 
further assuming the system is of an ideal gas.

As constant-pressure (𝑑𝑑𝑃𝑃 = 0):  𝑑𝑑𝐻𝐻 = ⋯
From the definition of constant-pressure heat capacity:   𝑑𝑑𝐻𝐻 = 𝐶𝐶𝑃𝑃𝑑𝑑𝑇𝑇 , then
If we assume an ideal gas (𝐶𝐶𝑃𝑃=const.), then:

(Ex.3) Determine the entropy change for a constant temperature reversible 
process in a closed system (not isolated). Then, again determine it with further 
assuming the system is of an ideal gas.

As constant-temperature (𝑑𝑑𝑇𝑇 = 0), if we assume an ideal gas: 𝑑𝑑𝑈𝑈 = 0

𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃



1.3.1. The 2nd law of thermodynamics 
- Some additional examples for entropy change calculation-

(Ex.2) Determine the entropy change for a constant pressure reversible 
process in a closed system (not isolated). Then, again determine it with 
further assuming the system is of an ideal gas.

𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

As constant-pressure (𝑑𝑑𝑃𝑃 = 0):  𝑑𝑑𝐻𝐻 = 𝑑𝑑𝑈𝑈 + 𝑃𝑃𝑑𝑑𝑃𝑃 + 𝑃𝑃𝑑𝑑𝑃𝑃 = 𝑇𝑇𝑑𝑑𝑑𝑑
From the definition of constant-pressure heat capacity:   𝐶𝐶𝑃𝑃 = 𝜕𝜕𝐻𝐻

𝜕𝜕𝑇𝑇 𝑃𝑃,𝑁𝑁
, then

If we assume an ideal gas, then: ∆𝑑𝑑 = 𝐶𝐶𝑃𝑃 ln 𝑇𝑇2
𝑇𝑇1

∆𝑑𝑑 = 𝑑𝑑 𝑇𝑇2,𝑃𝑃 − 𝑑𝑑 𝑇𝑇1,𝑃𝑃 = �
𝑇𝑇1

𝑇𝑇2 𝑑𝑑𝐻𝐻
𝑇𝑇

𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.𝑃𝑃,𝑁𝑁 = �
𝑇𝑇1

𝑇𝑇2 𝐶𝐶𝑃𝑃
𝑇𝑇
𝑑𝑑𝑇𝑇 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐.𝑃𝑃,𝑁𝑁



1.3.1. The 2nd law of thermodynamics 
- Some additional examples for entropy change calculation-

(Ex.3) Determine the entropy change for a constant temperature reversible 
process in a closed system (not isolated). Then, again determine it with further 
assuming the system is of an ideal gas.

𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

As constant-temperature (𝑑𝑑𝑇𝑇 = 0), if we assume an ideal gas: 𝑑𝑑𝑈𝑈 = 0

𝑑𝑑𝑑𝑑 =
𝑃𝑃
𝑇𝑇
𝑑𝑑𝑃𝑃 = 𝑛𝑛𝑛𝑛

𝑑𝑑𝑃𝑃
𝑃𝑃

∆𝑑𝑑 = 𝑑𝑑 𝑃𝑃2,𝑇𝑇 − 𝑑𝑑 𝑃𝑃1,𝑇𝑇 = 𝑛𝑛𝑛𝑛�
𝑉𝑉1

𝑉𝑉2 𝑑𝑑𝑃𝑃
𝑃𝑃

= 𝑛𝑛𝑛𝑛 ln
𝑃𝑃2
𝑃𝑃1

= 𝑛𝑛𝑛𝑛 ln
𝑃𝑃1
𝑃𝑃2



Short review
-the first law and some typical conditions to specify a process-

 Reversible process 
 For work, 𝑃𝑃𝑟𝑟𝑒𝑒𝑜𝑜𝑟𝑟𝑟𝑟𝑒𝑒𝑎𝑎𝑒𝑒 = 𝑃𝑃. Thus, 𝛿𝛿𝑤𝑤 = −𝑃𝑃𝑑𝑑𝑃𝑃
 For heat, 𝛿𝛿 = 𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 . Thus,  𝑑𝑑𝑑𝑑 = ⁄𝛿𝛿𝛿𝛿 𝑇𝑇 thus 𝛿𝛿𝛿𝛿 = 𝑇𝑇𝑑𝑑𝑑𝑑

 Combining these two, the first law is: d𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃
 Adiabatic process: 𝛿𝛿𝛿𝛿 = 0 thus 𝑑𝑑𝑈𝑈 = 𝛿𝛿𝑤𝑤
 Isothermal process :𝑑𝑑𝑇𝑇 = 0,

 Assuming an ideal gas (𝑈𝑈 = 𝑈𝑈(𝑇𝑇) ) : 𝑑𝑑𝑈𝑈 = 0 thus 𝛿𝛿𝑤𝑤 = − 𝛿𝛿𝛿𝛿
 Constant-volume process : 𝑑𝑑𝑃𝑃 = 0

 Assuming only reversible P-V work:𝛿𝛿𝑤𝑤 = −P𝑑𝑑𝑃𝑃 = 0 thus 𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿

d𝑈𝑈 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝑤𝑤, ∆𝑈𝑈(= 𝑈𝑈𝑓𝑓𝑓𝑓𝑒𝑒𝑎𝑎𝑒𝑒 − 𝑈𝑈𝑓𝑓𝑒𝑒𝑓𝑓𝑜𝑜𝑓𝑓𝑎𝑎𝑒𝑒) = 𝛿𝛿 + 𝑤𝑤
 The first law of thermodynamics is an energy conservation law.

 Internal energy (U) v.s. enthalpy (H)  (in a reversible process):
 The definition of enthalpy is: 𝐻𝐻 = 𝑈𝑈 + 𝑃𝑃𝑃𝑃
 Constant-volume process (𝛿𝛿𝑤𝑤 = −PdV = 0):  𝛿𝛿 = 𝛿𝛿𝑉𝑉 = ∆𝑈𝑈
 Constant-pressure process (𝑑𝑑𝑃𝑃 = 0 ):  𝛿𝛿 = 𝛿𝛿𝑃𝑃 = ∆𝑈𝑈 + 𝑃𝑃∆𝑃𝑃 = ∆𝐻𝐻

*∆𝐻𝐻 = ∆ 𝑈𝑈 + 𝑃𝑃𝑃𝑃 = ∆𝑈𝑈 + 𝑃𝑃∆𝑃𝑃 + 𝑃𝑃∆𝑃𝑃 = ∆𝑈𝑈 + 𝑃𝑃∆𝑃𝑃.



Short review
-the first law and some typical conditions to specify a process-

 “Heat capacity” (C in q = 𝐶𝐶∆𝑇𝑇; heat capacity is a path function!)  along 
specific paths, namely constant-volume and constant-pressure, are:

𝐶𝐶𝑃𝑃 =
𝜕𝜕𝐻𝐻
𝜕𝜕𝑇𝑇 𝑃𝑃,𝑁𝑁

𝛿𝛿𝑝𝑝 = ∆𝐻𝐻𝐶𝐶𝑉𝑉 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇 𝑉𝑉,𝑁𝑁

𝛿𝛿𝑉𝑉 = ∆𝑈𝑈

 Internal energy (U) v.s. enthalpy (H)  (in a reversible process):
 Constant-volume process (𝛿𝛿𝑤𝑤 = PdV = 0):  𝛿𝛿 = 𝛿𝛿𝑉𝑉 = ∆𝑈𝑈
 Constant-pressure process (𝑑𝑑𝑃𝑃 = 0 ):  𝛿𝛿 = 𝛿𝛿𝑃𝑃 = ∆𝑈𝑈 + 𝑃𝑃∆𝑃𝑃 = ∆𝐻𝐻

*∆𝐻𝐻 = ∆ 𝑈𝑈 + 𝑃𝑃𝑃𝑃 = ∆𝑈𝑈 + 𝑃𝑃∆𝑃𝑃 + 𝑃𝑃∆𝑃𝑃 = ∆𝑈𝑈 + 𝑃𝑃∆𝑃𝑃.

 Please be sure that 𝐶𝐶𝑉𝑉 ≡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇 𝑉𝑉,𝑁𝑁

and 𝐶𝐶𝑃𝑃 ≡
𝜕𝜕𝐻𝐻
𝜕𝜕𝑇𝑇 𝑃𝑃,𝑁𝑁

do not involve any 

assumptions. These equations are definitions of 𝐶𝐶𝑉𝑉 and 𝐶𝐶𝑃𝑃.
 If we assume the system is ideal gas, 𝐶𝐶𝑉𝑉 = 𝑑𝑑𝜕𝜕

𝑑𝑑𝑇𝑇
and 𝐶𝐶𝑝𝑝 = 𝑑𝑑𝐻𝐻

𝑑𝑑𝑇𝑇
are 

achieved. However, these equations are correct only for ideal gas 
(although reasonably accurate for most gasses under wide conditions). 



(Appendix)
- Mathematics (chapter H): total derivative -

We consider a case of F for “F is a sole function of x, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥)”

𝑑𝑑𝐹𝐹
𝑑𝑑𝑥𝑥

= lim
∆𝑒𝑒→0

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥 − 𝐹𝐹 𝑥𝑥
∆𝑥𝑥

The derivative of F can be written as:

We consider a case of F for “F is a function of x and y, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥,𝑦𝑦)”

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥 𝑦𝑦

= lim
∆𝑒𝑒→0

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑥𝑥

The partial derivative of F with respect to x, with y held constant, can be 
written as:

As the same way, “F is a function of x, y and z, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧)”, 
for example 𝜕𝜕𝐹𝐹

𝜕𝜕𝑥𝑥 𝑦𝑦,𝑧𝑧
= lim

∆𝑒𝑒→0

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦, 𝑧𝑧 − 𝐹𝐹 𝑥𝑥,𝑦𝑦, 𝑧𝑧
∆𝑥𝑥



(Appendix)
- Mathematics (chapter H): total derivative -

We consider a case of F for “F is a function of x and y, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥,𝑦𝑦)”

∆𝐹𝐹 = 𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦
= 𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 + 𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦

=
𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦

∆𝑥𝑥
∆𝑥𝑥 +

𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑦𝑦

∆𝑦𝑦

Then let ∆𝑥𝑥 → 0 and ∆𝑦𝑦 → 0 as:
𝑑𝑑𝐹𝐹

= lim
∆𝑒𝑒→0

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦
∆𝑥𝑥

∆𝑥𝑥 + lim
∆𝑒𝑒→0

𝐹𝐹 𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑦𝑦

∆𝑦𝑦

=
𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥 𝑦𝑦

𝑑𝑑𝑥𝑥 +
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦 𝑒𝑒

𝑑𝑑𝑦𝑦

The total derivative of F can be written as:



(Appendix)
- Mathematics (chapter H): total derivative -

As the same way, for “F is a function of x, y and z, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧)”, 
the total derivative F can be written as:  

𝑑𝑑𝐹𝐹 =
𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥 𝑦𝑦,𝑧𝑧

𝑑𝑑𝑥𝑥 +
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦 𝑧𝑧,𝑒𝑒

𝑑𝑑𝑦𝑦 +
𝜕𝜕𝐹𝐹
𝜕𝜕𝑧𝑧 𝑒𝑒,𝑦𝑦

𝑑𝑑𝑧𝑧

Here, if 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧 𝑒𝑒,𝑦𝑦

𝑑𝑑𝑧𝑧 is nearly 0, namely 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧 𝑒𝑒,𝑦𝑦

or ∆𝑧𝑧 is nearly 0 (or much smaller 

than those for x and y, it can be approximated with an minimal error as:

𝑑𝑑𝐹𝐹~
𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥 𝑦𝑦,𝑧𝑧

𝑑𝑑𝑥𝑥 +
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦 𝑧𝑧,𝑒𝑒

𝑑𝑑𝑦𝑦



1.3.2. The 3rd law of thermodynamics 
- temperature dependence of entropy -

As the first and second laws for a reversible 
process:

𝑑𝑑𝑈𝑈 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

If we treat U and S as functions of V and T thus U(T, V) and 
S(T, V), their total derivatives are:

𝑑𝑑𝑈𝑈 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑇𝑇 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃 𝑇𝑇

𝑑𝑑𝑃𝑃

By substituting this equation to the first one:

𝑑𝑑𝑑𝑑 =
1
𝑇𝑇

𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑇𝑇 +
1
𝑇𝑇
𝑃𝑃 +

𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃 𝑇𝑇

𝑑𝑑𝑃𝑃 =
𝐶𝐶𝑉𝑉
𝑇𝑇
𝑑𝑑𝑇𝑇 +

1
𝑇𝑇
𝑃𝑃 +

𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃 𝑇𝑇

𝑑𝑑𝑃𝑃

𝐶𝐶𝑉𝑉 ≡
𝜕𝜕𝑈𝑈
𝜕𝜕𝑇𝑇 𝑉𝑉

The definition 
of CV

In comparison with the total derivative of S given above:

𝑑𝑑𝑑𝑑 =
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑇𝑇 +
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

𝑑𝑑𝑃𝑃and

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

=
𝐶𝐶𝑉𝑉
𝑇𝑇

and 𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

=
1
𝑇𝑇
𝑃𝑃 +

𝜕𝜕𝑈𝑈
𝜕𝜕𝑃𝑃 𝑇𝑇



1.3.2. The 3rd law of thermodynamics 
- temperature dependence of entropy (cont’d)-

𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑉𝑉

=
𝐶𝐶𝑉𝑉
𝑇𝑇

Based on the first and second laws for a reversible process, and 
assumptions that U(T, V) and S(T, V):

By making an integral with respect to T (with keeping V constant ):

∆𝑑𝑑 = 𝑑𝑑 𝑇𝑇2 − 𝑑𝑑 𝑇𝑇1 = �
𝑇𝑇1

𝑇𝑇2 𝐶𝐶𝑉𝑉 𝑇𝑇 𝑑𝑑𝑇𝑇
𝑇𝑇

Hence, we can calculate S of an arbitrary temperature, S(T), if we know 
S(0 K):

𝑑𝑑 𝑇𝑇 = 𝑑𝑑 0 𝐾𝐾 + �
0

𝑇𝑇 𝐶𝐶𝑉𝑉 𝑇𝑇′ 𝑑𝑑𝑇𝑇′

𝑇𝑇′ (constant V, (constant N))

In an analogy, if we go through similar steps under constant pressure case 
(we start with the total derivative of H(S,P) ):

𝑑𝑑 𝑇𝑇 = 𝑑𝑑 0 𝐾𝐾 + �
0

𝑇𝑇 𝐶𝐶𝑃𝑃 𝑇𝑇′ 𝑑𝑑𝑇𝑇′

𝑇𝑇′
(constant P, (constant N))

*Note that we do not assume ideal gas to obtain this equation.



1.3.2. The 3rd law of thermodynamics 
- the definition of a numerical scale for entropy-

 Nernst and Planck made a postulate corresponding to the third law:

Every substance has a finite positive entropy, but at zero kelvin the 
entropy may become zero, and does so in the case of a perfectly 
crystalline substance.

*We assume the state at 0 K is a perfect crystal. This is reasonable because
 A material becomes a solid at low temperatures.
 Entropy is related to disorder of the system.(we will learn latter)
 The lowest entropy must be achieved with the lowest disorder, which is the 

perfect crystal.

Liquid of UO2 Perfect crystal of UO2



1.3.2. The 3rd law of thermodynamics 
- an example of temperature dependence of entropy-

Vaporization

Fusion (melting)
Solid-solid 

phase transition

Temperature dependence of the molar entropy of nitrogen

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



1.3.X. How to judge whether reversible or irreversible
- entropy change in a process -

V

P State-1

State-2

General 
“process”

Reversible 
process

�
𝛿𝛿𝛿𝛿
𝑇𝑇

= �
1

2 𝛿𝛿𝛿𝛿
𝑇𝑇

+ �
2

1 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

≤ 0

 For this cycle composed of 2 processes, Clausius theorem gives:

where the equal sign is achieved when the general process is reversible 
and the unequal sign is achieved when the general process is irreversible.

�
1

2 𝛿𝛿𝛿𝛿
𝑇𝑇
≤ �

1

2 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

= �
1

2
𝑑𝑑𝑑𝑑 = 𝑑𝑑2 − 𝑑𝑑1 = ∆𝑑𝑑then

∆𝑑𝑑 = �
1

2
𝑑𝑑𝑑𝑑 = 𝑑𝑑2 − 𝑑𝑑1 ≥ �

1

2 𝛿𝛿𝛿𝛿
𝑇𝑇𝑑𝑑𝑑𝑑 ≥

𝛿𝛿𝛿𝛿
𝑇𝑇



1.3.X. How to judge whether reversible or irreversible
- entropy change/production/exchange-

∆𝑑𝑑 = �
1

2
𝑑𝑑𝑑𝑑 = 𝑑𝑑2 − 𝑑𝑑1 ≥ �

1

2 𝛿𝛿𝛿𝛿
𝑇𝑇

Entropy change 
(state function)

Entropy exchange 
(path function)

 This means that entropy change is larger than entropy transfer if the 
process is irreversible. Then, we define “entropy production” (entropy 
generation) to indicate the degree of “irreversibility” of the process.

*the equal sign is achieved when 
the process is reversible and the 
unequal sign is achieved when 
the process is irreversible.

𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 = 𝑑𝑑2 − 𝑑𝑑1 − �
1

2 𝛿𝛿𝛿𝛿
𝑇𝑇

= ∆𝑑𝑑 − 𝑑𝑑𝑟𝑟𝑒𝑒𝑐𝑐 ≥ 0 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 + 𝛿𝛿𝑑𝑑𝑟𝑟𝑒𝑒𝑐𝑐

System
𝛿𝛿𝛿𝛿

Temperature is T at this boundary.Entropy 
exchange 

𝑑𝑑𝑟𝑟𝑒𝑒𝑐𝑐
Entropy change

∆𝑑𝑑

Entropy 
production
𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑



1.3.X. How to judge whether reversible or irreversible
- a theoretical way to judge-

 We divide 𝑑𝑑𝑑𝑑 into two types:
 𝛿𝛿𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 : due to the irreversible process, which is produced inside the 

system (≥ 0, where the equal sign is achieved if reversible process).
 𝛿𝛿𝑑𝑑𝑟𝑟𝑒𝑒𝑐𝑐 : due to the exchange of energy as heat with the surroundings, 

and defined as 𝛿𝛿q/T which can take any value.

𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 + 𝛿𝛿𝑑𝑑𝑟𝑟𝑒𝑒𝑐𝑐 = 𝛿𝛿𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 +
𝛿𝛿𝛿𝛿
𝑇𝑇
≥
𝛿𝛿𝛿𝛿
𝑇𝑇

(1) For a reversible process, which does not produce the entropy inside 
the system (𝛿𝛿𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 = 0), 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞

𝑇𝑇
as 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟.

(2) For an irreversible, which produces the entropy inside the system 
(𝛿𝛿𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 > 0):𝑑𝑑𝑑𝑑 > 𝛿𝛿𝑞𝑞

𝑇𝑇
where 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿𝑓𝑓𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑 =
𝛿𝛿𝛿𝛿𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇

So, if we can calculate 𝛿𝛿𝑞𝑞
𝑇𝑇

or ∫ 𝛿𝛿𝑞𝑞
𝑇𝑇

of a concerned process, and then compare 
it with 𝑑𝑑𝑑𝑑 or ∆𝑑𝑑, which can be determined using imaginary reversible 
process, we can judge whether the process is reversible or irreversible.  



1.3.X. How to judge whether reversible or irreversible
- entropy change/production/exchange-

[HW01-10:#20-14] 
(1)Please show that

∆𝑑𝑑 = 𝐶𝐶𝑉𝑉 ln
𝑇𝑇2
𝑇𝑇1

+ 𝑛𝑛𝑛𝑛 ln
𝑃𝑃2
𝑃𝑃1

when 1 mole of an ideal gas is taken from state-1 (T1, V1) to state-2 (T2, V2), 
assuming that 𝐶𝐶𝑉𝑉 (constant-volume heat capacity) is independent of 
temperature. 

Let’s check some examples using the following equation that we derived in 
the homework.



1.3.X. How to judge whether reversible or irreversible
-(Example-1) energy transfer as heat between 2 systems-

𝑇𝑇𝑟𝑟 𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟 − 𝛼𝛼𝑇𝑇𝑟𝑟 + 𝛼𝛼

We consider a connected system (sys-1 and sys-2):
 These systems are composed of the same sort of ideal gas having the 

same amount (𝑛𝑛 mol) and heat capacity.
 These two system can exchange neither mass nor energy with the 

surroundings.
 These two systems can exchange energy as heat with each other. Sys-1 

is of higher temperature (𝑇𝑇𝑟𝑟 + 𝛼𝛼) than sys-2 (𝑇𝑇𝑟𝑟 − 𝛼𝛼).
 The volume are constant during the process, thus this is constant-volume 

cooling for Sys-1 and heating for Sys-2.

Sys-1 Sys-2 Sys-1 Sys-2



1.3.X. How to judge whether reversible or irreversible
-(Example-1) energy transfer as heat between 2 systems-

∆𝑑𝑑 = 𝐶𝐶𝑉𝑉 ln
𝑇𝑇2
𝑇𝑇1

+ 𝑛𝑛𝑛𝑛 ln
𝑃𝑃2
𝑃𝑃1

by a process from state-1 (T1, V1) to 
state-2 (T2, V2) for ideal gas

𝑇𝑇𝑟𝑟 𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟 − 𝛼𝛼𝑇𝑇𝑟𝑟 + 𝛼𝛼

Sys-1 Sys-2 Sys-1 Sys-2

∆𝑑𝑑1 = 𝐶𝐶𝑉𝑉 ln
𝑇𝑇𝑓𝑓𝑓𝑓𝑒𝑒
𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓

= 𝐶𝐶𝑉𝑉 ln
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝛼𝛼
∆𝑑𝑑2 = 𝐶𝐶𝑉𝑉 ln

𝑇𝑇𝑓𝑓𝑓𝑓𝑒𝑒
𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓

= 𝐶𝐶𝑉𝑉 ln
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 − 𝛼𝛼

Using the entropy change expression for the ideal gas, 

If we consider these 2 systems as a 1 combined system, this system is 
regarded as an isolated system as no energy and no mass were transferred 
in this internal process. Then, 

∆𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐−𝑠𝑠𝑦𝑦𝑠𝑠 = ∆𝑑𝑑1 + ∆𝑑𝑑2 = 𝐶𝐶𝑉𝑉 ln
𝑇𝑇𝑟𝑟

𝑇𝑇𝑟𝑟 + 𝛼𝛼
+ 𝐶𝐶𝑉𝑉 ln

𝑇𝑇𝑟𝑟
𝑇𝑇𝑟𝑟 − 𝛼𝛼

= 𝐶𝐶𝑉𝑉 ln
𝑇𝑇𝑟𝑟2

𝑇𝑇𝑟𝑟2 − 𝛼𝛼2
> 0

In this process, 𝑑𝑑𝑟𝑟𝑒𝑒𝑐𝑐 = 0 as fro the new system. Thus, ∆𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐−𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 > 0



1.3.X. How to judge whether reversible or irreversible
-(Example-1) energy transfer as heat between 2 systems-

𝑇𝑇𝑟𝑟 𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟 − 𝛼𝛼𝑇𝑇𝑟𝑟 + 𝛼𝛼

Sys-1 Sys-2 Sys-1 Sys-2

∆𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐−𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 = 𝐶𝐶𝑉𝑉 ln
𝑇𝑇𝑟𝑟2

𝑇𝑇𝑟𝑟2 − 𝛼𝛼2
> 0

 This equation means that “energy transfer as heat between two systems 
(or between the system and the surroundings) of different temperatures is 
irreversible process”.

 If 𝛼𝛼 = 0, ∆𝑑𝑑𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐−𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 = 0 is achieved. So, “energy transfer as heat 
between two systems (or b/w the system and the surroundings) of the 
same temperature is reversible process.” This “same temperature” can 
be replaced with systems of infinitesimal temperature gap, like 𝛼𝛼 → 0.



1.3.X. How to judge whether reversible or irreversible
- a practical way to judge -

 In energy transfer as heat, which is driven by temperature difference:
 If the temperature difference is infinitesimal, δ𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 = 0, thus the 

process is reversible.
 If the temperature difference is not negligible, δ𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 > 0, thus the 

process is irreversible.
e.g.) heat transfer from a higher temperature object to a 
lower temperature object. (𝑇𝑇𝑠𝑠𝑦𝑦𝑠𝑠 ≠ 𝑇𝑇𝑟𝑟𝑒𝑒𝑜𝑜)

 Likewise, in energy transfer as work, which is driven by pressure (force, 
stress, etc) difference:
 If the pressure difference is infinitesimal, δ𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 = 0, thus the process 

is reversible.
 If the pressure difference is not negligible, δ𝑑𝑑𝑝𝑝𝑟𝑟𝑜𝑜𝑑𝑑 > 0, thus the 

process is irreversible.
e.g.) expansion to a vacuum. (𝑃𝑃𝑠𝑠𝑦𝑦𝑠𝑠 ≠ 𝑃𝑃𝑟𝑟𝑒𝑒𝑜𝑜)



1.3.X. How to judge whether reversible or irreversible
- what is “reversible heating”?-

 If heat transfer occurs between two objects having different temperatures, 
the process is not reversible. 

 To avoid this situation in concept, we consider a infinite number of 
thermostats having slightly different temperatures, like 𝑇𝑇1 = 𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓 + ∆𝑇𝑇, 
𝑇𝑇2 = 𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓 + 2∆𝑇𝑇, ….., where 

∆𝑇𝑇 = lim
𝑁𝑁→∞

𝑇𝑇𝑓𝑓𝑓𝑓𝑒𝑒 − 𝑇𝑇𝑓𝑓𝑒𝑒𝑓𝑓
𝑁𝑁

 Then, the system is sequentially connected to a thermostat having        
infinitesimally higher temperature one be one.
 Isothermal processes are more simple because heat transfer occurs 

with the surroundings having the same temperature with the system. 

 “Reversible expansion/compression” is also such very unrealistic process 
to avoid the pressure gap during the process.
 Constant-pressure process is more simple as well. 
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