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Course schedule (tentative)

Lecture # Date Contents
1 3-SepIntroduction
2 5-Sep1. Thermodynamics: Basic concepts of thermodynamics
3 10-Sep1. Thermodynamics: The first law of thermodynamics
4 12-Sep1. Thermodynamics: Thermodynamic process and cycle
5 17-Sep1. Thermodynamics: The second and third laws of thermodynamics-1
6 19-Sep1. Thermodynamics: The second and third laws of thermodynamics-2

24-Sep No lecture (holiday)
26-Sep No lecture (holiday)

7 1-Oct
1. Thermodynamics: The second and third laws of thermodynamics-3
(1. Equation of state of gas will be covered in future)

3-Oct No lecture (holiday)
8 8-OctAnswer of homework-1
9 10-OctExam-01 (2 hour)

10 15-Oct2. Introduction to equilibrium theory
11 17-Oct2. Free energy-1
12 22-Oct2. Free energy-2
13 24-Oct2. Calculation of thermodynamic quantities

29-Oct No lecture
31-Oct



Contents of today

<Last class>
2.1.  Equilibrium theory: Introduction

#. Short introduction on what we are learning
2.1.1.  Direction of system evolution
2.1.2.  Meaning of entropy in microscopic scale
2.1.3.  Summary of processes 

<Today’s class>
2.2.  Equilibrium theory: free energy

2.2.1.  Helmholtz energy
2.2.2.  Gibbs energy
2.2.3.  Maxwell relations and some useful formula



(Review) 2.1.1. Direction of spontaneous system evolution
- $20.2: Non-equilibrium isolated systems evolve in a direction that increases their 

disorder -

<A statement of the Second Law of Thermodynamics>
There is a thermodynamic state function of a system called as entropy, S, such that 
for any change in the thermodynamic state of the (closed) system,

where the equality sign applies if the change is carried out reversibly and the 
inequality sign applies if the change is carried out irreversibly at any stage. 

𝑑𝑑𝑑𝑑 ≥
𝛿𝛿𝑞𝑞
𝑇𝑇

<Another statement of the Second Law of Thermodynamics)
The entropy of an isolated system never decreases, because isolated systems always 
evolve toward thermodynamic equilibrium—the state with the maximum possible 
entropy.” 

 𝑑𝑑𝑑𝑑 > 0 for a spontaneous process (irreversible process)
 𝑑𝑑𝑑𝑑 = 0 for an equilibrium state (reversible process)



All processes
Reversible Irreversible Quasi-static
 Any process is rev. or irrev.
 Any rev. process is quasi-static.
 Some irrev. process is quasi-static.

spontaneous

 <Reversible process> process from one equilibrium state to another equilibrium 
state. During the process, the system is always at some equilibrium state.
 For an isolated system, 𝑑𝑑𝑑𝑑 = 0

 <Quasi-static process> process from a state to another state. During the process, 
the system or all sub-systems in the system are always at some equilibrium state.

 <Spontaneous process> process from a non-equilibrium state to an equilibrium 
or to a non-equilibrium state. We may / may not define thermodynamic 
quantities during the process. (*the initial state of spontaneous process must be 
a non-equilibrium state.)
 For an isolated system, if quasi-static (we can define 𝑑𝑑𝑑𝑑), 𝑑𝑑𝑑𝑑 > 0.

 <Irreversible process> processes other than reversible processes. We may / may 
not define thermodynamic quantities during the process. 
 For an isolated system , if quasi-static (we can define 𝑑𝑑𝑑𝑑), 𝑑𝑑𝑑𝑑 > 0

 Someone may think the condition as 𝑑𝑑𝑑𝑑 ≠ 0. However, in reality, 
processes of 𝑑𝑑𝑑𝑑 < 0 violates the condition “isolated”.



2.2.  Equilibrium theory: free energy
- Introduction ($22)-

 The following criteria just work for an isolated system; hence it is not so practical. 
(Isolated systems are rare, e.g. universe)
 dS > 0 for a spontaneous process (irreversible process)
 dS = 0 for an equilibrium state (reversible process)

 To applied it to a practical case, the total entropy change, which is equal to the 
sum of entropies of system and surroundings (∆𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∆𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + ∆𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠.), 
needs to be checked, where we re-define “system + surroundings” as an isolated 
system to use the criteria for isolated systems.

 𝑑𝑑𝑑𝑑 ≥ 𝛿𝛿𝛿𝛿
𝑇𝑇

works in any systems and processes, but evaluating 𝛿𝛿𝑞𝑞 is often difficult 
as 𝑞𝑞 is not a state function.

 In this chapter ($22), two state functions are introduced, which indicates the 
direction of a spontaneous process in systems that are not isolated. These state 
functions are Helmholtz and Gibbs (free) energies.



2.2.1.  Helmholtz energy
- definition ($22-1) -

Here we consider the 1st law of a reversible constant-volume process:
𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃 = 𝑇𝑇𝑑𝑑𝑑𝑑 then    𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 0 [rev. const.-V]

We additionally assume the process is constant-temperature:
𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 0 [rev. const.-T const.-V]

Hence, we have the following condition for reversible constant-T constant-V process.
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 0 [rev. const.-T const.-V]

A new state function, called Helmholtz energy, is introduced as:
A ≡ 𝑑𝑑 − 𝑇𝑇𝑑𝑑

Its differential is given as:
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

*If we only assume reversible constant-T or constant-V, Helmholtz energy can be 
written as follows:
 [Rev. const-V] 𝑑𝑑𝑑𝑑 = ⋯
 [Rev. const-T] 𝑑𝑑𝑑𝑑 = ⋯



2.2.1.  Helmholtz energy
- definition ($22-1) -

Here we consider the 1st law of a reversible constant-volume process:
𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃 = 𝑇𝑇𝑑𝑑𝑑𝑑 then    𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 0 [rev. const.-V]

We additionally assume the process is constant-temperature:
𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 0 [rev. const.-T const.-V]

Hence, we have the following condition for reversible constant-T constant-V process.
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 0 [rev. const.-T const.-V]

A new state function, called Helmholtz energy, is introduced as:
A ≡ 𝑑𝑑 − 𝑇𝑇𝑑𝑑

Its differential is given as:
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

*If we only assume reversible constant-T or constant-V, Helmholtz energy can be 
written as follows:
 [Rev. const-V] 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = −𝑑𝑑𝑑𝑑𝑇𝑇
 [Rev. const-T] 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = −𝑃𝑃𝑑𝑑𝑃𝑃



2.2.1.  Helmholtz energy
- criterion of reaction direction for const.-T const.-V system ($22-1) -

 This system often appears in a real chemistry, but the criterion "dS ≥ 0" does 
not work in this system because a “constant-temperature” system is not isolated 
(heat transfer can happen to keep the temperature constant).

 Hence, we need a criterion other than "dS ≥ 0“.

We consider a process in a constant-temperature constant-volume.

As the first law: 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞 + 𝛿𝛿𝛿𝛿, And 𝛿𝛿𝛿𝛿 = −𝑃𝑃𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑃𝑃
As a constant-volume system: 𝑑𝑑𝑃𝑃 = 0 , then δw = 0. Hence, 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞
Here, we apply the equation above into a version of the second law (dS ≥ ⁄δq T
for closed systems) as

𝑑𝑑𝑑𝑑 ≥ ⁄𝛿𝛿𝑞𝑞 𝑇𝑇 = ⁄𝑑𝑑𝑑𝑑 𝑇𝑇
Then, finally we obtain the following equation, where the equality holds for a 
reversible process and the inequality for an irreversible process.

𝑑𝑑𝑑𝑑 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑 then   𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 ≤ 0 [const.-V]

*Be sure that dS ≥ ⁄δq T is true for any change in the thermodynamic 
state of closed systems, not only for isolated systems. (This is much 
easily achieved than dS ≥ 0, which is only for isolated systems).



2.2.1.  Helmholtz energy
- criterion of reaction direction for const.-T const.-V system ($22-1) -

We consider a process in a constant-volume constant-temperature system.

𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 ≤ 0 [const.-V]

where the equality holds for a reversible 
process and the inequality for an 
irreversible process.

Helmholtz energy is defined as:
A = 𝑑𝑑 − 𝑇𝑇𝑑𝑑

𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

In the constant-T condition, the differential of Helmholtz energy is written as:
𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 [quasi-static const.-T]

If we introduce this relation into the equation to judge whether the process is 
reversible or irreversible:

𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 ≤ 0 [quasi-static const.-T const.-V]

𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 0 [rev. const.-T const.-V]

Consequently, we have a criterion for const.-T const.-V system.
 dA < 0 for a spontaneous process (irreversible process)
 dA = 0 for an equilibrium state (reversible process)



2.2.1.  Helmholtz energy
-criterion of reaction direction for const.-T const.-V system ($22-1)-

This result means that
 “a process of "∆A < 0" takes place spontaneously in a system at constant T and 

V until it becomes "∆A = 0" (thus, until A will be a minimum).  
 Ex-1) when ∆𝑑𝑑 < 0 (some energy will be gained by the process) and 

∆𝑑𝑑 > 0 (the system will be more disordered by the process), ∆A is 
clearly less than 0, and thus this process spontaneously takes place. 

 Ex-2) a process where ∆𝑑𝑑 and ∆𝑑𝑑 have the same signs, ∆A gives a 
quantitative measure of whether is process is spontaneous or not. 
Basically, because of the factor of T in T∆𝑑𝑑 term, ∆𝑑𝑑 dominates at low 
temperatures while T∆𝑑𝑑 dominates at high temperatures. 
 We say “entropy effect becomes stronger at a higher temperature”.

Consequently, we have a criterion for const.-V const.-T system.
 dA < 0 for a spontaneous process (irreversible process)

 (Integral form) ∆A = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 < 0
 dA = 0 for an equilibrium state (reversible process)

 (Integral form) ∆A = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 = 0



2.2.1.  Helmholtz energy
- criterion of reaction direction for const.-T const.-V system ($22-1) -

*textbook, figure 22.1
*This is for const.-T const.-V system.

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



2.2.1.  Helmholtz energy
- criterion of reaction direction for const.-T const.-V system ($22-1) -

A state function, Helmholtz energy (A = 𝑑𝑑 − 𝑇𝑇𝑑𝑑) behaves as below for a 
spontaneous process in a constant-T constant-V system (not isolated):

“𝑑𝑑𝑑𝑑 ≤ 0 (for constant T and V)”

As the differential is “𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇”, if const.-T const.-V are achieved,
∆𝑑𝑑 = ∫𝑑𝑑𝑑𝑑 = ∫𝑑𝑑𝑑𝑑 − ∫𝑇𝑇𝑑𝑑𝑑𝑑 − ∫𝑑𝑑𝑑𝑑𝑇𝑇 = ∫𝑑𝑑𝑑𝑑 − 𝑇𝑇 ∫𝑑𝑑𝑑𝑑 = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 ≤ 0

Hence, “∆𝑑𝑑 = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 ≤ 0 (for const.-T const.-V)” is the condition of integral 
form.

This criteria also means that
 “a process of "∆A > 0" does not take place spontaneously in a system at 

constant T constant V”. To advance a process of "∆A > 0“, something such 
as work must be added to the system.



(Appendix) differential expression and integral expression

Be careful that 
∆𝑑𝑑 = ∆ 𝑑𝑑 − 𝑇𝑇𝑑𝑑

is always true, but

∆ 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = � 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = �𝑑𝑑𝑑𝑑 −�𝑇𝑇𝑑𝑑𝑑𝑑 − �𝑑𝑑𝑑𝑑𝑇𝑇 = ∆𝑑𝑑 − �𝑇𝑇𝑑𝑑𝑑𝑑 − �𝑑𝑑𝑑𝑑𝑇𝑇

Here, if T and S are constants

∆𝑑𝑑 − �𝑇𝑇𝑑𝑑𝑑𝑑 − �𝑑𝑑𝑑𝑑𝑇𝑇 = ∆𝑑𝑑 − 𝑇𝑇�𝑑𝑑𝑑𝑑 − 𝑑𝑑�𝑑𝑑𝑇𝑇 = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 − 𝑑𝑑∆𝑇𝑇

Thus ∆𝑑𝑑 = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 − 𝑑𝑑∆𝑇𝑇
However, it T and S are not constants,

∆𝑑𝑑 ≠ ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 − 𝑑𝑑∆𝑇𝑇

A new state function, called Helmholtz energy, is introduced as:
A ≡ 𝑑𝑑 − 𝑇𝑇𝑑𝑑

𝑑𝑑𝑑𝑑 = 𝑑𝑑 𝑑𝑑 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇



2.2.1.  Helmholtz energy
- criterion of reaction direction for const.-T const.-V system ($22-1) -

Here we consider a reversible isothermal process, then

∆𝑑𝑑 = �𝑑𝑑𝑑𝑑 = �𝑑𝑑𝑑𝑑 −�𝑇𝑇𝑑𝑑𝑑𝑑 − �𝑑𝑑𝑑𝑑𝑇𝑇 = �𝑑𝑑𝑑𝑑 − 𝑇𝑇�𝑑𝑑𝑑𝑑 = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑

Because the process is reversible,

∆𝑑𝑑 = �𝑑𝑑𝑑𝑑 = �
𝛿𝛿𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟
𝑇𝑇

=
𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟
𝑇𝑇

Thus, ∆A = ∆𝑑𝑑 − 𝑇𝑇∆𝑑𝑑 = ∆𝑑𝑑 − 𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 (reversible isothermal)

According to the first law, ∆𝑑𝑑 − 𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟, we obtain
∆A = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 (reversible isothermal)

Then, if we consider P-V work and non-P-V work with further assuming constant-V 
process, 

∆A = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑃𝑃𝑃𝑃 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃
(reversible cosnt-T const-V)



2.2.1.  Helmholtz energy
- criterion of reaction direction for const.-T const.-V system ($22-1) -

If ∆A < 0 and the process is of const.-T and const.-V, 
 The process will occur spontaneously and 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 represents the work that can 

be done by the system if this change is carried out reversibly.
 This is why we often call the Helmholtz energy “free energy”.

 If any irreversible process (like friction) is involved, the quantity of work will be 
less than 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟. Thus, this 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 and ∆A represent the maximum work that 
could be obtained. 

If ∆A >0 and the process is of const-T and const-V,
 The process will not occur spontaneously and 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 represents the work that 

must be added to the system to make this change in a reversible manner. 
 If any irreversible processes are involved, more work is needed. Thus this 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟

and ∆A represent the minimum work that are needed to make this change 
progress.

∆A = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 (reversible const.-T)
∆A = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 (reversible const.-T const.-V)



2.2.2. Gibbs Energy
- criterion of reaction direction for const.-T const.-P system ($22-2) -

 Most reaction occur at constant pressure rather than at constant volume: for 
example, reactions occur when they are open to atmosphere.

 As we can expect, U (internal energy) for a constant volume process/system is 
replaced with H (enthalpy) for a constant pressure ones.

A process in a const.-V system.

As the first law: 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞 + 𝛿𝛿𝛿𝛿, 
And 𝛿𝛿𝛿𝛿 = −𝑃𝑃𝑠𝑠𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑒𝑒𝑡𝑡𝑡𝑡𝑑𝑑𝑃𝑃

𝑑𝑑𝑑𝑑 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑 (for const.-V)

A process in a const.-P system.

As a const.-V system: 
𝑑𝑑𝑃𝑃 = 0 , then 𝛿𝛿𝛿𝛿 = 0
Hence, 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞

Here, we apply the equation above into the second law (𝑑𝑑𝑑𝑑 ≥ ⁄𝛿𝛿𝑞𝑞 𝑇𝑇)

As a const.-P system, if the process is 
static, it is OK to assume that Pext=Psys. 
Thus, 𝛿𝛿𝛿𝛿 = −𝑃𝑃𝑑𝑑𝑃𝑃
Hence, 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑃𝑃 = 𝑑𝑑(𝑑𝑑 + 𝑃𝑃𝑃𝑃) = 𝛿𝛿𝑞𝑞

𝑑𝑑𝐻𝐻 = 𝛿𝛿𝑞𝑞

𝑑𝑑𝐻𝐻 ≤ 𝑇𝑇𝑑𝑑𝑑𝑑 (for const.-P)



2.2.2.  Gibbs energy
- definition ($22-2) -

Here we consider the 1st law of a reversible const.-P process: 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃
then  𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑃𝑃 + 𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑃𝑃 = 0 [rev. const.-P]

We additionally assume the process is constant-T:
𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 0 [rev. const.-T const.-P]

Hence, we have the following condition for reversible constant-T constant-P process.
𝑑𝑑𝐺𝐺 = 𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 0 [rev. const.-T const.-P]

A new state function, called Gibbs energy, is introduced as:
𝐺𝐺 ≡ 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑 + 𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑 + 𝑃𝑃𝑃𝑃

Its differential is given as:
𝑑𝑑𝐺𝐺 = 𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

*If we only assume constant-T or constant-P, Gibbs energy can be written as follows:
 [Rev. const-P] 𝑑𝑑𝐺𝐺 = ⋯
 [Rev. const-T] 𝑑𝑑𝐺𝐺 = ⋯



2.2.2.  Gibbs energy
- definition ($22-2) -

Here we consider the 1st law of a reversible const.-P process: 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃
then  𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑃𝑃 + 𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝑃𝑃 = 0 [rev. const.-P]

We additionally assume the process is constant-T:
𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 0 [rev. const.-T const.-P]

Hence, we have the following condition for reversible constant-T constant-P process.
𝑑𝑑𝐺𝐺 = 𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 0 [rev. const.-T const.-P]

A new state function, called Gibbs energy, is introduced as:
𝐺𝐺 ≡ 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑 + 𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑 + 𝑃𝑃𝑃𝑃

Its differential is given as:
𝑑𝑑𝐺𝐺 = 𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

*If we only assume constant-T or constant-P, Gibbs energy can be written as follows:
 [Rev. const-P] 𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = −𝑑𝑑𝑑𝑑𝑇𝑇
 [Rev. const-T] 𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑇𝑇𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = −𝑃𝑃𝑑𝑑𝑃𝑃



2.2.2.  Gibbs energy
- criterion of reaction direction for const.-T const.-P system ($22-2) -

We consider a process in a const.-T const.-P system.

𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 ≤ 0 [const.-P]

where the equality holds for a reversible 
process and the inequality for an 
irreversible process.

Gibbs energy is defined as:
𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑑𝑑

𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

In constant-T condition, the differential of Gibbs energy is written as:
𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 [quasi-static const.-T]

If we introduce this relation into the equation to judge whether the process 
is reversible or irreversible:

𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑑𝑑𝐺𝐺 ≤ 0 [quasi-static const.-T const.-P]
𝑑𝑑𝐺𝐺 = 𝑑𝑑 𝐻𝐻 − 𝑇𝑇𝑑𝑑 = 0 [rev. const-T const.-P]

Consequently, we have a criterion for const.-T const.-P system.
 dG < 0 for a spontaneous process (irreversible process)
 dG = 0 for an equilibrium state (reversible process)



2.2.2.  Gibbs energy
-criterion of reaction direction for const.-T const.-P system ($22-2)-

This result means that
 “a process of "∆G < 0" takes place spontaneously in a system at constant T and 

P until it becomes "∆G = 0" (thus, until G will be a minimum).  
 Ex-1) when ∆𝐻𝐻 < 0 (some energy will be gained) and ∆𝑑𝑑 > 0 (the 

system will be more disordered), ∆G is clearly less than 0, and thus this 
process spontaneously takes place. 

 Ex-2) a process where ∆𝐻𝐻 and ∆𝑑𝑑 have the same signs, ∆G gives a 
quantitative measure of whether is process is spontaneous or not. 
Basically, because of the factor of T in T∆𝑑𝑑 term, ∆𝐻𝐻 dominates at low 
temperatures while T∆𝑑𝑑 dominates at high temperatures. 

Consequently, we have a criterion for const.-T const.-P system.
 dG < 0 for a spontaneous process (irreversible process)

 (Integral form) ∆G = ∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑 < 0
 dG = 0 for an equilibrium state (reversible process)

 (Integral form) ∆G = ∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑 = 0

*Be sure on the analogy between “U, A” for constant-volume and 
“H, G” for constant-pressure system/process.



2.2.2.  Gibbs energy
- criterion of reaction direction for const.-T const.-P system ($22-1) -

*textbook, figure 22.2
*This is for const.-T const.-P system.

G

Gmin
dG = 0

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



2.2.2.  Gibbs energy
- criterion of reaction direction for const.-T const.-P system ($22-2) -

A state function, Gibbs energy (𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑑𝑑) behaves as below for a spontaneous 
process in a constant-pressure constant-temperature system: “𝑑𝑑𝐺𝐺 ≤ 0 (for 
constant T and P)”

As the differential is “𝑑𝑑𝐺𝐺 = 𝑑𝑑𝐻𝐻 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇”, if const.-T and const.-P are achieved,
∆𝐺𝐺 = ∫𝑑𝑑𝐺𝐺 = ∫𝑑𝑑𝐻𝐻 − ∫𝑇𝑇𝑑𝑑𝑑𝑑 − ∫𝑑𝑑𝑑𝑑𝑇𝑇 = ∫𝑑𝑑𝐻𝐻 − 𝑇𝑇 ∫𝑑𝑑𝑑𝑑 = ∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑 ≤ 0.
Hence, “∆𝐺𝐺 = ∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑 ≤ 0 (for constant T and P)” is the condition of integral 
form.

This criteria also means that
 “a process of "∆G > 0" does not take place spontaneously in a system at 

constant T and P”. To advance a process of "∆G > 0“, something such as 
work must be added to the system.



2.2.2.  Gibbs energy
- criterion of reaction direction for const.-T const.-P system ($22-1) -

Here we consider a reversible isothermal process, then

∆𝐺𝐺 = �𝑑𝑑𝐺𝐺 = �𝑑𝑑𝐻𝐻 −�𝑇𝑇𝑑𝑑𝑑𝑑 − �𝑑𝑑𝑑𝑑𝑇𝑇 = �𝑑𝑑𝐻𝐻 − 𝑇𝑇�𝑑𝑑𝑑𝑑 = ∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑

Because the process is reversible,

∆𝑑𝑑 = �𝑑𝑑𝑑𝑑 = �
𝛿𝛿𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟
𝑇𝑇

=
𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟
𝑇𝑇

Thus, ∆G = ∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑 = ∆𝐻𝐻 − 𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 (reversible isothermal)

According to the first law, we obtain
∆G = ∆H − 𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 = ∆𝑑𝑑 + ∆ 𝑃𝑃𝑃𝑃 − 𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 = ∆ 𝑃𝑃𝑃𝑃 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟(reversible isothermal)

Then, if we consider P-V work and non-P-V with further assuming constant-P 
process, 

∆G = ∆ 𝑃𝑃𝑃𝑃 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 = 𝑃𝑃∆𝑃𝑃 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑃𝑃𝑃𝑃 + 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃
(reversible cosnt-T const-P)



2.2.2.  Gibbs energy
- criterion of reaction direction for const.-T const.-P system ($22-1) -

If ∆G < 0 and the process is of const.-T and const.-P, 
 The process will occur spontaneously and 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 represents the work 

that can be done by the system if this change is carried out reversibly.
 This is, again, why we often call the Gibbs energy “free energy”.

 If any irreversible process (like friction) is involved, the quantity of work will be 
less than 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃. Thus, this 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 and ∆𝐺𝐺 represent the 
maximum work that could be obtained. 

If ∆G >0 and the process is of const.-T and const.-P,
 The process will not occur spontaneously and 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 represents the 

work that must be done on the system to make this change in a reversible 
manner. 

 If any irreversible processes are involved, more work is needed. Thus this 
𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 and ∆G represent the minimum work that are needed to make 
this change progress.

∆𝐺𝐺 = 𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟−𝑒𝑒𝑡𝑡𝑒𝑒−𝑃𝑃𝑃𝑃 (reversible const.-T const.-P)



2.2.2.  Gibbs energy
- examples for how to determine the reaction direction-

(Example-1) A chemical reaction “NH3 (g) + HCl (g)  NH4Cl (s)”

 We consider this reaction under constant-T (298.15 K) and constant-P (1 bar = 
1x105 Pa) condition.

 In this reaction at 298.15 K and 1 bar, 
∆𝑠𝑠𝐻𝐻 = −176.2 kJ ∆𝑠𝑠𝑑𝑑 = −0.285 kJ 𝐾𝐾−1.

 Hence, this reaction at 298.15 K holds 
∆𝑠𝑠𝐺𝐺 = ∆𝑠𝑠𝐻𝐻 − 𝑇𝑇∆𝑠𝑠𝑑𝑑 = −91.21 kJ.

 Therefore, …..



Quiz

(Example-1) A chemical reaction “NH3 (g) + HCl (g)  NH4Cl (s)”

 We consider this reaction under constant-T (298.15 K) and constant-P (1 bar = 
1x105 Pa) condition.

 In this reaction at 298.15 K and 1 bar, 
∆𝑠𝑠𝐻𝐻 = −176.2 kJ ∆𝑠𝑠𝑑𝑑 = −0.285 kJ 𝐾𝐾−1.

<Quiz-1> At which temperature, the reaction proceeds from right to left 
under constant-T and constant-P (1x105 Pa) condition?

<Quiz-2> If the system is isolated, which direction the reaction should 
proceed?



Quiz

(Example-1) A chemical reaction “NH3 (g) + HCl (g)  NH4Cl (s)”

 We consider this reaction under constant-T (298.15 K) and constant-P (1 bar = 
1x105 Pa) condition.

 In this reaction at 298.15 K and 1 bar, 
∆𝑠𝑠𝐻𝐻 = −176.2 kJ ∆𝑠𝑠𝑑𝑑 = −0.285 kJ 𝐾𝐾−1.

<Quiz-1> At which temperature, the reaction proceeds from right to left?

 Because 𝑑𝑑𝑑𝑑 > 0 is the criteria, the process spontaneously proceeds from the 
right to the left. 

<Quiz-2> If the system is isolated, which direction the reaction should 
proceed?

 To make it, ∆𝑠𝑠𝐺𝐺 > 0 need to be achieved.
 Then, 

∆𝑠𝑠𝐺𝐺 = ∆𝑠𝑠𝐻𝐻 − 𝑇𝑇∆𝑠𝑠𝑑𝑑 = −176.2 + 0.285 × T < 0
T > 618 K



2.2.2.  Gibbs energy
- examples for how to determine the reaction direction-

(Example-2) A vaporization “H2O (l) → H2O (g)”

 The molar Gibbs energy of vaporization (∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺) is:
∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = �̅�𝐺 𝐻𝐻2𝑂𝑂(𝑔𝑔) − �̅�𝐺 𝐻𝐻2𝑂𝑂 𝑙𝑙 = ∆𝑟𝑟𝑡𝑡𝑣𝑣 �𝐻𝐻 − 𝑇𝑇∆𝑟𝑟𝑡𝑡𝑣𝑣 ̅𝑑𝑑

 ∆𝑟𝑟𝑡𝑡𝑣𝑣 �𝐻𝐻 = 40.65 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 and ∆𝑟𝑟𝑡𝑡𝑣𝑣 ̅𝑑𝑑 = 108.9 𝑘𝑘 𝐾𝐾−1 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 1 bar (1x105 Pa) 
near 373.15 K (100ºC). Thus,

∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = 40.65 − 𝑇𝑇 × 0.1089 k𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1
 If T = 373.15 𝐾𝐾,

∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = ⋯
 If T = 363 𝐾𝐾 (slightly lower than the normal melting point),

∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = ⋯
 If T = 383 𝐾𝐾 (slightly higher than the normal melting point),

∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = ⋯



2.2.2.  Gibbs energy
- examples for how to determine the reaction direction-

(Example-2) A vaporization “H2O (l) → H2O (g)”

 The molar Gibbs energy of vaporization (∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺) is:
∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = �̅�𝐺 𝐻𝐻2𝑂𝑂(𝑔𝑔) − �̅�𝐺 𝐻𝐻2𝑂𝑂 𝑙𝑙 = ∆𝑟𝑟𝑡𝑡𝑣𝑣 �𝐻𝐻 − 𝑇𝑇∆𝑟𝑟𝑡𝑡𝑣𝑣 ̅𝑑𝑑

 ∆𝑟𝑟𝑡𝑡𝑣𝑣 �𝐻𝐻 = 40.65 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 and ∆𝑟𝑟𝑡𝑡𝑣𝑣 ̅𝑑𝑑 = 108.9 𝑘𝑘 𝐾𝐾−1 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 1 bar (1x105 Pa) 
near 373.15 K (100ºC). Thus,

∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = 40.65 − 𝑇𝑇 × 0.1089 k𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1
 If T = 373.15 𝐾𝐾,

∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = 40.65 − 373.15 × 108.9 = 0 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1
which means the transfer of 1 mole liquid water to water vapor is a 
reversible process at 373.15 K at 1x105 Pa.

 If T = 363 𝐾𝐾 (slightly lower than the normal melting point),
∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = 40.65 − 363.15 × 0.1089 = +1.12 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1

which means the water vaporization is not spontaneous at 363 K at 
1x105 Pa.

 If T = 383 𝐾𝐾 (slightly higher than the normal melting point),
∆𝑟𝑟𝑡𝑡𝑣𝑣�̅�𝐺 = 40.65 − 383.15 × 0.1089 = −1.06 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1

which means the vaporization is spontaneous at 383 K at 1x105 Pa.



2.2.2.  Gibbs energy
- examples for how to determine the work to be obtained/required-

(Example-3: a case of "∆G < 0“) Combustion of H2
H2 (g) + ½ O2 (g)→ H2O (l)     @298.15 K and 1 bar (1x105 Pa)

 ∆𝑠𝑠𝐺𝐺 = −237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 298.15 K and 1x105 Pa. 
 Thus, a maximum of -237.1 kJ mol-1 of usual work (excluding reversible P-V 

work) can be obtained from this spontaneous reaction.
 If some energies are irreversibly transferred and thus causing temperature 

increase (e.g. friction), we cannot reconvert some of it to “usual work”, due 
to the second law.

(Example-4: a case of "∆G > 0“) Decomposition of H2O
H2O (l) → H2 (g) + ½ O2 (g) @298.15 K and 1 bar (1x105 Pa)

 As the opposite reaction of H2 combustion, ∆𝑠𝑠𝐺𝐺 = 237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 
298.15 K and 1x105 Pa. 

 Thus, it would require at least 237.1 kJ mol-1 of energy to drive this 
(nonspontaneous) reaction.

 If some non-reversible processes are involved (certainly involved in 
practice), some additional energy to 237.1 kJ mol-1 have to be put on the 
system.



2.2.2.  Gibbs energy
- examples for how to determine the work to be obtained/required-

(Example-3: a case of "∆G < 0“) Combustion of H2
H2 (g) + ½ O2 (g)→ H2O (l)     @298.15 K and 1 bar (1x105 Pa)

 ∆𝑠𝑠𝐺𝐺 = −237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 298.15 K and 1x105 Pa. 
 Thus, a maximum of -237.1 kJ mol-1 of usual work (excluding the reversible 

P-V work) can be obtained from this spontaneous reaction.

H2(g)+ ½ O2 (g)  @298 K, 1bar

H2O(l)  @298+α K, 1 bar

H2O(l)  @298 K, 1 bar
∆𝑠𝑠𝐺𝐺

∆1𝐺𝐺 ∆2𝐺𝐺

 As the Gibbs energy is a state function, ∆𝑠𝑠𝐺𝐺 = ∆1𝐺𝐺 + ∆2𝐺𝐺
 We cannot take ∆𝑠𝑠𝐺𝐺 work from this reaction, because some irreversible 

processes should be involved. 
 Combustion explosively occurs in general, which is far away from 

reversible process where process should go slowly and the system is 
always at some equilibrium state.



2.2.2.  Gibbs energy
- examples for how to determine the work to be obtained/required-

(Example-1: a case of "∆G < 0“) Combustion of H2
H2 (g) + ½ O2 (g)→ H2O (l)     @298.15 K and 1 bar (1x105 Pa)

 ∆𝑠𝑠𝐺𝐺 = −237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 298.15 K and 1x105 Pa. 

 We may take some electrical energy out of the chemical energy by 
 [(2) directly to electrical energy] using a fuel cell.

“H2 → 2H+ + 2e- “ (anode)   & “2H+ + ½ O2 + 2e- → H2O (cathode) 
*theoretical efficiency = ∆𝐺𝐺/∆𝐻𝐻 = (∆𝐻𝐻 − 𝑇𝑇∆𝑑𝑑)/∆𝐻𝐻
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2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Helmholtz energy ($22.2)-

Differential equation of Helmholtz energy (A = 𝑑𝑑 − 𝑇𝑇𝑑𝑑 ) is:
𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇

Considering a process along a reversible path, the first and second laws are:
𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 + 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

Hence,
𝑑𝑑𝑑𝑑 = −𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑑𝑑𝑑𝑑𝑇𝑇

Here, we can compare it with the total differential of A = 𝑑𝑑(𝑃𝑃,𝑇𝑇)
𝑑𝑑𝑑𝑑 = 𝜕𝜕𝐴𝐴

𝜕𝜕𝑃𝑃 𝑇𝑇
𝑑𝑑𝑃𝑃 + 𝜕𝜕𝐴𝐴

𝜕𝜕𝑇𝑇 𝑃𝑃
𝑑𝑑𝑇𝑇 ,   then

𝜕𝜕𝐴𝐴
𝜕𝜕𝑃𝑃 𝑇𝑇

= −𝑃𝑃 and 𝜕𝜕𝐴𝐴
𝜕𝜕𝑇𝑇 𝑃𝑃

= −𝑑𝑑
Since, the cross derivatives are equal as:

𝜕𝜕2𝐴𝐴
𝜕𝜕𝑇𝑇𝜕𝜕𝑃𝑃

= 𝜕𝜕2𝐴𝐴
𝜕𝜕𝑃𝑃𝜕𝜕𝑇𝑇

, then

As an example, a “Maxwell relation” for Helmholtz energy (A) is given here.

𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑃𝑃

=
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇



(Appendix) cross derivatives -

We consider a case of F for “F is a function of x and y, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥,𝑦𝑦)”

𝜕𝜕2𝐹𝐹
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑦𝑦

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑥𝑥

= �
𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦

∆𝑥𝑥
−

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦
∆𝑥𝑥

∆𝑦𝑦

= �
𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦

∆𝑦𝑦
−

𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦
∆𝑦𝑦

∆𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑥𝑥

𝐹𝐹 𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦

=
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Helmholtz energy ($22.2)-

𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑃𝑃

=
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

This kind of equation, which is obtained by the second 
cross partial derivatives of A (U, H, and G, as well) is 
called a Maxwell relation. 

Indeed, Maxwell relation give us a useful equations. 
For example, here, we assume a constant temperature process, then:

∆𝑑𝑑 = �
𝑃𝑃1

𝑃𝑃2 𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑃𝑃

𝑑𝑑𝑃𝑃 (constant T)

 If we know a P-V-T data, such as the equation of state, this is easily utilized to 
determine S.
 For an ideal gas, for example, 

∆𝑑𝑑 = �
𝑃𝑃1

𝑃𝑃2 𝜕𝜕
𝜕𝜕𝑇𝑇

𝑛𝑛𝑛𝑛𝑇𝑇
𝑃𝑃

𝑃𝑃

𝑑𝑑𝑃𝑃 = 𝑛𝑛𝑛𝑛�
𝑃𝑃1

𝑃𝑃2 𝑑𝑑𝑃𝑃
𝑃𝑃

= 𝑛𝑛𝑛𝑛 ln
𝑃𝑃2
𝑃𝑃1

(*constant T)
 If V1 is very large, a gas behaves as an ideal gas. So, we can evaluate ∆𝑑𝑑 in 

reference to Sideal-gas value. 



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Gibbs energy ($22.2)-

Here, we consider the Maxwell relation for Gibbs energy (G).

Differential equation of Gibbs energy (G = 𝑑𝑑 − 𝑇𝑇𝑑𝑑 + 𝑃𝑃𝑃𝑃 ) is:
𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑇𝑇 + 𝑃𝑃𝑑𝑑𝑃𝑃 + 𝑃𝑃𝑑𝑑𝑃𝑃

Considering a process along a reversible path, the first and second laws are:
𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 + 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

Hence,
𝑑𝑑𝐺𝐺 = −𝑑𝑑𝑑𝑑𝑇𝑇 + 𝑃𝑃𝑑𝑑𝑃𝑃

Here, we can compare it with the total derivative of G = 𝐺𝐺(𝑇𝑇,𝑃𝑃)
𝑑𝑑𝐺𝐺 = 𝜕𝜕𝐺𝐺

𝜕𝜕𝑇𝑇 𝑃𝑃
𝑑𝑑𝑇𝑇 + 𝜕𝜕𝐺𝐺

𝜕𝜕𝑃𝑃 𝑇𝑇
𝑑𝑑𝑃𝑃 ,   then

𝜕𝜕𝐺𝐺
𝜕𝜕𝑇𝑇 𝑃𝑃

= −𝑑𝑑 and 𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃 𝑇𝑇

= 𝑃𝑃
Since, the cross derivatives are equal as:

𝜕𝜕2𝐺𝐺
𝜕𝜕𝑇𝑇𝜕𝜕𝑃𝑃

= 𝜕𝜕2𝐺𝐺
𝜕𝜕𝑃𝑃𝜕𝜕𝑇𝑇

, then

−
𝜕𝜕𝑑𝑑
𝜕𝜕𝑃𝑃 𝑇𝑇

=
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑃𝑃



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations ($22.2)-

 Likewise, the four principal thermodynamic energies (U, H, A, G), have natural 
independent variables and then Maxwell relations as follows.

 These differential expression were derived only according to the first & second laws 
and considering a reversible path.
 Even for non-equilibrium states and/or for irreversible processes, as far as 

thermodynamic quantities are definitely determined at around the concerned 
state, these relations are applicable because they are about state functions.

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Gibbs energy ($22.2)-

The meaning of “natural independent variables” is given for U as example.

Considering a process along a reversible path, the first and second laws are:
𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑞𝑞𝑠𝑠𝑠𝑠𝑟𝑟 + 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑟𝑟 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃

Here, the variables of 𝑑𝑑 are 𝑑𝑑 and 𝑃𝑃.

However, if we wish, we can use 𝑇𝑇 and 𝑃𝑃 as the variables of 𝑑𝑑, for example:

𝑑𝑑𝑑𝑑 = 𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑃𝑃

− 𝑃𝑃 𝑑𝑑𝑃𝑃 + 𝐶𝐶𝑃𝑃𝑑𝑑𝑇𝑇
In comparison, 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑃𝑃𝑑𝑑𝑃𝑃
is apparently more simple. Thus we consider 𝑑𝑑 and 𝑃𝑃 are “natural independent 
variables” for 𝑑𝑑.



2.2.3. Maxwell relations and some useful formulas
- some useful formulas from Maxwell relations ($22.7)-

(1) A equation which plays a central role in chemical equilibria involving gas-
phase reactions.

Similarly, we can derive several useful equations.

𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃 𝑇𝑇

= 𝑃𝑃

∆�̅�𝐺 = 𝑛𝑛𝑇𝑇�
𝑃𝑃1

𝑃𝑃2 𝑑𝑑𝑃𝑃
𝑃𝑃

= 𝑛𝑛𝑇𝑇 ln
𝑃𝑃2
𝑃𝑃1

(constant T)∆𝐺𝐺 = �
𝑃𝑃1

𝑃𝑃2
𝑃𝑃𝑑𝑑𝑃𝑃then

For 1 mole of an ideal gas (constant T),

�̅�𝐺 = 𝐺𝐺𝐺 𝑇𝑇 + 𝑛𝑛𝑇𝑇 ln
𝑃𝑃

1 𝑏𝑏𝑏𝑏𝑏𝑏

Here, 𝐺𝐺𝐺 𝑇𝑇 is called the standard molar Gibbs energy. 
It is the Gibbs energy of 1 mole of the ideal gas at a pressure of 1 bar at T K, which 
is called “standard state”.

*1 bar = 1x105 Pa



2.2.3. Maxwell relations and some useful formulas
- some useful formulas from Maxwell relations ($22.7)--

(2) A equation (called Gibbs-Helmholtz equation) which is used to derive an 
equation for the temperature dependence of an equilibrium constant.

Similarly, we can derive several useful equations.

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑑𝑑

⁄𝜕𝜕𝐺𝐺 𝑇𝑇
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
𝐻𝐻
𝑇𝑇2

+
1
𝑇𝑇

𝜕𝜕𝐻𝐻
𝜕𝜕𝑇𝑇 𝑃𝑃

−
𝜕𝜕𝑑𝑑
𝜕𝜕𝑇𝑇 𝑃𝑃

then

By differentiating partially with respect to T keeping P fixed:

𝐺𝐺
𝑇𝑇

=
𝐻𝐻
𝑇𝑇
− 𝑑𝑑

As 𝐶𝐶𝑃𝑃 𝑇𝑇 = ⁄𝜕𝜕𝐻𝐻 𝜕𝜕𝑇𝑇 𝑃𝑃 = 𝑇𝑇 ⁄𝜕𝜕𝑑𝑑 𝜕𝜕𝑇𝑇 𝑃𝑃,
⁄𝜕𝜕𝐺𝐺 𝑇𝑇
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
𝐻𝐻
𝑇𝑇2

This equation can be directly applied to any process, in which case it is:

⁄𝜕𝜕∆𝐺𝐺 𝑇𝑇
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
∆𝐻𝐻
𝑇𝑇2
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