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Course schedule (tentative)

Lecture # Date Contents
1 3-SepIntroduction
2 5-Sep1. Thermodynamics: Basic concepts of thermodynamics
3 10-Sep1. Thermodynamics: The first law of thermodynamics
4 12-Sep1. Thermodynamics: Thermodynamic process and cycle
5 17-Sep1. Thermodynamics: The second and third laws of thermodynamics-1
6 19-Sep1. Thermodynamics: The second and third laws of thermodynamics-2

24-Sep No lecture (holiday)
26-Sep No lecture (holiday)

7 1-Oct
1. Thermodynamics: The second and third laws of thermodynamics-3
(1. Equation of state of gas will be covered in future)

3-Oct No lecture (holiday)
8 8-OctAnswer of homework-1
9 10-OctExam-01 (2 hour)

10 15-Oct2. Introduction to equilibrium theory
11 17-Oct2. Free energy-1
12 22-Oct2. Free energy-2
13 24-Oct2. Calculation of thermodynamic quantities

29-Oct No lecture
31-Oct



Contents of today

<Last class>
2.2.  Equilibrium theory: free energy

2.2.1.  Helmholtz energy
2.2.2.  Gibbs energy

<Today’s class>
2.2.  Equilibrium theory: free energy

2.2.2.  Gibbs energy
2.2.3.  Maxwell relations and some useful formula
2.2.4.  How to calculate thermodynamic quantities



Review of the last class, equilibrium theory

 For an isolated system
→ Maximize the entropy: 𝑆𝑆

 For a system of constant T and constant V
→ Minimize the Helmholtz (free) energy: 𝐴𝐴

𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇𝑆𝑆

 For a system of constant T and constant P
→ Minimize the Gibbs (free) energy:  𝐺𝐺

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑆𝑆 = 𝐴𝐴 + 𝑃𝑃𝑃𝑃

Free energy as well as entropy is a good index to predict the equilibrium state 
and the direction of reaction.



2.2.2.  Gibbs energy
- examples for how to determine the reaction direction-

(Example-2) A vaporization “H2O (l) → H2O (g)”

 The molar Gibbs energy of vaporization (∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺) is:
∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = �̅�𝐺 𝐻𝐻2𝑂𝑂(𝑔𝑔) − �̅�𝐺 𝐻𝐻2𝑂𝑂 𝑙𝑙 = ∆𝑣𝑣𝑣𝑣𝑣𝑣 �𝐻𝐻 − 𝑇𝑇∆𝑣𝑣𝑣𝑣𝑣𝑣 ̅𝑆𝑆

 ∆𝑣𝑣𝑣𝑣𝑣𝑣 �𝐻𝐻 = 40.65 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 and ∆𝑣𝑣𝑣𝑣𝑣𝑣 ̅𝑆𝑆 = 108.9 𝑘𝑘 𝐾𝐾−1 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 1 bar (1x105 Pa) 
near 373.15 K (100ºC). Thus,

∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = 40.65 − 𝑇𝑇 × 0.1089 k𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1
 If T = 373.15 𝐾𝐾,

∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = ⋯
 If T = 363 𝐾𝐾 (slightly lower than the normal melting point),

∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = ⋯
 If T = 383 𝐾𝐾 (slightly higher than the normal melting point),

∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = ⋯



2.2.2.  Gibbs energy
- examples for how to determine the reaction direction-

(Example-2) A vaporization “H2O (l) → H2O (g)”

 The molar Gibbs energy of vaporization (∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺) is:
∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = �̅�𝐺 𝐻𝐻2𝑂𝑂(𝑔𝑔) − �̅�𝐺 𝐻𝐻2𝑂𝑂 𝑙𝑙 = ∆𝑣𝑣𝑣𝑣𝑣𝑣 �𝐻𝐻 − 𝑇𝑇∆𝑣𝑣𝑣𝑣𝑣𝑣 ̅𝑆𝑆

 ∆𝑣𝑣𝑣𝑣𝑣𝑣 �𝐻𝐻 = 40.65 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 and ∆𝑣𝑣𝑣𝑣𝑣𝑣 ̅𝑆𝑆 = 108.9 𝑘𝑘 𝐾𝐾−1 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 1 bar (1x105 Pa) 
near 373.15 K (100ºC). Thus,

∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = 40.65 − 𝑇𝑇 × 0.1089 k𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1
 If T = 373.15 𝐾𝐾,

∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = 40.65 − 373.15 × 108.9 = 0 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1
which means the transfer of 1 mole liquid water to water vapor is a 
reversible process at 373.15 K at 1x105 Pa.

 If T = 363 𝐾𝐾 (slightly lower than the normal melting point),
∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = 40.65 − 363.15 × 0.1089 = +1.12 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1

which means the water vaporization is not spontaneous at 363 K at 
1x105 Pa.

 If T = 383 𝐾𝐾 (slightly higher than the normal melting point),
∆𝑣𝑣𝑣𝑣𝑣𝑣�̅�𝐺 = 40.65 − 383.15 × 0.1089 = −1.06 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1

which means the vaporization is spontaneous at 383 K at 1x105 Pa.



2.2.2.  Gibbs energy
- examples for how to determine the work to be obtained/required-

(Example-3: a case of "∆G < 0“) Combustion of H2
H2 (g) + ½ O2 (g)→ H2O (l)     @298.15 K and 1 bar (1x105 Pa)

 ∆𝑟𝑟𝐺𝐺 = −237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 298.15 K and 1x105 Pa. 
 Thus, a maximum of -237.1 kJ mol-1 of usual work (excluding reversible P-V 

work) can be obtained from this spontaneous reaction.
 If some energies are irreversibly transferred and thus causing temperature 

increase (e.g. friction), we cannot reconvert some of it to “usual work”, due 
to the second law.

(Example-4: a case of "∆G > 0“) Decomposition of H2O
H2O (l) → H2 (g) + ½ O2 (g) @298.15 K and 1 bar (1x105 Pa)

 As the opposite reaction of H2 combustion, ∆𝑟𝑟𝐺𝐺 = 237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 
298.15 K and 1x105 Pa. 

 Thus, it would require at least 237.1 kJ mol-1 of energy to drive this 
(nonspontaneous) reaction.

 If some non-reversible processes are involved (certainly involved in 
practice), some additional energy to 237.1 kJ mol-1 have to be put on the 
system.



2.2.2.  Gibbs energy
- examples for how to determine the work to be obtained/required-

(Example-3: a case of "∆G < 0“) Combustion of H2
H2 (g) + ½ O2 (g)→ H2O (l)     @298.15 K and 1 bar (1x105 Pa)

 ∆𝑟𝑟𝐺𝐺 = −237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 298.15 K and 1x105 Pa. 
 Thus, a maximum of -237.1 kJ mol-1 of usual work (excluding the reversible 

P-V work) can be obtained from this spontaneous reaction.

H2(g)+ ½ O2 (g)  @298 K, 1bar

H2O(l)  @298+α K, 1 bar

H2O(l)  @298 K, 1 bar
∆𝑟𝑟𝐺𝐺

∆1𝐺𝐺 ∆2𝐺𝐺

 As the Gibbs energy is a state function, ∆𝑟𝑟𝐺𝐺 = ∆1𝐺𝐺 + ∆2𝐺𝐺
 We cannot take ∆𝑟𝑟𝐺𝐺 work from this reaction, because some irreversible 

processes should be involved. 
 Combustion explosively occurs in general, which is far away from 

reversible process where process should go slowly and the system is 
always at some equilibrium state.



2.2.2.  Gibbs energy
- examples for how to determine the work to be obtained/required-

(Example-1: a case of "∆G < 0“) Combustion of H2
H2 (g) + ½ O2 (g)→ H2O (l)     @298.15 K and 1 bar (1x105 Pa)

 ∆𝑟𝑟𝐺𝐺 = −237.1 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑙𝑙−1 at 298.15 K and 1x105 Pa. 

 We may take some electrical energy out of the chemical energy by 
 [(2) directly to electrical energy] using a fuel cell.

“H2 → 2H+ + 2e- “ (anode)   & “2H+ + ½ O2 + 2e- → H2O (cathode) 
*theoretical efficiency = ∆𝐺𝐺/∆𝐻𝐻 = (∆𝐻𝐻 − 𝑇𝑇∆𝑆𝑆)/∆𝐻𝐻



Contents of today

<Last class>
2.2.  Equilibrium theory: free energy

2.2.1.  Helmholtz energy
2.2.2.  Gibbs energy

<Today’s class>
2.2.  Equilibrium theory: free energy

2.2.2.  Gibbs energy
2.2.3.  Maxwell relations and some useful formula
2.2.4.  How to calculate thermodynamic quantities



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Helmholtz energy ($22.2)-

Differential equation of Helmholtz energy (A = 𝑈𝑈 − 𝑇𝑇𝑆𝑆 ) is:
𝑑𝑑𝐴𝐴 = 𝑑𝑑𝑈𝑈 − 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑆𝑆𝑑𝑑𝑇𝑇

Considering a process along a reversible path, the first and second laws are:
𝑑𝑑𝑈𝑈 = 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑣𝑣 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑃𝑃

Hence,
𝑑𝑑𝐴𝐴 = −𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑆𝑆𝑑𝑑𝑇𝑇

Here, we can compare it with the total differential of A = 𝐴𝐴(𝑃𝑃,𝑇𝑇)
𝑑𝑑𝐴𝐴 = 𝜕𝜕𝐴𝐴

𝜕𝜕𝑉𝑉 𝑇𝑇
𝑑𝑑𝑃𝑃 + 𝜕𝜕𝐴𝐴

𝜕𝜕𝑇𝑇 𝑉𝑉
𝑑𝑑𝑇𝑇 ,   then

𝜕𝜕𝐴𝐴
𝜕𝜕𝑉𝑉 𝑇𝑇

= −𝑃𝑃 and 𝜕𝜕𝐴𝐴
𝜕𝜕𝑇𝑇 𝑉𝑉

= −𝑆𝑆
Since, the cross derivatives are equal as:

𝜕𝜕2𝐴𝐴
𝜕𝜕𝑇𝑇𝜕𝜕𝑉𝑉

= 𝜕𝜕2𝐴𝐴
𝜕𝜕𝑉𝑉𝜕𝜕𝑇𝑇

, then

As an example, a “Maxwell relation” for Helmholtz energy (A) is given here.

𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

=
𝜕𝜕𝑆𝑆
𝜕𝜕𝑃𝑃 𝑇𝑇



(Appendix) cross derivatives -

We consider a case of F for “F is a function of x and y, namely 𝐹𝐹 = 𝐹𝐹(𝑥𝑥,𝑦𝑦)”

𝜕𝜕2𝐹𝐹
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑦𝑦

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑥𝑥

= �
𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦

∆𝑥𝑥
−

𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦
∆𝑥𝑥

∆𝑦𝑦

= �
𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥 + ∆𝑥𝑥,𝑦𝑦

∆𝑦𝑦
−

𝐹𝐹 𝑥𝑥,𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥,𝑦𝑦
∆𝑦𝑦

∆𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑥𝑥

𝐹𝐹 𝑥𝑥, 𝑦𝑦 + ∆𝑦𝑦 − 𝐹𝐹 𝑥𝑥, 𝑦𝑦
∆𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦

=
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Helmholtz energy ($22.2)-

𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

=
𝜕𝜕𝑆𝑆
𝜕𝜕𝑃𝑃 𝑇𝑇

This kind of equation, which is obtained by the second 
cross partial derivatives of A (U, H, and G, as well) is 
called a Maxwell relation. 

Indeed, Maxwell relation give us a useful equations. 
For example, here, we assume a constant temperature process, then:

∆𝑆𝑆 = �
𝑉𝑉1

𝑉𝑉2 𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

𝑑𝑑𝑃𝑃 (constant T)

 If we know a P-V-T data, such as the equation of state, this is easily utilized to 
determine S.
 For an ideal gas, for example, 

∆𝑆𝑆 = �
𝑉𝑉1

𝑉𝑉2 𝜕𝜕
𝜕𝜕𝑇𝑇

𝑛𝑛𝑛𝑛𝑇𝑇
𝑃𝑃

𝑉𝑉

𝑑𝑑𝑃𝑃 = 𝑛𝑛𝑛𝑛�
𝑉𝑉1

𝑉𝑉2 𝑑𝑑𝑃𝑃
𝑃𝑃

= 𝑛𝑛𝑛𝑛 ln
𝑃𝑃2
𝑃𝑃1

(*constant T)
 If V1 is very large, a gas behaves as an ideal gas. So, we can evaluate ∆𝑆𝑆 in 

reference to Sideal-gas value. 



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Gibbs energy ($22.2)-

Here, we consider the Maxwell relation for Gibbs energy (G).

Differential equation of Gibbs energy (G = 𝑈𝑈 − 𝑇𝑇𝑆𝑆 + 𝑃𝑃𝑃𝑃 ) is:
𝑑𝑑𝐺𝐺 = 𝑑𝑑𝑈𝑈 − 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑆𝑆𝑑𝑑𝑇𝑇 + 𝑃𝑃𝑑𝑑𝑃𝑃 + 𝑃𝑃𝑑𝑑𝑃𝑃

Considering a process along a reversible path, the first and second laws are:
𝑑𝑑𝑈𝑈 = 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑣𝑣 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑃𝑃

Hence,
𝑑𝑑𝐺𝐺 = −𝑆𝑆𝑑𝑑𝑇𝑇 + 𝑃𝑃𝑑𝑑𝑃𝑃

Here, we can compare it with the total derivative of G = 𝐺𝐺(𝑇𝑇,𝑃𝑃)
𝑑𝑑𝐺𝐺 = 𝜕𝜕𝐺𝐺

𝜕𝜕𝑇𝑇 𝑃𝑃
𝑑𝑑𝑇𝑇 + 𝜕𝜕𝐺𝐺

𝜕𝜕𝑃𝑃 𝑇𝑇
𝑑𝑑𝑃𝑃 ,   then

𝜕𝜕𝐺𝐺
𝜕𝜕𝑇𝑇 𝑃𝑃

= −𝑆𝑆 and 𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃 𝑇𝑇

= 𝑃𝑃
Since, the cross derivatives are equal as:

𝜕𝜕2𝐺𝐺
𝜕𝜕𝑇𝑇𝜕𝜕𝑃𝑃

= 𝜕𝜕2𝐺𝐺
𝜕𝜕𝑃𝑃𝜕𝜕𝑇𝑇

, then

−
𝜕𝜕𝑆𝑆
𝜕𝜕𝑃𝑃 𝑇𝑇

=
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑃𝑃



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations ($22.2)-

 Likewise, the four principal thermodynamic energies (U, H, A, G), have natural 
independent variables and then Maxwell relations as follows.

 These differential expression were derived only according to the first & second laws 
and considering a reversible path.
 Even for non-equilibrium states and/or for irreversible processes, as far as 

thermodynamic quantities are definitely determined at around the concerned 
state, these relations are applicable because they are about state functions.

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



2.2.3. Maxwell relations and some useful formulas
- Maxwell relations for Gibbs energy ($22.2)-

The meaning of “natural independent variables” is given for U as example.

Considering a process along a reversible path, the first and second laws are:
𝑑𝑑𝑈𝑈 = 𝛿𝛿𝑞𝑞𝑟𝑟𝑟𝑟𝑣𝑣 + 𝛿𝛿𝑤𝑤𝑟𝑟𝑟𝑟𝑣𝑣 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑃𝑃

Here, the variables of 𝑈𝑈 are 𝑆𝑆 and 𝑃𝑃.

However, if we wish, we can use 𝑇𝑇 and 𝑃𝑃 as the variables of 𝑈𝑈, for example:

𝑑𝑑𝑈𝑈 = 𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇 𝑉𝑉

− 𝑃𝑃 𝑑𝑑𝑃𝑃 + 𝐶𝐶𝑉𝑉𝑑𝑑𝑇𝑇
In comparison, 

𝑑𝑑𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑆𝑆 − 𝑃𝑃𝑑𝑑𝑃𝑃
is apparently more simple. Thus we consider 𝑆𝑆 and 𝑃𝑃 are “natural independent 
variables” for 𝑈𝑈.



2.2.3. Maxwell relations and some useful formulas
- some useful formulas from Maxwell relations ($22.7)-

(1) A equation which plays a central role in chemical equilibria involving gas-
phase reactions.

Similarly, we can derive several useful equations.

𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃 𝑇𝑇

= 𝑃𝑃

∆�̅�𝐺 = 𝑛𝑛𝑇𝑇�
𝑃𝑃1

𝑃𝑃2 𝑑𝑑𝑃𝑃
𝑃𝑃

= 𝑛𝑛𝑇𝑇 ln
𝑃𝑃2
𝑃𝑃1

(constant T)∆𝐺𝐺 = �
𝑃𝑃1

𝑃𝑃2
𝑃𝑃𝑑𝑑𝑃𝑃then

For 1 mole of an ideal gas (constant T),

�̅�𝐺 = 𝐺𝐺𝐺 𝑇𝑇 + 𝑛𝑛𝑇𝑇 ln
𝑃𝑃

1 𝑏𝑏𝑏𝑏𝑏𝑏

Here, 𝐺𝐺𝐺 𝑇𝑇 is called the standard molar Gibbs energy. 
It is the Gibbs energy of 1 mole of the ideal gas at a pressure of 1 bar at T K, which 
is called “standard state”.

*1 bar = 1x105 Pa



2.2.3. Maxwell relations and some useful formulas
- some useful formulas from Maxwell relations ($22.7)--

(2) A equation (called Gibbs-Helmholtz equation) which is used to derive an 
equation for the temperature dependence of an equilibrium constant.

Similarly, we can derive several useful equations.

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑆𝑆

⁄𝜕𝜕𝐺𝐺 𝑇𝑇
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
𝐻𝐻
𝑇𝑇2

+
1
𝑇𝑇

𝜕𝜕𝐻𝐻
𝜕𝜕𝑇𝑇 𝑃𝑃

−
𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇 𝑃𝑃

then

By differentiating partially with respect to T keeping P fixed:

𝐺𝐺
𝑇𝑇

=
𝐻𝐻
𝑇𝑇
− 𝑆𝑆

As 𝐶𝐶𝑃𝑃 𝑇𝑇 = ⁄𝜕𝜕𝐻𝐻 𝜕𝜕𝑇𝑇 𝑃𝑃 = 𝑇𝑇 ⁄𝜕𝜕𝑆𝑆 𝜕𝜕𝑇𝑇 𝑃𝑃,
⁄𝜕𝜕𝐺𝐺 𝑇𝑇
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
𝐻𝐻
𝑇𝑇2

This equation can be directly applied to any process, in which case it is:

⁄𝜕𝜕∆𝐺𝐺 𝑇𝑇
𝜕𝜕𝑇𝑇 𝑃𝑃

= −
∆𝐻𝐻
𝑇𝑇2



Legendre transformation and application

Legendre transformation is the transformation from f(x) to g(p) as follows:

( ) ( ){ }* max
x

g p px f x= −

where x is taken so that {px-f(x)} is maximized. 
(*If the maximum does not exist, “max” is replaced with “sup”.)
The inverse transformation is given as

This corresponds to do the transformation twice. For a convex 
function,  f**(x) is equal to f(x). 

(Exercise) Do the Legendre transformation for f(x) = ax2, where a > 0. And 
then, do the inverse transformation.

( ) ( ){ }** min *
p

f x f p xp= − −



Legendre transformation and application

(Exercise) Do the Legendre transformation for f(x) = ax2, where a > 0. And 
then, do the inverse transformation.

( ) { }2

2 2 2

* max

max
2 4 4

x

x

g p px ax

p p pa x
a a a

= −

   = − − + =  
   

( ) ( ){ }* max
x

g p px f x= − ( ) ( ){ }** min *
p

f x g p xp= − −

( ) ( ){ }

( )22
2

2

** min *

2
min min

4 4

p

p p

f x g p xp

p axp xp ax
a a

ax

= − −

 −   = − − = − −   
    

=

( )

2

2

We minimize  here.
Then, 

px ax A
px A ax

A
g p A

− = −

+ =

= −

https://mathtrain.jp/legendrehenkan



Legendre transformation and application

For a function whose independent variables are x and y, namely                , if it is 
(total) differentiable,  

( ),x yφ

( ),

   where   ,    

y x

y x

x y dx dy udx vdy
x y

u v
x y

φ φφ

φ φ

 ∂ ∂ = + = +  ∂ ∂   

 ∂ ∂ ≡ ≡   ∂ ∂   
Now, we want to find an equation that regards u and v are independent variables. 
First, to convert the variable x→u, we define 𝜓𝜓 as

xuψ φ≡ − This is Legendre transformation

( ) ( ) ( )d d d xu udx vdy xdu udx xdu vdyψ φ= − = + − + = − +
then



Legendre transformation and application

( ),

   where   ,    

y x

y x

x y dx dy udx vdy
x y

u v
x y

φ φφ

φ φ

 ∂ ∂ = + = +  ∂ ∂   

 ∂ ∂ ≡ ≡   ∂ ∂   

Comparing this with                                                           gives us the following 
relations 

( ) ( ) ( )d d d xu udx vdy xdu udx xdu vdyψ φ= − = + − + = − +

y u

d du dy
u y
ψ ψψ

 ∂ ∂ = +   ∂ ∂   

, .
y u

x v
u y
ψ ψ ∂ ∂ − = =   ∂ ∂   

(Exercise) For               , convert the variable y→v,  ( ),x yφ



Legendre transformation and application

( ), ,    where   ,    
y yx x

x y dx dy udx vdy u v
x y x y
φ φ φ φφ

   ∂ ∂ ∂ ∂   = + = + ≡ ≡      ∂ ∂ ∂ ∂      

Comparing this with                                                           gives us the following 
relations 

( ) ( ) ( )d d d xu udx vdy xdu udx xdu vdyψ φ= − = + − + = − +

y u

d du dy
u y
ψ ψψ

 ∂ ∂ = +   ∂ ∂   

, .
y u

x v
u y
ψ ψ ∂ ∂ − = =   ∂ ∂   

(Exercise) For               , convert the variable y→v,  ( ),x yφ



Legendre transformation and application

( ), ,    where   ,    
y yx x

x y dx dy udx vdy u v
x y x y
φ φ φ φφ

   ∂ ∂ ∂ ∂   = + = + ≡ ≡      ∂ ∂ ∂ ∂      

Comparing this with                                                           gives us the following 
relations 

v x

d dx dv
x v
λ λλ ∂ ∂   = +   ∂ ∂   

, .
v x

u y
x v
λ λ∂ ∂   = − =   ∂ ∂   

To convert the variable y→v, we define as

yvλ φ≡ −

( ) ( ) ( )d d d yv udx vdy ydv vdy udx ydvλ φ= − = + − + = −



Legendre transformation and application

( ), ,    where   ,    
y yx x

x y dx dy udx vdy u v
x y x y
φ φ φ φφ

   ∂ ∂ ∂ ∂   = + = + ≡ ≡      ∂ ∂ ∂ ∂      

Comparing this with                                                           gives us the following 
relations v u

d du dv
u v
µ µµ ∂ ∂   = +   ∂ ∂   

, .
v u

x y
u v
µ µ∂ ∂   − = − =   ∂ ∂   

Likewise, to have an equation where u and v are independent variables, starting from 
𝜓𝜓 ≡ 𝜙𝜙 − 𝑥𝑥𝑥𝑥, whose independent variables are x and v, 

yvµ ψ≡ −
( ) ( ) ( )d d d yv xdu vdy ydv vdy xdu ydvµ ψ= − = − + − + = − −



Legendre transformation and application

( ), ,    where   ,    
y yx x

x y dx dy udx vdy u v
x y x y
φ φ φ φφ

   ∂ ∂ ∂ ∂   = + = + ≡ ≡      ∂ ∂ ∂ ∂      

In summary, 

http://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html

(Exercise) Please relate 𝜙𝜙, …, x, … with thermodynamic quantities, 
assuming 𝜙𝜙=H, x=S, 



Legendre transformation and application

( ), ,    where   ,    
y yx x

x y dx dy udx vdy u v
x y x y
φ φ φ φφ

   ∂ ∂ ∂ ∂   = + = + ≡ ≡      ∂ ∂ ∂ ∂      

In summary, 

http://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html

(Exercise) Please relate 𝜙𝜙, …, x, … with thermodynamic quantities, 
assuming 𝜙𝜙=H, x=S, 

𝜙𝜙=H, 𝜓𝜓=G, 𝜆𝜆=U, 𝜇𝜇=F,
x=S, y=P, u=T, v=V



Legendre transformation and application

( ), ,    where   ,    
y yx x

x y dx dy udx vdy u v
x y x y
φ φ φ φφ

   ∂ ∂ ∂ ∂   = + = + ≡ ≡      ∂ ∂ ∂ ∂      

In summary, 

http://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html

The relations in the last row become the Maxwell relations by 
using the fact “the cross derivatives are equal to each other”.



Contents of today

<Last class>
2.2.  Equilibrium theory: free energy

2.2.1.  Helmholtz energy
2.2.2.  Gibbs energy

<Today’s class>
2.2.  Equilibrium theory: free energy

2.2.2.  Gibbs energy
2.2.3.  Maxwell relations and some useful formula
2.2.4.  How to calculate thermodynamic quantities



2.2.4. How to calculate thermodynamic quantities
- standard state -

 We have a database of thermodynamic quantities. Because such quantities 
depend on conditions (temperature, pressure, etc), we use a specific condition, 
so-called “standard state”. 
 For extensive quantities, molar quantity (quantity per mole) is used.
 e.g. ̅𝑆𝑆𝐺 where the bar stands for molar quantity and 𝐺 for the standard state.

 The standard state for each phase is defined as follows:
 for a gas is the equivalent hypothetical ideal gas
 for a liquid is the pure liquid substance
 for a solid is the pure crystalline substance

at 1  bar at the temperature of interest.

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



2.2.4. How to calculate thermodynamic quantities
- entropy calculation and “hypothetical ideal gas”($22-6) -

Using a equation based on the Maxwell relation for 𝐺𝐺, we can calculate the entropy 
at the temperature of interest.

Δ𝑆𝑆 = �
𝑇𝑇1

𝑇𝑇2 𝐶𝐶𝑃𝑃 𝑇𝑇′ 𝑑𝑑𝑇𝑇′

𝑇𝑇′

(constant P)

The entropy change due to the 
temperature change of the 
substance is given as

*D.A. McQuarrie, J.D. Simon, “Physical 
Chemistry: A Molecular Approach", 
University Science Books (1997).



(Appendix) Phase diagram of nitrogen

https://commons.wikimedia.org/wiki/File:
Phase_diagram_of_nitrogen_(1975).png

https://www.researchgate.net/publication/3
15888614_Selected_aspects_of_manufact
uring_and_strength_evaluation_of_porous
_composites_based_on_numerical_simulat
ions/figures?lo=1
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