Physical Chemistry for Energy Engineering (15th: 2018/11/07)

Takuji Oda

Associate Professor, Department of Nuclear Engineering Seoul National University

*The class follows the text book: D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).

Course schedule (as of Nov. 5)

Deadline for appealing on exam-1 result: Nov. 12 Submission time of the homework-2: beginning of the class on Nov. 12.

	29-Oct	No lecture			
	31-Oct				
14	5-Nov	2. Phase equilibrium-1			
15	7-Nov	2. Phase equilibrium-2			
16	12-Nov	3. Chemical equilibrium-1			
17	14-Nov	Answers of homework-2			
18	19-Nov	Exam-02 (2 hour)			
19	21-Nov	3. Chemical equilibrium-2			
20	26-Nov	3. Chemical equilibrium-3			
21	28-Nov	3. Chemical equilibrium-4			
22	3-Dec	3. Chemical kinetics-1			
23	5-Dec	3. Chemical kinetics-2			
24	10-Dec	3. Chemical kinetics-3			
25	12-Dec	Answers of homework-3			
26	17-Dec	Exam-03 (2 hour)			

Modification in Homework-02

In HW02-07, the link to thermodynamic data is dead.

http://courses.chem.indiana.edu/c360/documents/thermodynamicdata.pdf Instead, please use the file I uploaded on eTL.

In addition, you cannot find the standard entropy nor the standard Gibbs energy of formation. So, please <u>use 212 [J/K/mol] as the standard molar entropy of glucose</u>.

		Crystal			
Molecular formula Name		∆ _f H° kJ/mol	∆ _f G° kJ/mol	<i>S</i> ° J/mol K	С _р J/mol K
$C_6 H_{12} O_6$	β-D-Fructose	-1265.6			
C ₆ H ₁₂ O ₆	D-Galactose	-1286.3			
C ₆ H ₁₂ O ₆	α-D-Glucose	-1273.3			
C ₆ H ₁₂ O ₆	D-Mannose	-1263.0			
C ₆ H ₁₂ O ₆	L-Sorbose	-1271.5			
0 1 0	Thiopano				

Contents of today

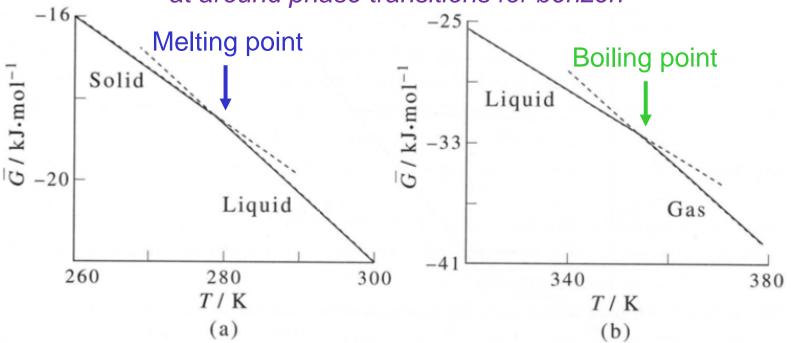
<Last class>

2.3. Phase equilibrium-1: a typical case (1 component)

<Today's class>

2.3. Phase equilibrium-1: a typical case (1 component)2.3.1. Chemical potential and phase rule2.3.2. Freezing mechanism

Comparison of the molar Gibbs energies (\overline{G}) as a function of temperature at around phase transitions for benzen



- ✓ The molar Gibbs energy is a continuous function, but there is a discontinuity in its first derivative (by temperature) at phase transitions.
- The dotted line is theoretical: in experiment/reality, that state are unstable. The equilibrium phase the appear in experiment/reality has a phase of the lowest molar Gibbs energy.

2.3. Phase equilibrium-1: a typical case (1 component) - \$22-4: The enthalpy of an ideal gas is independent of pressure-

Maxwell relation for Gibbs energy (G)

Differential equation of Gibbs energy (G = U - TS + PV) is: dG = dU - TdS - SdT + PdV + VdP

Considering a process along a reversible path, the first law is:

$$dU = \delta q_{rev} + \delta w_{rev} = TdS - PdV$$

Hence,

dG = -SdT + VdP

Here, we can compare it with the total derivative of G = G(T, P)

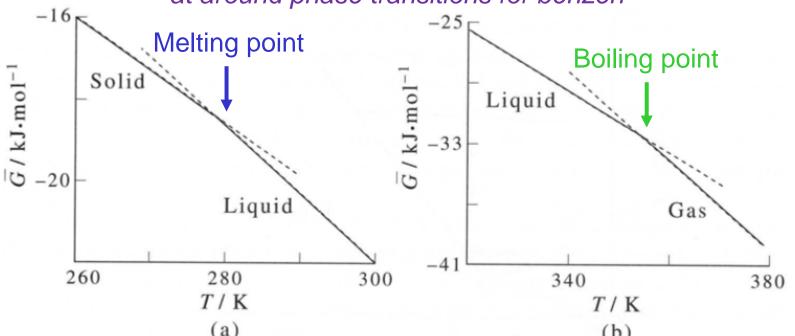
$$dG = \left(\frac{\partial G}{\partial T}\right)_P dT + \left(\frac{\partial G}{\partial P}\right)_T dP \text{ , then}$$
$$\left(\frac{\partial G}{\partial T}\right)_P = -S \text{ and } \left(\frac{\partial G}{\partial P}\right)_T = V$$

Since, the cross derivatives are equal as:

$$\begin{pmatrix} \frac{\partial^2 G}{\partial T \partial P} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 G}{\partial P \partial T} \end{pmatrix}$$
, then
$$- \begin{pmatrix} \frac{\partial S}{\partial P} \end{pmatrix}_T = \begin{pmatrix} \frac{\partial V}{\partial T} \end{pmatrix}_P$$

This relation shows the enthalpy of an ideal gas is independent of pressure.

Comparison of the molar Gibbs energies (\overline{G}) as a function of temperature at around phase transitions for benzen



✓ The left figure is $\overline{G} - P$ graph around solid-liquid phase transition (melting, fusion)

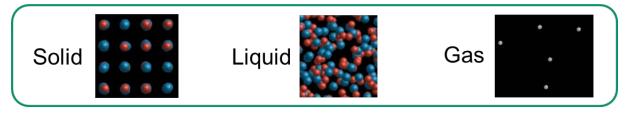
- \blacktriangleright $(\partial \bar{G}/\partial T)_P = -\bar{S}$, which corresponds to the slope in figures.
- > As liquid is more disordered than solid, $\overline{S^l} > \overline{S^s}$.
- ▶ Thus, as $\overline{G} = \overline{H} T\overline{S}$, $\overline{G^l} < \overline{G^s}$ must be achieved at high temperatures.
- The same thing is realized in liquid-gas phase transition (boiling), as given in the right figure.

2.3. Phase equilibrium-1: a typical case (1 component)

- \$23-2: The Gibbs energy of a substance has a close connection to its phase diagram -

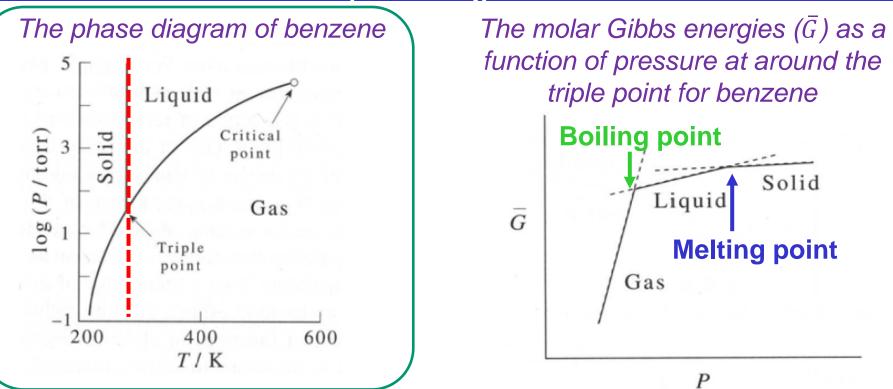
- \checkmark As we have learned, the (molar) Gibbs energy indicates which state (phase) appears at equilibrium under constant-T constant-P condition.
 - ✓ Be careful that a smaller Gibbs energy means more stable.
- ✓ As G = H TS ($\overline{G} = \overline{H} T\overline{S}$), the enthalpy term (H) plays a dominant role at low temperatures, while the entropy term (-TS) at high temperatures.
- ✓ In comparison of gas/liquid/solid phases, as we have learned:

 $\overline{S^g} \gg \overline{S^l} > \overline{S^s} \ (\geq 0)$ (due to disorder) $\Delta_f H^g > \Delta_f H^l > \Delta_f H^s$ (due to bonding nature)



Hence, comparing the Gibbs energies, we can say the following points in general:

- At low temperatures, a solid phase is always favored due to its low enthalpy. So, every substance becomes solid at sufficiently low temperatures.
- At high temperatures, a gaseous phase is always favored due to its high entropy. So, every substance becomes gas at sufficiently high temperatures.
- At intermediate temperatures, a liquid phase is often (not always) favored as a balance between enthalpy and entropy.

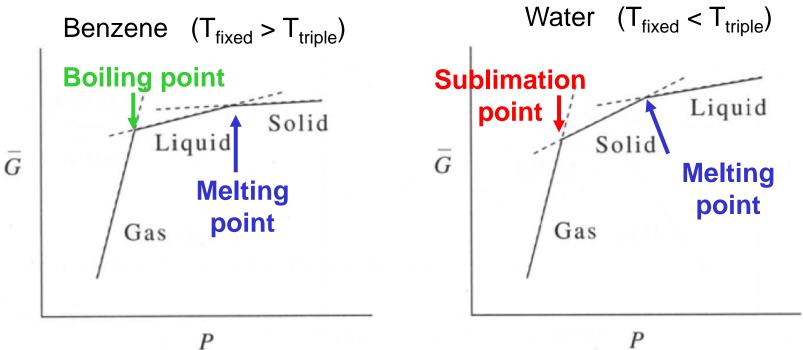


Because the solid-liquid coexistence curve has a positive slope for most substances including benzene, to observe both gas-liquid and liquid-solid intersects in $\overline{G} - P$ graph, the temperature should be fixed at one slightly higher than the tripe point temperature.

Otherwise, only a gas-solid intersect appears (no stable liquid phase)

✓ For water, where the slope of solid-liquid coexistence curve is negative, we can see solid-liquid intersect at a high pressure.

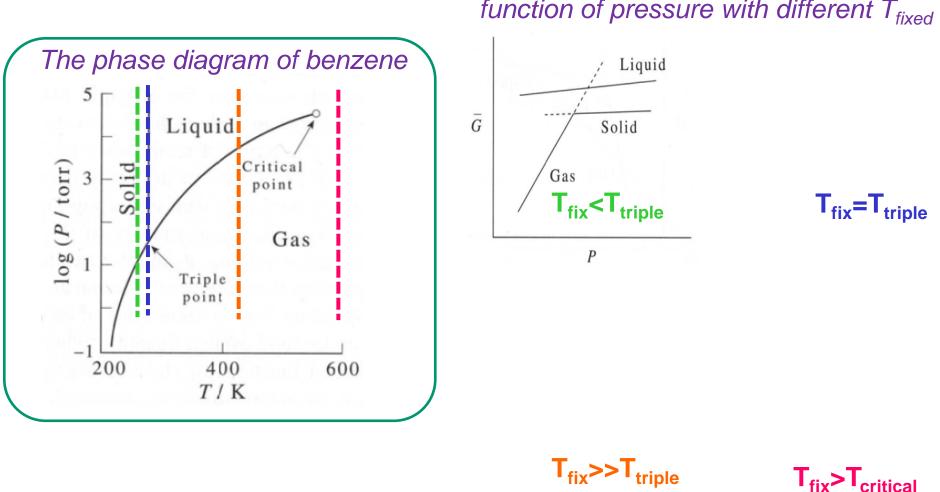
The molar Gibbs energy (\overline{G}) as a function of pressure at around the triple point



✓ In G - P graph:

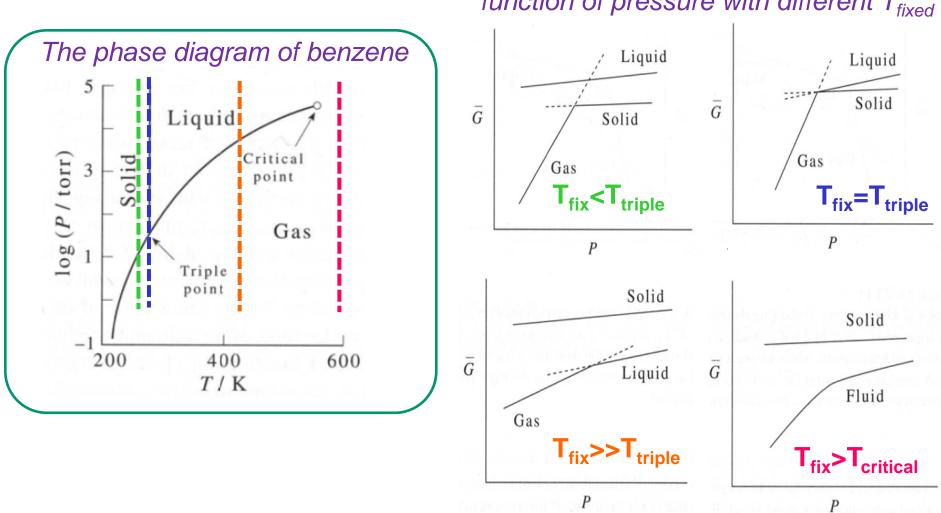
 \blacktriangleright $(\partial \bar{G}/\partial P)_T = \bar{V} > 0$. Thus the slope in this graph must be positive.

- ➢ In most substances including benzene, $V^{\overline{g}} \gg V^{\overline{l}} > V^{\overline{s}}$. Hence the slopes are given as in the left figure.
- ▶ In some substances like water, however, $\overline{V^g} \gg \overline{V^s} > \overline{V^l}$. Thus, the slopes are given as in the right figure.



The molar Gibbs energies (\overline{G}) as a function of pressure with different T_{fixed}

*D.A. McQuarrie, J.D. Simon, "Physical Chemistry: A Molecular Approach", University Science Books (1997).



The molar Gibbs energies (\overline{G}) as a function of pressure with different T_{fixed}

We consider a system consisting of two phases of a pure substance (1-component) in equilibrium each other. (liquid and gas, for example here)

The Gibbs energy of this system is given by

$$G = G^l + G^g$$

where G^{l} and G^{g} are the Gibbs energies of the liquid and the gas phase.

Now, suppose *dn* mole are transferred from the liquid to the solid phase, where T and P are kept constant. The infinitesimal change in Gibbs energy for this process is:

$$dG = \left(\frac{\partial G^g}{\partial n^g}\right)_{P,T} dn^g + \left(\frac{\partial G^l}{\partial n^l}\right)_{P,T} dn^g$$

As $dn^l = -dn^g$, then

$$dG = \left[\left(\frac{\partial G^g}{\partial n^g} \right)_{P,T} - \left(\frac{\partial G^l}{\partial n^l} \right)_{P,T} \right] dn^g$$

Here, we define *chemical potentials*, $\mu^g = \left(\frac{\partial G^g}{\partial n^g}\right)_{P,T}$ and $\mu^l = \left(\frac{\partial G^l}{\partial n^l}\right)_{P,T}$, then $dG = \left[\mu^g - \mu^l\right] dn^g$ (constant T and P)

We consider a system consisting of two phases of a pure substance (1-component) in equilibrium each other. (liquid and gas, for example here)

 $dG = [\mu^g - \mu^l] dn^g \quad (\text{constant T and P})$ where *chemical potentials are* $\mu^g = \left(\frac{\partial G^g}{\partial n^g}\right)_{P,T}$ and $\mu^l = \left(\frac{\partial G^l}{\partial n^l}\right)_{P,T}$.

- ✓ If the two phases are in equilibrium with each other, then dG = 0.
- ✓ And because we suppose some amount of the liquid phase is transferred to the gas phase (dn^g) here, to make dG = 0 in this condition, $\mu^g = \mu^l$ is needed.
 - ➤ If $\mu^g < \mu^l$, $[\mu^g \mu^l] < 0$. Thus, the process of $dn^g > 0$ (transfer from the liquid phase to the gas phase) spontaneously takes place as dG < 0 is achieved by the transfer.
 - \succ Likewise, if $\mu^g > \mu^l$, $dn^g < 0$.
 - Hence, in general, the mass transfer occurs from the phase with higher chemical potential to the phase with lower chemical potential.

 \checkmark The chemical potential is defined as:

 $\mu = \left(\frac{\partial G}{\partial n}\right)_{P,T}$

✓ Because G is proportional to the size/amount of a system $G \propto n$, namely an extensive thermodynamic function, we can express it as:

 $G(n,T,P) = n\mu(T,P)$

- Apparently, $\mu(T, P)$ corresponds to molar Gibbs energy as $\mu(T, P) = G(n, T, P)/n = \overline{G}(T, P)$
 - ✓ Indeed, this equation is consistent with the definition of chemical potential:

$$\mu = \left(\frac{\partial G}{\partial n}\right)_{P,T} = \left(\frac{\partial [n\mu(T,P)]}{\partial n}\right)_{P,T} = \mu(T,P)$$

which means $\mu(T, P)$, the chemical potential, is the same quantity as the molar Gibbs energy and it is an intensive quantity.

(Appendix) more about chemical potential

The following definition is for single component at const.-T const.-P condition:

$$\mu(T,P) = \left(\frac{\partial G}{\partial n}\right)_{T,P} = \bar{G}(T,P)$$

 \checkmark If the condition becomes const.-T const.-V:

$$\mu(T,V) = \left(\frac{\partial A}{\partial n}\right)_{T,V} = \bar{A}(T,V)$$

 $\checkmark\,$ If the condition becomes const.-U and const.-V:

$$\mu(U,V) = -T\left(\frac{\partial S}{\partial n}\right)_{U,V} = -T\bar{S}(U,V)$$

✓ For multiple components and const.-T const.-P condition,

$$\mu_i(T, P, \boldsymbol{n}) = \left(\frac{\partial G}{\partial n_i}\right)_{T, P, n_{j \neq i}}$$
$$G(T, P, \boldsymbol{n}) = \sum_i n_i \,\mu_i(T, P, \boldsymbol{n})$$

We consider two phases (α and β) are in equilibrium each other.

As they are in equilibrium,

 $\mu^{\alpha}(T,P) = \mu^{\beta}(T,P)$ Now take the differentials of both sides $d\mu^{\alpha}(T,P) = d\mu^{\beta}(T,P)$ $\left(\frac{\partial\mu^{\alpha}}{\partial P}\right)_{T} dP + \left(\frac{\partial\mu^{\alpha}}{\partial T}\right)_{P} dT = \left(\frac{\partial\mu^{\beta}}{\partial P}\right)_{T} dP + \left(\frac{\partial\mu^{\beta}}{\partial T}\right)_{P} dT$

Since μ is simply the molar Gibbs energy for a single substance, utilizing $\left(\frac{\partial G}{\partial p}\right)_{m} =$

 $V \text{ and } \left(\frac{\partial G}{\partial T}\right)_{P} = -S \quad (\text{*these were previously derived along Maxwell relations})$ $\left(\frac{\partial \mu}{\partial P}\right)_{T} = \left(\frac{\partial \bar{G}}{\partial P}\right)_{T} = \bar{V} \quad \text{and} \quad \left(\frac{\partial \mu}{\partial T}\right)_{P} = \left(\frac{\partial \bar{G}}{\partial T}\right)_{P} = -\bar{S}$ where \bar{V} and \bar{S} are the molar volume and the molar entropy. Then, $\bar{V}^{\alpha} dP - \bar{S}^{\alpha} dT = \bar{V}^{\beta} dP - \bar{S}^{\beta} dT$ $\frac{dP}{dT} = \frac{\bar{S}^{\beta} - \bar{S}^{\alpha}}{\bar{V}^{\beta} - \bar{V}^{\alpha}}$

We consider two phases (α and β) are in equilibrium each other.

$$\overline{V}^{\alpha}dP - \overline{S}^{\alpha}dT = \overline{V}^{\beta}dP - \overline{S}^{\beta}d, \quad \frac{dP}{dT} = \frac{\overline{S}^{\beta} - \overline{S}^{\alpha}}{\overline{V}^{\beta} - \overline{V}^{\alpha}}$$

We apply this equation to a phase transition (e.g. melting),

$$\frac{dP_{trs}}{dT_{trs}} = \frac{\bar{S}^{\beta} - \bar{S}^{\alpha}}{\bar{V}^{\beta} - \bar{V}^{\alpha}} = \frac{\Delta_{trs}\bar{S}}{\Delta_{trs}\bar{V}}$$

As the phase transition occurs at a certain (fixed) temperature and pressure, we have the following relation (please check the material on #13)

$$\Delta_{trs}\bar{S} = \frac{\Delta_{trs}\bar{H}}{T_{trs}}$$

Then, using this relation, we achive

$$\frac{dP_{trs}}{dT_{trs}} = \frac{\bar{S}^{\beta} - \bar{S}^{\alpha}}{\bar{V}^{\beta} - \bar{V}^{\alpha}} = \frac{\Delta_{trs}\bar{S}}{\Delta_{trs}\bar{V}} = \frac{\Delta_{trs}\bar{H}/T_{trs}}{\Delta_{trs}\bar{V}} = \frac{\Delta_{trs}\bar{H}}{T_{trs}\Delta_{trs}\bar{V}}$$

The equation $\frac{\Delta t_{rs}}{dT_{trs}} = \frac{\Delta t_{rs} T}{T_{trs} \Delta_{trs} \overline{V}}$ is called the *Clapeyron equation*, which relates "the slope of the two-phase boundary line in a phase diagram with the values of $\Delta_{trs} \overline{H}$ and $\Delta_{trs} \overline{V}$ for a transition between these two phases".

2.3.1. Chemical potential and phase rule - \$23-3: The chemical potentials of a pure substance in two phases in equilibrium are equal -

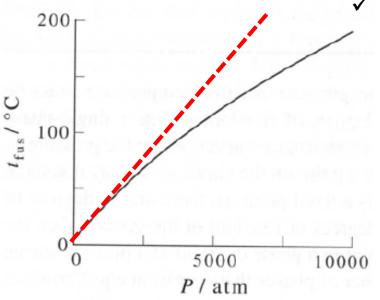
Exampe-1) Solid-liquid coexistence curve at around 1 atm for Benzene

- ✓ $\Delta_{fus}\overline{H}$ = 9.95 kJ mol⁻¹ and $\Delta_{fus}\overline{V}$ = 10.3 cm³ mol⁻¹ at the normal melting point (278.7 K).
- ✓ Thus, dP/dT at the normal melting point of benzene is:

 $\frac{dP}{dT} = \frac{\Delta_{trs}\overline{H}}{T\Delta_{trs}\overline{V}} = \frac{9.95 \ kJ \ mol^{-1}}{(278.7 \ K)(10.3 \ cm^3 \ mol^{-1})} = 34.2 \ atm \ K^{-1}$

Here, by taking the reciprocal of this result:

 $\frac{dT}{dP} = 0.0292 \ K \ atm^{-1}$



Using the above result (0.0292 K atm⁻¹) and assuming $\Delta_{fus}\overline{H}$ and $\Delta_{fus}\overline{V}$ are independent of pressure, we predict the melting point as:

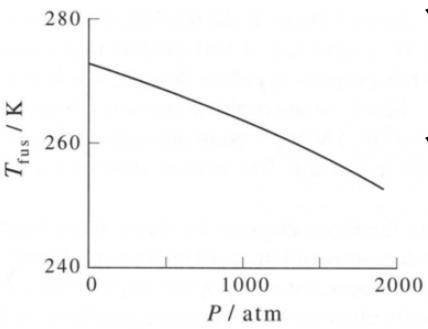
- > 308 K at 1000 atom (experimental value is 306 K)
- 570 K at 10000 atom (exp. value ~ 460 K)
 *as clearly seen in the left figure, Δ_{fus} H
 and Δ_{fus} V
 are not independent of pressure at high-pressure region

2.3.1. Chemical potential and phase rule - \$23-3: The chemical potentials of a pure substance in two phases in equilibrium are equal -

Exampe-2) Solid-liquid coexistence curve at around 1 atm for water

- ✓ $\Delta_{fus}\overline{H}$ = 6.01 kJ mol⁻¹ and $\Delta_{fus}\overline{V}$ = -1.63 cm³ mol⁻¹ at the normal melting point (273.15 K).
- ✓ Thus, dP/dT at the normal melting point of water is:

 $\frac{dT}{dP} = \frac{T\Delta_{trs}\overline{V}}{\Delta_{trs}\overline{H}} = \frac{(273.15 \, K)(-1.63 \, cm^3 \, mol^{-1})}{6.01 \, kJ \, mol^{-1}} = -0.00751 \, K \, atm^{-1}$



 ✓ As already mentioned, the melting point of ice decreases with increasing pressure. Hence, the solid-liquid coexistence curve in P-T phase diagram has a negative slope.
 ✓ This clearly comes from the fact that Δ_{fus} V̄ < 0 (the molar volume is larger in solid than that in liquid at around melting point, 1atm)