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Course schedule (as of Nov. 5)

29-Oct No lecture
31-Oct

14 5-Nov 2. Phase equilibrium-1
15 7-Nov 2. Phase equilibrium-2
16 12-Nov 3. Chemical equilibrium-1
17 14-Nov Answers of homework-2
18 19-Nov Exam-02 (2 hour)
19 21-Nov 3. Chemical equilibrium-2
20 26-Nov 3. Chemical equilibrium-3
21 28-Nov 3. Chemical equilibrium-4
22 3-Dec 3. Chemical kinetics-1
23 5-Dec 3. Chemical kinetics-2
24 10-Dec 3. Chemical kinetics-3
25 12-Dec Answers of homework-3
26 17-Dec Exam-03 (2 hour)

Deadline for appealing on exam-1 result: Nov. 12
Submission time of the homework-2: beginning of the class on Nov. 12.



Contents of today

<Last class>
2.3.  Phase equilibrium-1: a typical case (1 component)

2.3.1. Chemical potential and phase rule

<Today’s class>
2.3.  Phase equilibrium-1: a typical case (1 component)

2.3.1. Chemical potential and phase rule
2.3.2. Freezing mechanism

3.1.  Chemical equilibrium for gases



(Review) 2.3.  Phase equilibrium-1: a typical case (1 component)
- $23-2: The Gibbs energy of a substance has a close connection to its phase diagram -

 As we have learned, the (molar) Gibbs energy indicates which state (phase) 
appears at equilibrium under constant-T constant-P condition. 
 Be careful that a smaller Gibbs energy means more stable.

 As 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇 (�̅�𝐺 = �𝐻𝐻 − 𝑇𝑇 ̅𝑇𝑇), the enthalpy term (𝐻𝐻) plays a dominant role at 
low temperatures, while the entropy term (−𝑇𝑇𝑇𝑇) at high temperatures.

 In comparison of gas/liquid/solid phases, as we have learned: 
𝑇𝑇𝑔𝑔 ≫ �𝑇𝑇𝑙𝑙 > 𝑇𝑇𝑠𝑠 ≥ 0 (due to disorder)
∆𝑓𝑓𝐻𝐻𝑔𝑔 > ∆𝑓𝑓 𝐻𝐻𝑙𝑙 > ∆𝑓𝑓𝐻𝐻𝑠𝑠 (due to bonding nature)


𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃

= −𝑇𝑇 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃 𝜕𝜕

= 𝑉𝑉



(Review) 2.3.  Phase equilibrium-1: a typical case (1 component)
- $23-3: The chemical potentials of a pure substance in two phases in 

equilibrium are equal -

𝑑𝑑𝐺𝐺 = 𝜇𝜇𝑔𝑔 − 𝜇𝜇𝑙𝑙 𝑑𝑑𝑑𝑑𝑔𝑔 (constant T and P)

where chemical potentials are  𝜇𝜇𝑔𝑔 = 𝜕𝜕𝜕𝜕𝑔𝑔

𝜕𝜕𝑛𝑛𝑔𝑔 𝑃𝑃,𝜕𝜕
and 𝜇𝜇𝑙𝑙 = 𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝑛𝑛𝑙𝑙 𝑃𝑃,𝜕𝜕
.

 If the two phases are in equilibrium with each other, then 𝑑𝑑𝐺𝐺 = 0.
 And because we suppose some amount of the liquid phase is transferred to 

the gas phase (𝑑𝑑𝑑𝑑𝑔𝑔) here, to make 𝑑𝑑𝐺𝐺 = 0 in this condition, 𝜇𝜇𝑔𝑔 = 𝜇𝜇𝑙𝑙 is 
needed.
 If 𝜇𝜇𝑔𝑔 < 𝜇𝜇𝑙𝑙, [𝜇𝜇𝑔𝑔 − 𝜇𝜇𝑙𝑙] < 0. Thus, the process of 𝑑𝑑𝑑𝑑𝑔𝑔 > 0 (transfer from 

the liquid phase to the gas phase) spontaneously takes place as 𝑑𝑑𝐺𝐺 < 0 is 
achieved by the transfer.

 Likewise, if 𝜇𝜇𝑔𝑔 > 𝜇𝜇𝑙𝑙, 𝑑𝑑𝑑𝑑𝑔𝑔 < 0.
 Hence, in general, the mass transfer occurs from the phase with higher 

chemical potential to the phase with lower chemical potential. 

We consider a system consisting of two phases of a pure substance 
(1-component) in equilibrium each other. (liquid and gas, for example here)



2.3.1. Chemical potential and phase rule
- theoretical background of Gibbs’ phase rule -

<(Gibbs’) phase rule> The degree of freedom (of intensive properties) 𝑓𝑓 is 
described as: 𝑓𝑓 = 𝑐𝑐 − 𝑝𝑝 + 2 ,  where 𝑐𝑐 is the number of components, 𝑝𝑝 is the 
number of phase that coexist at equilibrium at that point.

 If 1 component and 1 phase, 𝑓𝑓 = 1 − 1 + 2 = 2. It means we need to set 2 
thermodynamic quantities (intensive, such as T and P) to specify the state.

 If 1 component and 2 phases (e.g. gas and liquid for water), 𝑓𝑓 = 1 − 2 +
2 = 1. The reduction of the freedom is due to an additional condition in 
chemical potential: 𝜇𝜇𝑔𝑔 = 𝜇𝜇𝑙𝑙.

𝑑𝑑𝐺𝐺 = 𝜇𝜇𝑔𝑔 − 𝜇𝜇𝑙𝑙 𝑑𝑑𝑑𝑑𝑔𝑔 (constant T and P)

where chemical potentials are  𝜇𝜇𝑔𝑔 = 𝜕𝜕𝜕𝜕𝑔𝑔

𝜕𝜕𝑛𝑛𝑔𝑔 𝑃𝑃,𝜕𝜕
and 𝜇𝜇𝑙𝑙 = 𝜕𝜕𝜕𝜕𝑙𝑙

𝜕𝜕𝑛𝑛𝑙𝑙 𝑃𝑃,𝜕𝜕
.

At an equilibrium, 𝜇𝜇𝑔𝑔 = 𝜇𝜇𝑙𝑙 is needed to achieve 𝑑𝑑𝐺𝐺 = 0.

We consider a system consisting of two phases of a pure substance 
(1-component) in equilibrium each other. (liquid and gas, for example here)

*Because the chemical potential is molar Gibbs energy at const.-P const.-T 
condition, “𝐺𝐺 = 𝐺𝐺(𝑑𝑑,𝑃𝑃,𝑇𝑇)” & “𝜇𝜇 = 𝜕𝜕

𝑛𝑛
= 𝜇𝜇(𝑃𝑃,𝑇𝑇)“, it is an intensive quantity, 

though Gibbs energy is an extensive quantity.



2.3.1. Chemical potential and phase rule
- theoretical background of Gibbs’ phase rule -

<(Gibbs’) phase rule> The degree of freedom (of intensive properties) 𝑓𝑓 is described 
as: 𝑓𝑓 = 𝑐𝑐 − 𝑝𝑝 + 2 ,  where 𝑐𝑐 is the number of components, 𝑝𝑝 is the number of phase 
that coexist at equilibrium at that point.
 If 2 components and 1 phase, 𝑓𝑓 = 2 − 1 + 2 = 3. It means we need to set 3 

thermodynamic quantities (e.g. T, P and molar fraction) to specify the state.
 Normally to determine a state, we need to fix 3 quantities: for example, 

𝑑𝑑,𝑇𝑇,𝑃𝑃.
 If 2 components exist, we need to specify the amount of each specie.  Then, 

not “𝑑𝑑” (= 𝑑𝑑1 + 𝑑𝑑2), but “𝑑𝑑1 and 𝑑𝑑2” may be needed.
 However, the phase equilibrium between multiple phases are governed by 

chemical potential, not by Gibbs energy. And chemical potential does not 
depend on the amount (in mole), as it is an intensive quantity.

 Hence, not “𝑑𝑑1 and 𝑑𝑑2”, but their relation is enough for evaluating chemical 
potential. Their relation is given by molar fraction.
 𝑥𝑥1 = 𝑛𝑛1

𝑛𝑛1+𝑛𝑛2
and 𝑥𝑥2 = 𝑛𝑛2

𝑛𝑛1+𝑛𝑛2
= 1 − 𝑥𝑥1. Then only 1 variable “𝑥𝑥1”, is 

independent. 
 As a result, “𝑓𝑓 = 3” (not “𝑓𝑓 = 4”) is proved as the degree of freedom to 

specify the state of “2-components and 1-phase system”. Note that all of 
them are intensive properties.



2.3.1. Chemical potential and phase rule
- theoretical background of Gibbs’ phase rule -

<(Gibbs’) phase rule> The degree of freedom (of intensive properties) 𝑓𝑓 is described 
as: 𝑓𝑓 = 𝑐𝑐 − 𝑝𝑝 + 2 ,  where 𝑐𝑐 is the number of components, 𝑝𝑝 is the number of phase 
that coexist at equilibrium at that point.

More clearly written, it becomes: 𝑓𝑓 = 2 + 𝑐𝑐 − 1 𝑝𝑝 − 𝑝𝑝 − 1 𝑐𝑐 = 𝑐𝑐 − 𝑝𝑝 + 2

(1) (2) (3)
 (1) the equilibrium of multiple phase is determined by chemical potential (molar 

Gibbs energy for const.-P const.-T condition). And as chemical potential is 
intensive quantity and expressed as 𝜇𝜇 = 𝜇𝜇(𝑃𝑃,𝑇𝑇), 2 quantities are enough to 
determine it. (*If extensive, 3 quantities are needed, e.g. 𝑑𝑑 in addition) 

 (2) if multiple component, we need to know how many amount is for each 
component for each phase. However, again, as the chemical potential is intensive, 
we do not need to know the absolute amount: compositions (specified by “molar 
fraction”) are enough. The number of independent molar fractions is 𝑐𝑐 − 1 for 
each phase, then 𝑐𝑐 − 1 𝑝𝑝 for all: 
 if 𝑐𝑐 = 1, it becomes 0 for each phase, because the molar fraction is always 

𝑥𝑥1 = 1.
 If 𝑐𝑐 = 2, it becomes 1 for each phase, because 𝑥𝑥1 = 𝑛𝑛1

𝑛𝑛1+𝑛𝑛2
& 𝑥𝑥2 = 𝑛𝑛2

𝑛𝑛1+𝑛𝑛2
=

1 − 𝑥𝑥1. If 2 phases, we need another 𝑥𝑥′1 for the 2nd phase. 



2.3.1. Chemical potential and phase rule
- theoretical background of Gibbs’ phase rule -

<(Gibbs’) phase rule> The degree of freedom (of intensive properties) 𝑓𝑓 is described 
as: 𝑓𝑓 = 𝑐𝑐 − 𝑝𝑝 + 2 ,  where 𝑐𝑐 is the number of components, 𝑝𝑝 is the number of phase 
that coexist at equilibrium at that point.

More clearly written, it becomes: 𝑓𝑓 = 2 + 𝑐𝑐 − 1 𝑝𝑝 − 𝑝𝑝 − 1 𝑐𝑐 = 𝑐𝑐 − 𝑝𝑝 + 2
(1) (2) (3)

 (3) This is due to the number of constraints in chemical potential for 
equilibrium states. The number of constraints is 𝑝𝑝 − 1 for each 
component, then 𝑝𝑝 − 1 𝑐𝑐 for all: 
 If 2 phases coexist (𝑝𝑝 = 2) for 1-component system (𝑐𝑐 = 1), 

𝑝𝑝 − 1 𝑐𝑐 becomes 1, because 𝜇𝜇1 = 𝜇𝜇2.
 If 3 phases coexist (𝑝𝑝 = 3) for 1-component system (𝑐𝑐 = 1), 

𝑝𝑝 − 1 𝑐𝑐 becomes 2, because 𝜇𝜇1 = 𝜇𝜇2 = 𝜇𝜇3.
 If 3 phases coexist (𝑝𝑝 = 3) for 2-component system (𝑐𝑐 = 2), 

𝑝𝑝 − 1 𝑐𝑐 becomes 4, because 𝜇𝜇1 = 𝜇𝜇2 = 𝜇𝜇3 for 1 component 
and 𝜇𝜇′1 = 𝜇𝜇′2 = 𝜇𝜇′3 for another component.



2.3.1. Chemical potential and phase rule
- theoretical background of Gibbs’ phase rule -

<(Gibbs’) phase rule> The degree of freedom (of intensive properties) 𝑓𝑓 is described 
as: 𝑓𝑓 = 𝑐𝑐 − 𝑝𝑝 + 2 ,  where 𝑐𝑐 is the number of components, 𝑝𝑝 is the number of phase 
that coexist at equilibrium at that point.

The phase diagram 
of benzene 

(P is in logarithm)

(1) If we look at the region of liquid phase, the phase 
rule indicates f =2 as  c = 1 and p =1. This is 
reasonable because, for example, even if we set T 
= 400 K, the pressure is not fully determined: 
there still is a degree of freedom for P. 

(2) If we look at the liquid-gas coexistence curve, the 
phase rule indicates f =1 as  c = 1 and p =2.  This is 
reasonable because, for example, if we set T = 
400 K, the pressure is fully determined: thus, 
there is no degree of freedom for P.

(3) If we look at the triple point, f =0 as  c = 1 and p
=2. This is reasonable because the pressure and 
temperature are unique: thus, there is no degree 
of freedom for both T and P.

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



Liquid

2.3.2. Freezing mechanism
- realistic phenomena in the beginning of freezing process-

 In the beginning of freezing process, some small solids are formed in liquid 
phase.

 When a solid phase is partly formed in liquid phase, boundaries between solid 
and liquid regions emerge. 

 Such boundaries have an interface energy (which is normally >0), and thus the 
total energy (internal energy) of the system is increased. Hence, freezing process 
contain 2 phenomena to change the internal energy (and free energy).

 [Interface energy] To increase the energy, which means the formation of 
interface due to the formation of  solid is not energetically favorable. 

 [Energy by phase transition from liquid to solid] To increase or decrease 
the energy, according to the temperature. 

Liquid

S

SS



2.3.2. Freezing mechanism
- realistic phenomena in the beginning of freezing process-

 Here, we consider that a spherical solid region is formed in the liquid. Then, we 
assume that “per-volume Gibbs energy gain” due to the formation of thesolid
phase is ∆𝐺𝐺𝑣𝑣 (defined as a gain, not as a difference), then: 

∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 = 4
3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣

 the per-volume Gibbs energy gain is almost equal to per-mole Gibbs energy 
gain (chemical potential when constant P,V), because the volumes of liquid 
and solid are comparable each other. 

∆𝐺𝐺𝑣𝑣~𝛼𝛼 �̅�𝐺𝑠𝑠 − �̅�𝐺𝑙𝑙
where 𝛼𝛼 [mol/m3] is a constant proportional to the density [kg/m3].

 Below the melting point, ∆𝐺𝐺𝑣𝑣 < 0 (energy decrease by transition to solid)
 In addition, the Gibbs energy change due to the formation of solid-liquid interface 

is: ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝 = 4𝜋𝜋𝑟𝑟2𝛾𝛾
where we assume that per-area interface energy is 𝛾𝛾 (always 𝛾𝛾 > 0).

 Accordingly, the Gibbs energy change in the system is:

LiquidS

SS

∆𝐺𝐺 = ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝

=
4
3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾



2.3.2. Freezing mechanism 
- realistic phenomena in the beginning of freezing process-

∆𝐺𝐺 = ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝 = 4
3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾

 Always 𝛾𝛾 > 0 thus  ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝 > 0.
 If above the melting point (T > Tm), ∆𝐺𝐺𝑣𝑣 > 0 and ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 >

0. Thus, ∆𝐺𝐺 > 0 is always achieved, 
 If below the melting point (T <Tm), ∆𝐺𝐺𝑣𝑣 < 0 then ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 <

0. Thus, ∆𝐺𝐺 < 0 may be achieved at some conditions. 

Above the melting point (T > Tm) Below the melting point (T < Tm)



2.3.2. Freezing mechanism 
- realistic phenomena in the beginning of freezing process-

 Accordingly, the Gibbs energy change in the system is:
∆𝐺𝐺 = ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 + ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝 = 4

3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾

 Always 𝛾𝛾 > 0 thus  ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝 > 0.
 If above the melting point, ∆𝐺𝐺𝑣𝑣 > 0 and ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 > 0. 
 If below the melting point, ∆𝐺𝐺𝑣𝑣 < 0 and ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 < 0.

Below the melting point (T < Tm)

𝑟𝑟0

 There is a radius above which the 
solid spontaneously grows. This 
radius is called the “critical radius 
(of nucleation)”.

 To find it, taking derivative: as
𝑑𝑑 ∆𝜕𝜕
𝑑𝑑𝑡𝑡

= 4𝜋𝜋𝑟𝑟2∆𝐺𝐺𝑣𝑣 + 8𝜋𝜋𝑟𝑟𝛾𝛾

 The condition “ 𝑑𝑑 ∆𝜕𝜕
𝑑𝑑𝑡𝑡

= 0 ” gives the 
critical radius of nucleation (𝑟𝑟0):
𝑑𝑑 ∆𝜕𝜕
𝑑𝑑𝑡𝑡

= 4𝜋𝜋𝑟𝑟02∆𝐺𝐺𝑣𝑣 + 8𝜋𝜋𝑟𝑟0𝛾𝛾 = 0
Thus  𝑟𝑟0 = − ⁄2𝛾𝛾 ∆𝐺𝐺𝑣𝑣



2.3.2. Freezing mechanism 
- realistic phenomena in the beginning of freezing process-

 Accordingly, the Gibbs energy change in the system is:
∆𝐺𝐺 = ∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝 + ∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 = 4

3
𝜋𝜋𝑟𝑟3∆𝐺𝐺𝑣𝑣 + 4𝜋𝜋𝑟𝑟2𝛾𝛾

 In this case, a solid phase whose effective radius is smaller than 𝑟𝑟0 is called 
“embryo” while that larger than 𝑟𝑟0 is called “nucleus”.

 To achieve 𝑑𝑑 ∆𝜕𝜕
𝑑𝑑𝑡𝑡

= 0, ∆𝐺𝐺𝑣𝑣 (∆𝐺𝐺𝑣𝑣~𝛼𝛼 �̅�𝐺𝑠𝑠 − �̅�𝐺𝑙𝑙 , the Gibbs energy gain by phase 
transition from liquid to solid) must be negative because 𝛾𝛾 (interface energy) is 
always 𝛾𝛾 > 0. 
 ∆𝐺𝐺𝑣𝑣 < 0 is achieved at temperatures below the melting point. Thus, the 

nucleation (as freezing process) can take place only below the melting point.

 This kind of model is also important when we consider the growth of defects in 
nuclear materials.
 The size of solid in liquid → the size of defect clusters in crystal



2.3.2. Freezing mechanism 
- realistic phenomena in the beginning of freezing process-
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∆𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡𝑝𝑝𝑡𝑡𝑓𝑓𝑝𝑝𝑖𝑖𝑝𝑝

∆𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝−𝑡𝑡𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛

∆𝐺𝐺

∆𝐺𝐺′
(for super-cooling)

 Usually, 𝛾𝛾 is less sensitive to 
temperature while ∆𝐺𝐺𝑣𝑣 is sensitive 
as ∆𝐺𝐺𝑣𝑣 is the difference in Gibbs 
energy between liquid and solid 
phases.

 Thus, if the temperature is much 
lower than the melting temperature, 
∆𝐺𝐺𝑣𝑣 is more negative, then 𝑟𝑟0
becomes much smaller. 

 In practice, 
 if we rapidly cool down liquid, 

we have smaller grains in 
created crystals. 

 If we very gently cool down, 
super-cooling may occur.

The critical radius (𝑟𝑟0) for nucleation is given as  𝑟𝑟0 = ⁄−2𝛾𝛾 ∆𝐺𝐺𝑣𝑣.

*Shiro Kohara, “Metal materials”, Asakura Publishing 
Co., Ltd., 2012 (in Japanese).



2.3.2. Freezing mechanism 
- phenomena in the beginning of freezing process-

 If many nucleuses grow in liquid, they colloid each other and boundaries are 
formed between them. Finally, the liquid is totally transformed to solid. The solid 
contains multiple grains and grain boundaries: thus a polycrystal. 

bcc fcc hcp
Material Fe Al Cu Ag Ag Cd Zn Mg

Preferential direction <100> <100> <0001> <0001> <2110>

 If some atoms are not soluble in the matrix (lattice) of the solid phase, they 
accumulate at grain boundaries because the boundaries freeze at last.   

 Because interface energy is anisotropic, the growth speed characteristically 
depends on the surface direction. And there is a preferential direction to grow for 
each material, largely depending on the lattice structure.

*Shiro Kohara, “Metal materials”, 
Asakura Publishing Co., Ltd., 
2012 (in Japanese).



(Appendix) Why interface energy is always positive

 If there are bonds between atoms, the 
total energy (internal energy) 
decreases, as the substance becomes 
stable.
 This is why enthalpy of substance is 

lower in solid than in liquid/gas.

H H

H H

U, H

 If there are interfaces, the bonding is 
cut, apparently fro solid crystals. This 
bonding-cut creates so-called 
“dangling bond”, which is the reason 
why interface is unstable (“interfaces 
have positive energies”)
 The number of dangling bonds 

are proportional to the surface 
area, thus the interface energy is 
proportional to it.

Surface/interface dangling bond



3.1.  Chemical equilibrium 
for gases



3.1.  Chemical equilibrium for gases
- $26: Introduction -

 Thermodynamics enables us to predict the equilibrium pressures or 
concentrations of reaction mixtures.

 In this chapter, we will derive a relation between the standard Gibbs energy
change and the equilibrium constant for a chemical reaction. 

 We will also learn how to predict the direction in which a chemical reaction will 
proceed if we start with arbitrary concentrations (thus, not equilibrium) of 
reactants and products.

 Although we need to utilize some equations specialized for gases, an important 
point is that chemical equilibrium (at const.-T const.-P condition) is governed by 
Gibbs energy as the same with phase equilibrium.
 The equilibrium state is a state of the lowest Gibbs energy for chemical 

equilibrium, as the same with phase equilibrium (at const.-T const.-P)  



3.1.  Chemical equilibrium for gases
- $26-1: Chemical equilibrium results when the Gibbs energy is a 

minimum with respect to the extent of reaction -
Consider a general gas phase reaction, described by a balanced equation.

𝜈𝜈𝐴𝐴A(g)  + 𝜈𝜈𝐵𝐵B(g) ⇌ 𝜈𝜈𝑌𝑌Y(g)  + 𝜈𝜈𝑍𝑍Z(g) 

The amount of species 𝑖𝑖 is 𝑑𝑑𝑡𝑡 [mol]. The Gibbs energy for this multi-component 
system is a function of 𝑇𝑇,𝑃𝑃,𝑑𝑑𝐴𝐴,𝑑𝑑𝐵𝐵 ,𝑑𝑑𝑌𝑌 𝑎𝑎𝑑𝑑𝑑𝑑 𝑑𝑑𝑍𝑍, then the total differential is:

dG =
𝜕𝜕𝐺𝐺
𝜕𝜕𝑇𝑇 𝑃𝑃,𝑛𝑛𝐴𝐴,𝑛𝑛𝐵𝐵,𝑛𝑛𝑌𝑌,𝑛𝑛𝑍𝑍

𝑑𝑑𝑇𝑇 +
𝜕𝜕𝐺𝐺
𝜕𝜕𝑃𝑃 𝜕𝜕,𝑛𝑛𝐴𝐴,𝑛𝑛𝐵𝐵,𝑛𝑛𝑌𝑌,𝑛𝑛𝑍𝑍

𝑑𝑑𝑃𝑃 +
𝜕𝜕𝐺𝐺
𝜕𝜕𝑑𝑑𝐴𝐴 𝜕𝜕,𝑃𝑃,𝑛𝑛𝐵𝐵,𝑛𝑛𝑌𝑌,𝑛𝑛𝑍𝑍

𝑑𝑑𝑑𝑑𝐴𝐴

+
𝜕𝜕𝐺𝐺
𝜕𝜕𝑑𝑑𝐵𝐵 𝜕𝜕,𝑃𝑃,𝑛𝑛𝐴𝐴,𝑛𝑛𝑌𝑌,𝑛𝑛𝑍𝑍

𝑑𝑑𝑑𝑑𝐵𝐵 +
𝜕𝜕𝐺𝐺
𝜕𝜕𝑑𝑑𝑌𝑌 𝜕𝜕,𝑃𝑃,𝑛𝑛𝐴𝐴,𝑛𝑛𝐵𝐵,𝑛𝑛𝑍𝑍

𝑑𝑑𝑑𝑑𝑌𝑌 +
𝜕𝜕𝐺𝐺
𝜕𝜕𝑑𝑑𝑍𝑍 𝜕𝜕,𝑃𝑃,𝑛𝑛𝐴𝐴,𝑛𝑛𝐵𝐵,𝑛𝑛𝑌𝑌

𝑑𝑑𝑑𝑑𝑍𝑍

Then, it can be re-written as:
𝑑𝑑𝐺𝐺 = −𝑇𝑇𝑑𝑑𝑇𝑇 + 𝑉𝑉𝑑𝑑𝑃𝑃 + 𝜇𝜇𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴 + 𝜇𝜇𝐵𝐵𝑑𝑑𝑑𝑑𝐵𝐵 + 𝜇𝜇𝑌𝑌𝑑𝑑𝑑𝑑𝑌𝑌 + 𝜇𝜇𝑍𝑍𝑑𝑑𝑑𝑑𝑍𝑍

𝜇𝜇𝐴𝐴 =
𝜕𝜕𝐺𝐺
𝜕𝜕𝑑𝑑𝐴𝐴 𝜕𝜕,𝑃𝑃,𝑛𝑛𝐵𝐵,𝑛𝑛𝑌𝑌,𝑛𝑛𝑍𝑍

, 𝑒𝑒𝑒𝑒𝑐𝑐

If the reaction takes place in const.-T const.-P condition, 
dG = 𝜇𝜇𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴 + 𝜇𝜇𝐵𝐵𝑑𝑑𝑑𝑑𝐵𝐵 + 𝜇𝜇𝑌𝑌𝑑𝑑𝑑𝑑𝑌𝑌 + 𝜇𝜇𝑍𝑍𝑑𝑑𝑑𝑑𝑍𝑍 (constant T and P)

*This “const.-𝑃𝑃” is about total pressure (not partial pressure).



3.1.  Chemical equilibrium for gases
- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with 

respect to the extent of reaction -
Consider a general gas phase reaction, described by a balanced equation.

𝜈𝜈𝐴𝐴A(g)  + 𝜈𝜈𝐵𝐵B(g) ⇌ 𝜈𝜈𝑌𝑌Y(g)  + 𝜈𝜈𝑍𝑍Z(g) 

We define a quantity 𝜉𝜉, called as the “extent of reaction”. Here 𝑑𝑑𝑡𝑡0 is the initial 
number of moles for species 𝑖𝑖, then : 

𝑑𝑑𝐴𝐴 = 𝑑𝑑𝐴𝐴0 − 𝜈𝜈𝐴𝐴𝜉𝜉 𝑑𝑑𝐵𝐵 = 𝑑𝑑𝐵𝐵0 − 𝜈𝜈𝐵𝐵𝜉𝜉
𝑑𝑑𝑌𝑌 = 𝑑𝑑𝑌𝑌0 + 𝜈𝜈𝑌𝑌𝜉𝜉 𝑑𝑑𝑍𝑍 = 𝑑𝑑𝑍𝑍0 + 𝜈𝜈𝑍𝑍𝜉𝜉

(reactants)
(products)

In this case, 𝜉𝜉 has units of moles. Then, the variations of 𝑑𝑑𝑡𝑡 is: 

𝑑𝑑𝑑𝑑𝐴𝐴 = −𝜈𝜈𝐴𝐴𝑑𝑑𝜉𝜉 𝑑𝑑𝑑𝑑𝐵𝐵 = −𝜈𝜈𝐵𝐵𝑑𝑑𝜉𝜉
𝑑𝑑𝑑𝑑𝑌𝑌 = 𝜈𝜈𝑌𝑌𝑑𝑑𝜉𝜉 𝑑𝑑𝑑𝑑𝑍𝑍 = 𝜈𝜈𝑍𝑍𝑑𝑑𝜉𝜉

(reactants)
(products)

which means that as the reaction (left to right) proceeds, the reactants 
decrease and the products increase according to the stoichiometry.
Using these equations:

dG = 𝜇𝜇𝐴𝐴𝑑𝑑𝑑𝑑𝐴𝐴 + 𝜇𝜇𝐵𝐵𝑑𝑑𝑑𝑑𝐵𝐵 + 𝜇𝜇𝑌𝑌𝑑𝑑𝑑𝑑𝑌𝑌 + 𝜇𝜇𝑍𝑍𝑑𝑑𝑑𝑑𝑍𝑍
= −𝜈𝜈𝐴𝐴𝜇𝜇𝐴𝐴 − 𝜈𝜈𝐵𝐵𝜇𝜇𝐵𝐵 + 𝜈𝜈𝑌𝑌𝜇𝜇𝑌𝑌 + 𝜈𝜈𝑍𝑍𝜇𝜇𝑍𝑍 𝑑𝑑𝜉𝜉 (constant T and P)

*Note that the unit for 𝑑𝑑𝜉𝜉 is [mol]. 



3.1.  Chemical equilibrium for gases
- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with 

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.
𝜈𝜈𝐴𝐴A(g)  + 𝜈𝜈𝐵𝐵B(g) ⇌ 𝜈𝜈𝑌𝑌Y(g)  + 𝜈𝜈𝑍𝑍Z(g) 

dG = −𝜈𝜈𝐴𝐴𝜇𝜇𝐴𝐴 − 𝜈𝜈𝐵𝐵𝜇𝜇𝐵𝐵 + 𝜈𝜈𝑌𝑌𝜇𝜇𝑌𝑌 + 𝜈𝜈𝑍𝑍𝜇𝜇𝑍𝑍 𝑑𝑑𝜉𝜉 (constant T and P)
𝜕𝜕𝐺𝐺
𝜕𝜕𝜉𝜉 𝜕𝜕,𝑃𝑃

= 𝜈𝜈𝑌𝑌𝜇𝜇𝑌𝑌 + 𝜈𝜈𝑍𝑍𝜇𝜇𝑍𝑍 − 𝜈𝜈𝐴𝐴𝜇𝜇𝐴𝐴 − 𝜈𝜈𝐵𝐵𝜇𝜇𝐵𝐵

Here, we define 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝜕𝜕,𝑃𝑃

= ∆𝑡𝑡𝐺𝐺, which is the change in Gibbs energy when the 

extent of reaction changes by one mole, and its unit is [J mol−1]. 

Assuming each species behaves as ideal gas, as the pressure dependence of 
chemical potential is written as 𝜇𝜇𝑗𝑗 𝑇𝑇,𝑃𝑃 = 𝜇𝜇°𝑗𝑗 𝑇𝑇 + 𝑅𝑅𝑇𝑇 ln ⁄𝑃𝑃𝑗𝑗 𝑃𝑃𝑃 , then:

∆𝑡𝑡𝐺𝐺 = ∆𝑡𝑡𝐺𝐺° + 𝑅𝑅𝑇𝑇 ln𝑄𝑄

∆𝑡𝑡𝐺𝐺° = 𝜈𝜈𝑌𝑌𝜇𝜇°𝑌𝑌(𝑇𝑇) + 𝜈𝜈𝑍𝑍𝜇𝜇°𝑍𝑍(𝑇𝑇) − 𝜈𝜈𝐴𝐴𝜇𝜇°𝐴𝐴(𝑇𝑇) − 𝜈𝜈𝐵𝐵𝜇𝜇°𝐵𝐵(𝑇𝑇)

𝑄𝑄 =
⁄𝑃𝑃𝑌𝑌 𝑃𝑃𝑃 𝜈𝜈𝑌𝑌 ⁄𝑃𝑃𝑍𝑍 𝑃𝑃𝑃 𝜈𝜈𝑍𝑍

⁄𝑃𝑃𝐴𝐴 𝑃𝑃𝑃 𝜈𝜈𝐴𝐴 ⁄𝑃𝑃𝐵𝐵 𝑃𝑃𝑃 𝜈𝜈𝐵𝐵

𝑃𝑃𝑃 is the pressure of standard 
state (1 bar) and 𝑃𝑃𝐴𝐴 is the partial 
pressure of species A.



3.1.  Chemical equilibrium for gases
- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with 

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.
𝜈𝜈𝐴𝐴A(g)  + 𝜈𝜈𝐵𝐵B(g) ⇌ 𝜈𝜈𝑌𝑌Y(g)  + 𝜈𝜈𝑍𝑍Z(g) 

(ideal gas, constant T and P)∆𝑡𝑡𝐺𝐺 = ∆𝑡𝑡𝐺𝐺° + 𝑅𝑅𝑇𝑇 ln𝑄𝑄

∆𝑡𝑡𝐺𝐺° = 𝜈𝜈𝑌𝑌𝜇𝜇°𝑌𝑌 𝑇𝑇 + 𝜈𝜈𝑍𝑍𝜇𝜇°𝑍𝑍 𝑇𝑇
−𝜈𝜈𝐴𝐴𝜇𝜇°𝐴𝐴(𝑇𝑇) − 𝜈𝜈𝐵𝐵𝜇𝜇°𝐵𝐵(𝑇𝑇)

𝑄𝑄 =
⁄𝑃𝑃𝑌𝑌 𝑃𝑃𝑃 𝜈𝜈𝑌𝑌 ⁄𝑃𝑃𝑍𝑍 𝑃𝑃𝑃 𝜈𝜈𝑍𝑍

⁄𝑃𝑃𝐴𝐴 𝑃𝑃𝑃 𝜈𝜈𝐴𝐴 ⁄𝑃𝑃𝐵𝐵 𝑃𝑃𝑃 𝜈𝜈𝐵𝐵

Here, the quantity ∆𝑡𝑡𝐺𝐺𝑃 is the change in standard Gibbs energy for the 
reaction between unmixed reactants to form unmixed products. All species in 
their standard states at 𝑇𝑇 and 𝑃𝑃𝑃. Note that 𝑃𝑃𝑃 = 1 bar. 

When the reaction system is equilibrium, the Gibbs energy must be the 
minimum with respect to any change from the equilibrium state, thus 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝜕𝜕,𝑃𝑃

= ∆𝑡𝑡𝐺𝐺 = ∆𝑡𝑡𝐺𝐺𝑃 + 𝑅𝑅𝑇𝑇 ln𝑄𝑄𝑝𝑝𝑒𝑒 = 0 at an equilibrium state. Thus:

∆𝑡𝑡𝐺𝐺𝑃 = −𝑅𝑅𝑇𝑇 ln �𝑃𝑃𝑌𝑌
𝜈𝜈𝑌𝑌𝑃𝑃𝑍𝑍

𝜈𝜈𝑍𝑍

𝑃𝑃𝐴𝐴
𝜈𝜈𝐴𝐴𝑃𝑃𝐵𝐵

𝜈𝜈𝐵𝐵
𝑝𝑝𝑒𝑒

= −𝑅𝑅𝑇𝑇 ln𝐾𝐾𝑃𝑃(𝑇𝑇)



3.1.  Chemical equilibrium for gases
- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with 

respect to the extent of reaction -

Consider a general gas phase reaction, described by a balanced equation.
𝜈𝜈𝐴𝐴A(g)  + 𝜈𝜈𝐵𝐵B(g) ⇌ 𝜈𝜈𝑌𝑌Y(g)  + 𝜈𝜈𝑍𝑍Z(g) 

∆𝑡𝑡𝐺𝐺𝑃 = −𝑅𝑅𝑇𝑇 ln𝐾𝐾𝑃𝑃(𝑇𝑇)

𝐾𝐾𝑃𝑃 𝑇𝑇 = 𝑄𝑄𝑝𝑝𝑒𝑒 =
⁄𝑃𝑃𝑌𝑌 𝑃𝑃𝑃 𝜈𝜈𝑌𝑌 ⁄𝑃𝑃𝑍𝑍 𝑃𝑃𝑃 𝜈𝜈𝑍𝑍

⁄𝑃𝑃𝐴𝐴 𝑃𝑃𝑃 𝜈𝜈𝐴𝐴 ⁄𝑃𝑃𝐵𝐵 𝑃𝑃𝑃 𝜈𝜈𝐵𝐵
𝑝𝑝𝑒𝑒

=
𝑃𝑃𝑌𝑌
𝜈𝜈𝑌𝑌𝑃𝑃𝑍𝑍

𝜈𝜈𝑍𝑍

𝑃𝑃𝐴𝐴
𝜈𝜈𝐴𝐴𝑃𝑃𝐵𝐵

𝜈𝜈𝐵𝐵 × 𝑃𝑃𝑃 𝜈𝜈𝐴𝐴+𝜈𝜈𝐵𝐵−𝜈𝜈𝐵𝐵−𝜈𝜈𝐵𝐵
𝑝𝑝𝑒𝑒

*the subscript eq emphasizes that the 
partial pressures are in an equilibrium.

 𝐾𝐾𝑃𝑃 𝑇𝑇 is called as equilibrium constant. Be sure that 𝐾𝐾𝑃𝑃 𝑇𝑇 has no unit.
 As seen in the definition, this constant is defined after the target equation is 

given. 
 For example, if the 𝜈𝜈𝐴𝐴 in the equation is changed (even keeping the same 

meaning of reaction, like 2𝜈𝜈𝐴𝐴A(g)  + 2𝜈𝜈𝐵𝐵B(g) ⇌ 2𝜈𝜈𝑌𝑌Y(g)  + 2𝜈𝜈𝑍𝑍Z(g) ),  
𝐾𝐾𝑃𝑃 𝑇𝑇 value is changed.

𝑃𝑃𝑃 = 1 𝑏𝑏𝑎𝑎𝑟𝑟

∆𝑡𝑡𝐺𝐺𝑃 = 𝜈𝜈𝑌𝑌𝜇𝜇𝑃𝑌𝑌 𝑇𝑇 + 𝜈𝜈𝑍𝑍𝜇𝜇𝑃𝑍𝑍 𝑇𝑇 − 𝜈𝜈𝐴𝐴𝜇𝜇𝑃𝐴𝐴(𝑇𝑇) − 𝜈𝜈𝐵𝐵𝜇𝜇𝑃𝐵𝐵(𝑇𝑇)



3.1.  Chemical equilibrium for gases
- 𝝁𝝁𝒋𝒋 𝑻𝑻,𝑷𝑷 = 𝝁𝝁𝑃𝒋𝒋 𝑻𝑻 + 𝑹𝑹𝑻𝑻 𝒍𝒍𝒍𝒍 ⁄𝑷𝑷𝒋𝒋 𝑷𝑷𝑃 for an ideal gas -

𝑃𝑃𝑉𝑉 = 𝑑𝑑𝑅𝑅𝑇𝑇

For an ideal gas:

𝑈𝑈 = 𝑑𝑑𝑛𝑛𝑉𝑉𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑒𝑒𝑎𝑎𝑑𝑑𝑒𝑒. = 𝑑𝑑𝑛𝑛𝑉𝑉𝑇𝑇 + 𝑑𝑑𝑈𝑈0
For a path keeping some thermal equilibrium states (i.e. reversible process):

𝑑𝑑𝑈𝑈 = 𝑇𝑇𝑑𝑑𝑇𝑇 − 𝑃𝑃𝑑𝑑𝑉𝑉

then d𝑈𝑈 = 𝑑𝑑𝑛𝑛𝑉𝑉𝑑𝑑𝑇𝑇

𝑑𝑑𝑇𝑇 =
𝑑𝑑𝑈𝑈
𝑇𝑇

+
𝑃𝑃𝑑𝑑𝑉𝑉
𝑇𝑇

= 𝑑𝑑𝑛𝑛𝑉𝑉
𝑑𝑑𝑇𝑇
𝑇𝑇

+ 𝑑𝑑𝑅𝑅
𝑑𝑑𝑉𝑉
𝑉𝑉

𝑇𝑇 𝑇𝑇,𝑉𝑉 = �𝑑𝑑𝑛𝑛𝑉𝑉
𝑑𝑑𝑇𝑇
𝑇𝑇

+ �𝑑𝑑𝑅𝑅
𝑑𝑑𝑉𝑉
𝑉𝑉

= 𝑑𝑑𝑇𝑇0 + 𝑑𝑑𝑛𝑛𝑉𝑉 ln𝑇𝑇 + 𝑑𝑑𝑅𝑅 ln𝑉𝑉

𝐺𝐺 𝑇𝑇,𝑉𝑉 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉 − 𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑛𝑛𝑉𝑉𝑇𝑇 + 𝑑𝑑𝑈𝑈0 + 𝑑𝑑𝑅𝑅𝑇𝑇 − 𝑇𝑇 𝑑𝑑𝑇𝑇0 + 𝑑𝑑𝑛𝑛𝑉𝑉 ln𝑇𝑇 + 𝑑𝑑𝑅𝑅 ln𝑉𝑉

𝜇𝜇𝑗𝑗 𝑇𝑇,𝑃𝑃 = 𝜇𝜇𝑃𝑗𝑗 𝑇𝑇 + 𝑅𝑅𝑇𝑇 ln ⁄𝑃𝑃𝑗𝑗 𝑃𝑃𝑃



3.1. Chemical equilibrium for gases
- 𝝁𝝁𝒋𝒋 𝑻𝑻,𝑷𝑷 = 𝝁𝝁𝑃𝒋𝒋 𝑻𝑻 + 𝑹𝑹𝑻𝑻 𝒍𝒍𝒍𝒍 ⁄𝑷𝑷𝒋𝒋 𝑷𝑷𝑃 for an ideal gas -

𝐺𝐺 𝑇𝑇,𝑃𝑃 − 𝐺𝐺 𝑇𝑇,𝑃𝑃0 = −𝑇𝑇 𝑑𝑑𝑅𝑅 ln𝑉𝑉 + 𝑇𝑇 𝑑𝑑𝑅𝑅 ln𝑉𝑉0 = 𝑇𝑇1 𝑑𝑑𝑅𝑅 ln
𝑉𝑉0
𝑉𝑉

𝑃𝑃1𝑉𝑉1 = 𝑃𝑃2𝑉𝑉2

𝜇𝜇 𝑇𝑇,𝑃𝑃 = 𝜇𝜇 𝑇𝑇,𝑃𝑃° + 𝑅𝑅𝑇𝑇 ln
𝑃𝑃
𝑃𝑃°

= 𝜇𝜇𝑃 𝑇𝑇 + 𝑅𝑅𝑇𝑇 ln
𝑃𝑃
𝑃𝑃°

𝐺𝐺 𝑇𝑇,𝑃𝑃 − 𝐺𝐺 𝑇𝑇,𝑃𝑃0 = 𝑇𝑇1 𝑑𝑑𝑅𝑅 ln
𝑉𝑉0
𝑉𝑉

= 𝑇𝑇1 𝑑𝑑𝑅𝑅 ln
𝑃𝑃
𝑃𝑃0

𝜇𝜇 =
𝜕𝜕𝐺𝐺
𝜕𝜕𝑑𝑑 𝑃𝑃,𝜕𝜕

𝐺𝐺 𝑇𝑇,𝑉𝑉 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉 − 𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑛𝑛𝑉𝑉𝑇𝑇 + 𝑑𝑑𝑈𝑈0 + 𝑑𝑑𝑅𝑅𝑇𝑇 − 𝑇𝑇 𝑑𝑑𝑇𝑇0 + 𝑑𝑑𝑛𝑛𝑉𝑉 ln𝑇𝑇 + 𝑑𝑑𝑅𝑅 ln𝑉𝑉

𝜇𝜇𝑗𝑗 𝑇𝑇,𝑃𝑃 = 𝜇𝜇𝑃𝑗𝑗 𝑇𝑇 + 𝑅𝑅𝑇𝑇 ln ⁄𝑃𝑃𝑗𝑗 𝑃𝑃𝑃

Here 𝑃𝑃° = 1 bar for the standard chemical potential.



3.1.  Chemical equilibrium for gases
- $26-1: Chemical equilibrium results when the Gibbs energy is a minimum with 

respect to the extent of reaction -

(Example-1a)  For reaction “3 H2(g)  + N2(g) ⇌ 2 NH3(g)”, the equilibrium 
pressures are given as  𝑃𝑃𝐻𝐻2, 𝑃𝑃𝑁𝑁2, and 𝑃𝑃𝑁𝑁𝐻𝐻3 .

𝐾𝐾𝑃𝑃, 𝑇𝑇 = �
𝑃𝑃𝑁𝑁𝐻𝐻3
2

𝑃𝑃𝐻𝐻2
3 𝑃𝑃𝑁𝑁2 𝑝𝑝𝑒𝑒

*Be sure that these pressures are 
pressures at equilibrium, as in the 
definition of equilibrium constant. 

(Example-1b)  For reaction “3/2 H2(g)  + ½ N2(g) ⇌ NH3(g)”, the 
equilibrium pressures are given as  𝑃𝑃𝐻𝐻2, 𝑃𝑃𝑁𝑁2, and 𝑃𝑃𝑁𝑁𝐻𝐻3 .

𝐾𝐾𝑃𝑃 𝑇𝑇 = �
𝑃𝑃𝑁𝑁𝐻𝐻3

𝑃𝑃𝐻𝐻2
3/2𝑃𝑃𝑁𝑁2

1/2
𝑝𝑝𝑒𝑒

≠ 𝐾𝐾𝑃𝑃 𝑇𝑇 𝑐𝑐𝑓𝑓 𝑒𝑒𝑥𝑥𝑎𝑎𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒 − 1𝑎𝑎

Although the reactions themselves are identical, the equilibrium 
constants are not the same, because the equilibrium constant depends 
on the expression of chemical reaction equation. 



3.1.  Chemical equilibrium for gases 
- $26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation.
PCl5(g)  ⇌ PCl3(g)  + Cl2(g) 

The equilibrium-constant expression for this reaction is:

𝐾𝐾𝑃𝑃, 𝑇𝑇 = �
𝑃𝑃𝑃𝑃𝐶𝐶𝑙𝑙3𝑃𝑃𝐶𝐶𝑙𝑙2

𝑃𝑃𝑃𝑃𝐶𝐶𝑙𝑙5 𝑝𝑝𝑒𝑒

Suppose we have 1 mol of PCl5 (g) and no PCl3 or Cl2 at the beginning. When the 
reaction occurs to an extent 𝜉𝜉, 

PCl5: 1 mol → (1- 𝜉𝜉) mol
PCl3: 0 mol → 𝜉𝜉 mol, Cl2: 0 mol →  𝜉𝜉 mol
Total: 1 mol → (1+ 𝜉𝜉) mol

If 𝜉𝜉𝑝𝑝𝑒𝑒 is the extent of reaction at equilibrium, then the partial pressures are:

𝑃𝑃𝑃𝑃𝐶𝐶𝑙𝑙3 = 𝑃𝑃𝐶𝐶𝑙𝑙2 = �𝜉𝜉𝑝𝑝𝑒𝑒𝑃𝑃 1 + 𝜉𝜉𝑝𝑝𝑒𝑒 ,    𝑃𝑃𝑃𝑃𝐶𝐶𝑙𝑙5 = �1 − 𝜉𝜉𝑝𝑝𝑒𝑒 𝑃𝑃 1 + 𝜉𝜉𝑝𝑝𝑒𝑒
where 𝑃𝑃 is the total pressure. Then, the equilibrium constant is:

𝐾𝐾𝑃𝑃, 𝑇𝑇 = �𝜉𝜉𝑝𝑝𝑒𝑒
2

1 − 𝜉𝜉𝑝𝑝𝑒𝑒
2 𝑃𝑃



3.1.  Chemical equilibrium for gases
- $26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation.
PCl5(g)  ⇌ PCl3(g)  + Cl2(g) 

𝐾𝐾𝑃𝑃 𝑇𝑇 = �𝜉𝜉𝑝𝑝𝑒𝑒
2

1 − 𝜉𝜉𝑝𝑝𝑒𝑒
2 𝑃𝑃

PCl5: 1 mol → (1- 𝜉𝜉) mol
PCl3 , Cl2:   0 mol →  𝜉𝜉 mol,
Total: 1 mol → (1+ 𝜉𝜉) mol

*If gases interact each other, 
𝐾𝐾𝑃𝑃 𝑇𝑇 also depends on 𝑃𝑃. 
However, in practice, we can 
assume that gases behave like 
ideal gasses.

𝐾𝐾𝑃𝑃 𝑇𝑇 only depends on 𝑇𝑇, but not 
𝑃𝑃. So, if 𝑃𝑃 (total pressure) is 
changed, 𝜉𝜉𝑝𝑝𝑒𝑒 must be changed so 
that  𝐾𝐾𝑃𝑃 𝑇𝑇 is kept constant. For 
example, 𝐾𝐾𝑃𝑃 𝑇𝑇 of this reaction is 
5.4 (no unit) at 200ºC.

*D.A. McQuarrie, J.D. Simon, “Physical Chemistry: A Molecular Approach", University Science Books (1997).



3.1.  Chemical equilibrium for gases
- $26-2: An equilibrium constant is a function of temperature only -

Consider a general gas phase reaction, described by a balanced equation.
𝜈𝜈𝐴𝐴A(g)  + 𝜈𝜈𝐵𝐵B(g) ⇌ 𝜈𝜈𝑌𝑌Y(g)  + 𝜈𝜈𝑍𝑍Z(g) 

So far, we express the equilibrium constant regarding pressure. We can also 
express the equilibrium constant in terms of concentrations, etc, by using the 
ideal-gas relation “𝑃𝑃 = 𝑐𝑐𝑅𝑅𝑇𝑇”, where 𝑐𝑐 = ⁄𝑑𝑑 𝑉𝑉 is the concentration:

∆𝑡𝑡𝐺𝐺𝑃 = −𝑅𝑅𝑇𝑇 ln𝐾𝐾𝑃𝑃(𝑇𝑇)

𝐾𝐾𝑃𝑃 𝑇𝑇 = 𝑄𝑄𝑝𝑝𝑒𝑒 =
⁄𝑃𝑃𝑌𝑌 𝑃𝑃𝑃 𝜈𝜈𝑌𝑌 ⁄𝑃𝑃𝑍𝑍 𝑃𝑃𝑃 𝜈𝜈𝑍𝑍

⁄𝑃𝑃𝐴𝐴 𝑃𝑃𝑃 𝜈𝜈𝐴𝐴 ⁄𝑃𝑃𝐵𝐵 𝑃𝑃𝑃 𝜈𝜈𝐵𝐵
𝑝𝑝𝑒𝑒

=
𝑛𝑛𝑌𝑌
𝜈𝜈𝑌𝑌𝑛𝑛𝑍𝑍

𝜈𝜈𝑍𝑍

𝑛𝑛𝐴𝐴
𝜈𝜈𝐴𝐴𝑛𝑛𝐵𝐵

𝜈𝜈𝐵𝐵
𝑝𝑝𝑒𝑒

𝑅𝑅𝑇𝑇
𝑃𝑃𝑃

𝜈𝜈𝑌𝑌+𝜈𝜈𝑍𝑍−𝜈𝜈𝐴𝐴−𝜈𝜈𝐵𝐵

*As the same with 𝐾𝐾𝑃𝑃, 𝐾𝐾𝑖𝑖
has also no unit.

Here, we consider some standard concentration 𝑐𝑐° (like 𝑃𝑃𝑃 ), often taken to be  “1 
mol L-1”. Then:

𝐾𝐾𝑃𝑃 𝑇𝑇 = 𝐾𝐾𝐶𝐶 𝑇𝑇
𝑐𝑐𝑃𝑅𝑅𝑇𝑇
𝑃𝑃𝑃

𝜈𝜈𝑌𝑌+𝜈𝜈𝑍𝑍−𝜈𝜈𝐴𝐴−𝜈𝜈𝐵𝐵

𝐾𝐾𝑖𝑖 𝑇𝑇 =
⁄𝑐𝑐𝑌𝑌 𝑐𝑐° 𝜈𝜈𝑌𝑌 ⁄𝑐𝑐𝑍𝑍 𝑐𝑐° 𝜈𝜈𝑍𝑍

⁄𝑐𝑐𝐴𝐴 𝑐𝑐° 𝜈𝜈𝐴𝐴 ⁄𝑐𝑐𝐵𝐵 𝑐𝑐° 𝜈𝜈𝐵𝐵
𝑝𝑝𝑒𝑒



3.1.  Chemical equilibrium for gases
- $26-2: An equilibrium constant is a function of temperature only -

(Example-2)  For reaction “NH3(g) ⇌ 3/2 H2(g)  +1/2 N2(g)”, 𝐾𝐾𝑃𝑃 𝑇𝑇 = 1.36 ×
10−3 at 298.15 K. Determine the corresponding 𝐾𝐾𝐶𝐶 𝑇𝑇 .

𝐾𝐾𝑃𝑃 𝑇𝑇 = 𝐾𝐾𝐶𝐶 𝑇𝑇
𝑐𝑐𝑃𝑅𝑅𝑇𝑇
𝑃𝑃𝑃

3/2+1/2−1

= 𝐾𝐾𝐶𝐶 𝑇𝑇
𝑐𝑐𝑃𝑅𝑅𝑇𝑇
𝑃𝑃𝑃

1

𝐾𝐾𝐶𝐶 𝑇𝑇 = 𝐾𝐾𝑃𝑃 𝑇𝑇
𝑐𝑐𝑃𝑅𝑅𝑇𝑇
𝑃𝑃𝑃

−1

= 1.36 × 10−3 ×
1 𝑒𝑒𝑐𝑐𝑒𝑒 𝐿𝐿−1 × 0.0831 𝐿𝐿 𝑏𝑏𝑎𝑎𝑟𝑟 𝑒𝑒𝑐𝑐𝑒𝑒−1𝐾𝐾−1 × 298.15 𝐾𝐾

1 𝑏𝑏𝑎𝑎𝑟𝑟

−1

= 5.49 × 10−5
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