Symmetry

CHAN PARK

for animated images of point groups,

http://neon.mems.cmu.edu/degraef/pg/pg.html#AGM

1 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Symmetry

- > All <u>repetition operations</u> are called symmetry operations
 - \checkmark Symmetry consists of the repetition of a pattern by the application of specific rules
- > When a symmetry operation has a locus, that is a point, or a line, or a plane that is left unchanged by the operation, this locus is referred to as the symmetry element

Symmetry operation	Geometrical representation	Symmetry element
Rotation	Axis (line)	Rotation axis
Inversion	Point (center)	Inversion center (center pf symmetry)
Reflection	Plane	Mirror plane
Translation	vector	Translation vector
rotation	reflection	rotation inversion

Symmetry operation

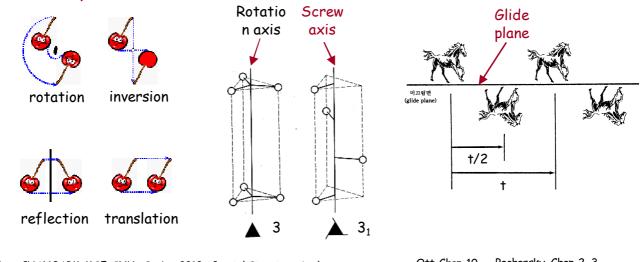
(1) Rotation; **1 2 3 4 6** (2) Reflection; **m** $(=\overline{2})$

(3) Inversion (center of symmetry) (= $\overline{1}$)

(4) Rotation-inversion; $\overline{1}$ (=center of symmetry), $\overline{2}$ (= mirror), $\overline{3}$, $\overline{4}$, $\overline{6}$

(5) Screw axis; rotation + translation 21, 31, 32, 41, 42, 43, 61, ---, 65

(6) Glide plane; reflection + translation, a, b, c, n, d



3 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Ott Chap 10 Pecharsky Chap 2, 3

Crystal symmetry, 14 Bravais lattice

Crystal System	Bravais Lattices	Symmetry	Symmetry	Axis System
Cubic	P, I, F	m3m	m 3 m	a=b=c, α=β=γ=90
Tetragonal	P,I	4/mmm	4/mmm	a=b≠c, a=β=γ=90
Orthorhombic	P, C, I, F	mmm	mmm	a≠b≠c, α=β=γ=90
Hexagonal	Р	6/mmm	6/mmm	a=b≠c, a=β=90, γ=120
Rhombohedral	R	3m	3 m	a=b=c, α=β=γ≠90
Monoclinic	Р, С	2/m	2 /m	a≠b≠c, a=γ=90, β≠90
Triclinic	Р	1	1	a≠b≠c, a≠β≠γ≠90
	*	•	,	

	Quartz				
	Crystal System: trigonal				
	Bravais Lattice: primitive	2			
Γ	Space Group: P3 ₂ 21				
	Lattice Parameters: 4.91	34 x 4.9	134 x 5.4	4052 A	
	Atom Positions:	x	у	Z	
	Si	0.47 0	Ó	0.667	
	0	0.414	0.268	0.786	

P3₂21 P 3₂ 2 1

6/mmm 6/m m m

	.			Fmmm
Xtal systems	Sym	netry di	rections	Face centered lattice $m \perp to a axis$
Triclinic				$ \begin{array}{c} m \perp \text{ to b axis} \\ m \perp \text{ to c axis} \\ \end{array} $
Monoclinic		b		
Orthorhombic	۵	b	с	P3 ₂ 21
Tetragonal	с	<۵>	<110>	Primitive lattice 3 ₂ along the c axis
Trigonal	с	<۵>		2 fold rot axis along the a axis 1 fold rot axis along the <210>
Hexagonal	с	<۵>	<210>	Fd3m
Cubic	<۵>	<111>	<110>	Face centered lattice d ⊥ to a axis
				3 fold axis along the <111> m \perp to c axis

5 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Rotation Axis

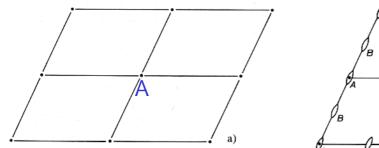
- > general plane lattice
- > 180° rotation about the central lattice point A \rightarrow coincidence

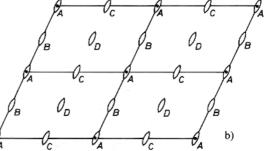
→ 2-fold rotation axis; symbol 2, ((normal to plane of paper), \rightarrow (parallel to plane of paper)

Order (multiplicity) of the rotation axis

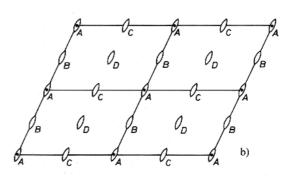
$$=\frac{360^{\circ}}{\phi}=\frac{2\pi}{\phi}$$

п





- Two objects are EQUIVALENT
 - When they can be brought into coincidence by application of a symmetry operation
- Two objects are IDENTICAL
 - ✓ When no symmetry operation except lattice translation is involved
 - ✓ equivalent by translation
- > All A's are equivalent to one another
- > A is not equivalent to B



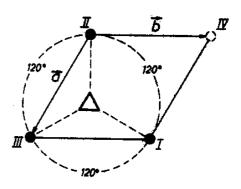
7 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

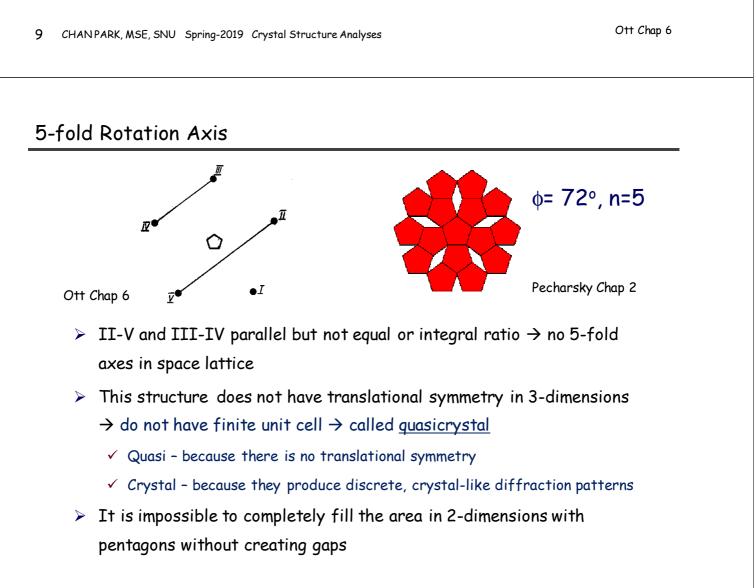
Ott Chap 6

Rotation Axis

> n-fold axis $n = \frac{360^\circ}{10^\circ}$ $\frac{2\pi}{2}$ ϕ : minimum angle required to reach a position indistinguishable from the starting point > Axis with n > 2 will have at least two other points lying in a plane \perp to it \checkmark 3 non-colinear points define a plane \rightarrow must be a lattice plane (translational periodicity) 4-fold axis 6-fold axis 3-fold axis $\phi = 90^{\circ}, n = 4$ $\phi = 60^{\circ}, n = 6$ φ = 120°, n = 3 Б ā > In space lattices and consequently in crystals, only 1-, 2-, 3-, 4-, and 6-fold rotation axes can occur.

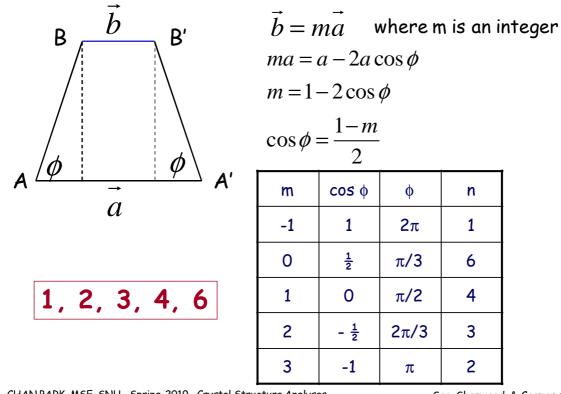
- The points generated by rotation axis must fulfil the conditions for being a lattice plane --- parallel lattice lines should have the same translation period
- > Lattice translation moves $I \rightarrow IV$
- 4 points produce a unit mesh of a lattice plane
- → 3 fold axes are compatible with space lattice





Rotation Axis > why 1, 2, 3, 4 and 6 only ?

 \succ limitation of ϕ set by translation periodicity



11 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

See Sherwood & Cooper page 78

symmetry operation vs symmetry element, proper vs improper

- > Rotation by 60° around an axis \rightarrow symmetry operation
- 6-fold rotation axis is a <u>symmetry element</u> which contains six rotational <u>symmetry operations</u>
- Proper symmetry elements

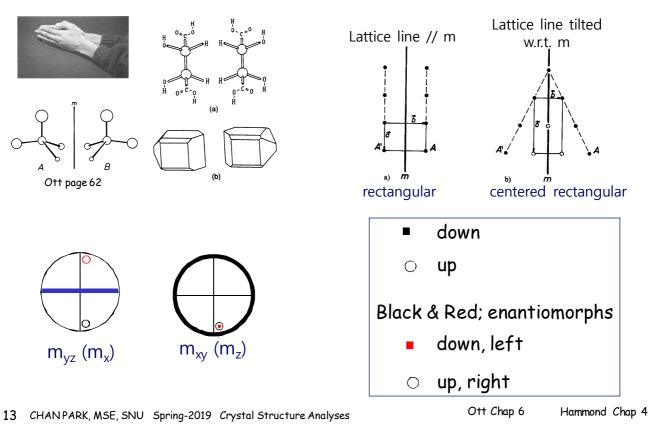
 Rotation axes, screw axes, translation vectors

 Improper symmetry elements

 Inverts an object in a way that may be imaged by comparing <u>right & left hands</u>
 Inverted object is called an <u>enantiomorph</u> of the direct object (right vs left hand)
 - ✓ Center of inversion, roto-inversion axes, mirror plane, glide plane

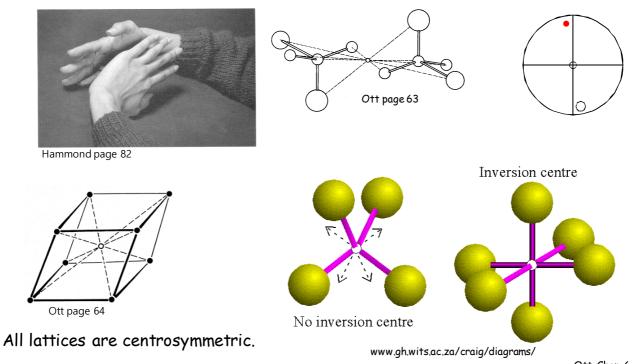
Reflection

> reflection, a plane of symmetry or a mirror plane, m, | (bold line),



Inversion

 \blacktriangleright inversion, center of symmetry or inversion center $\overline{1}~\circ$



Ott Chap 6 Hammond Chap 4

Compound Symmetry Operation

- compound symmetry operation
 - two symmetry operation in sequence as a single event
- > combination of symmetry operations
 - ✓ 2 or more individual symmetry operations are combined, which are themselves symmetry operations

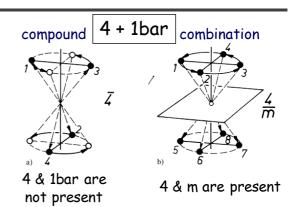


 Table 5.1. Compound symmetry operations of simple operations. The corresponding symmetry elements are given in round brackets

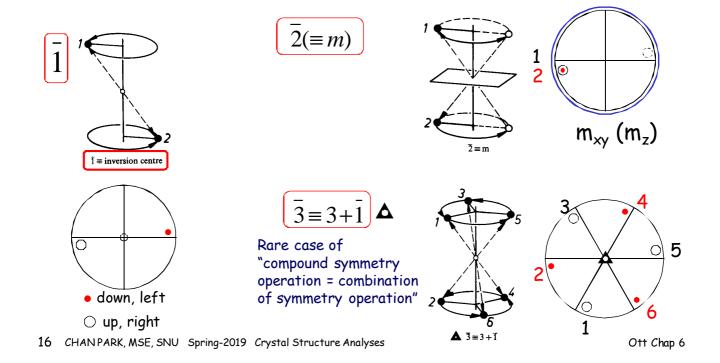
	Rotation	Reflection	Inversion	Translation
Rotation	×	Roto- reflection	Roto- inversion	Screw rotation
Reflection	(Roto- reflection axis)	×	2-fold rotation	Glide reflection
Inversion	(Roto- inversion axis)	(2-fold rotation axis)	×	Inversion
Translation	(Screw axis)	(Glide plane)	(Inversion centre)	×

15 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

```
Ott page 6
```

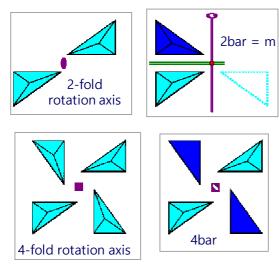
Rotoinversion

- > compound symmetry operation of rotation and inversion
- rotoinversion axis —
- > 1, 2, 3, 4, 6 $\rightarrow \overline{1}$ (=center of symmetry), $\overline{2}$ (= mirror), $\overline{3}$, $\overline{4}$, $\overline{6}$

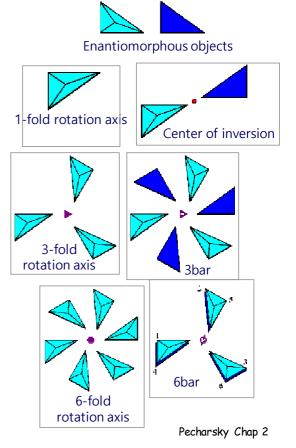


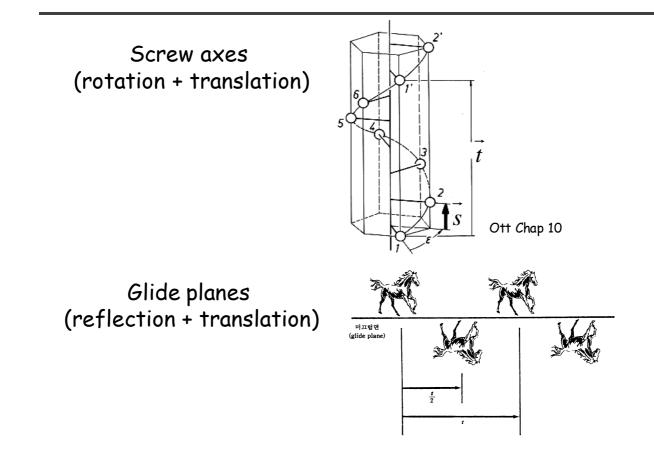
Symmetry elements

- 1, 2, 3, 4, 6 (proper rotation axes)
- > 1̄ = inversion center, 2̄ = m, 3̄, 4̄, 6̄ (improper axes; right & left hands → enantiomorph)
- > Screw axes (rotation + translation)
- > Glide planes (reflection + translation)



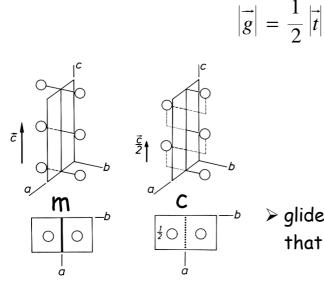
17 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

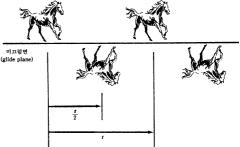




Glide Plane

- i) reflection
- ii) translation by the vector \vec{g} parallel to the plane of reflection where $\left| \vec{g} \right|$ is called glide component
- \vec{g} is one half of a lattice translation parallel to the glide plane



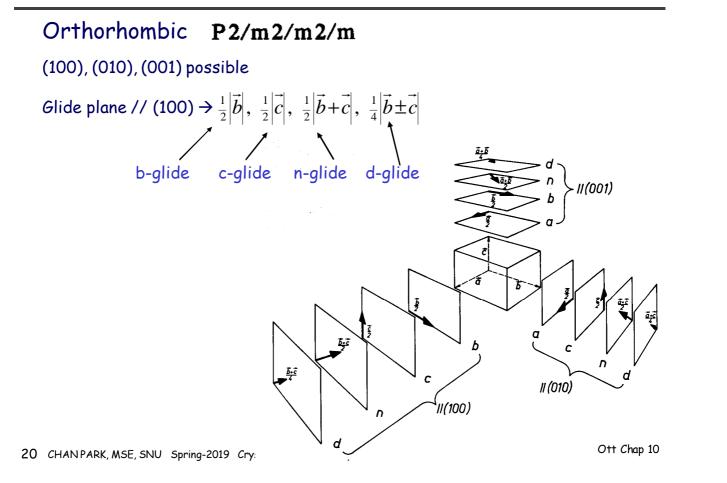


 glide plane can <u>only</u> occur in an orientation that is possible for a mirror plane

19 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

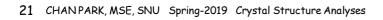
Ott Chap 10

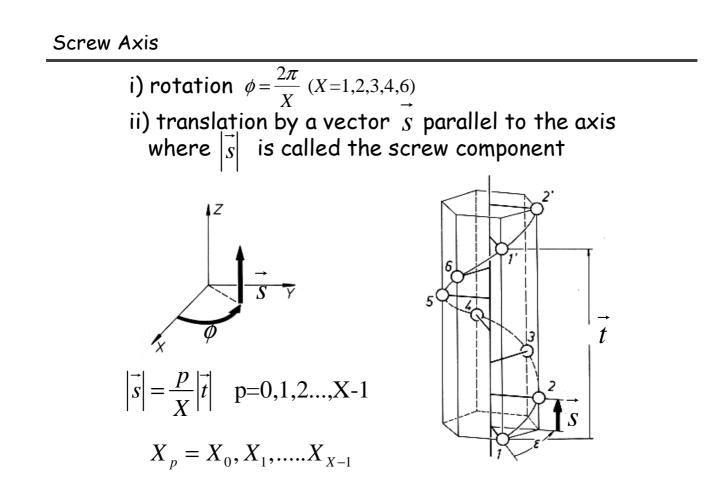
Glide Plane



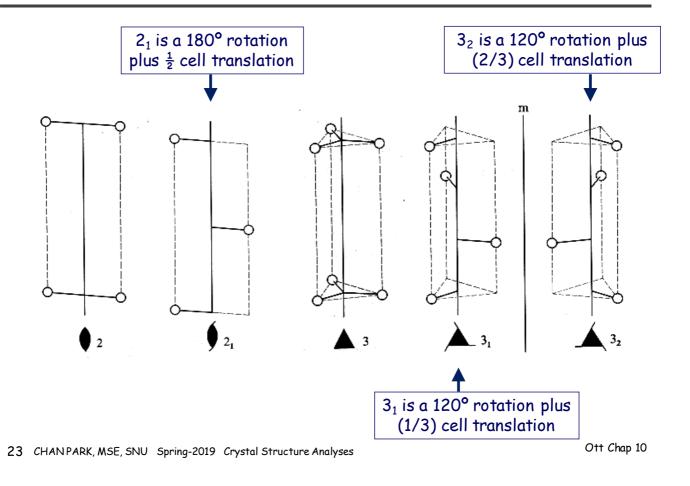
Reflection plus $\frac{1}{2}$ cell translation

- > a glide: a/2 translation
- > b glide: b/2 translation
- \succ c glide: c/2 translation
- > n glide (normal to a): b/2+c/2 translation
- > n glide (normal to b): a/2+c/2 translation
- > n glide (normal to c): a/2+b/2 translation
- > d glide : (a + b)/4, (b + c)/4, (c + a)/4
- <u>g glide line (two dimensions)</u>

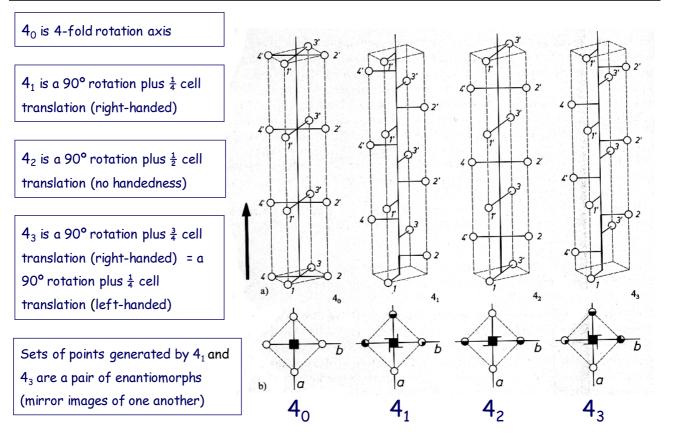




Screw Axis

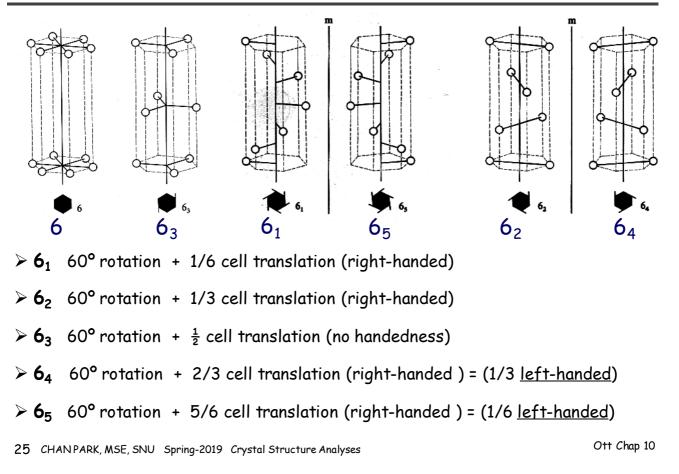


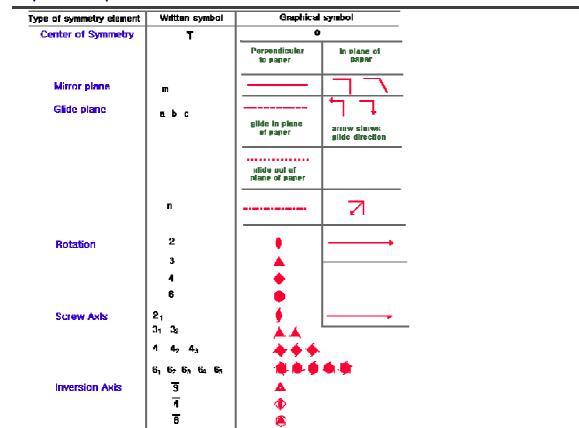
Screw tetrads



24 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Screw hexads

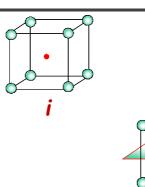


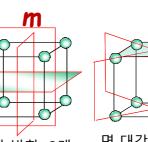


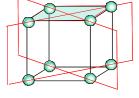
Symmetry Element

Cube(정육면체)의 대칭요소

- ▶ 대칭심(center of symmetry)
- ▶ 9개의 거울면(mirror plane)
- ➢ 6개의 2회전축(diad axis)
- > 4개의 3회전축(triad axis)
- > 3개의 4회전축 (tetrad axis)







m

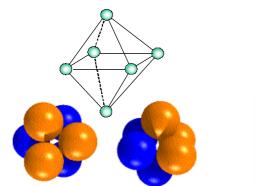
직각 방향:3개

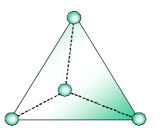
X=2 X=4 X=3

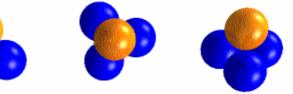
27 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Tetrahedron과 Octahedron의 대칭

- ▶ 정8면체(octahedron)의 대칭요소 = 정6면체의 대칭요소
- ▶ 정4면체(tetahedron)의 대칭요소
 - ✓ 6개의 거울면
 - ✓ 3개의 4회반축(inverse tetrad axis)
 - ✓ 4개의 3회전축







Point groups

29 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

- Lattice an array of points in space in which the environment of each point is identical
- > Basis (motif) repeating unit of pattern
- \succ Lattice + basis \rightarrow crystal structure

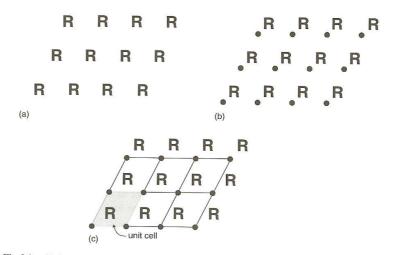
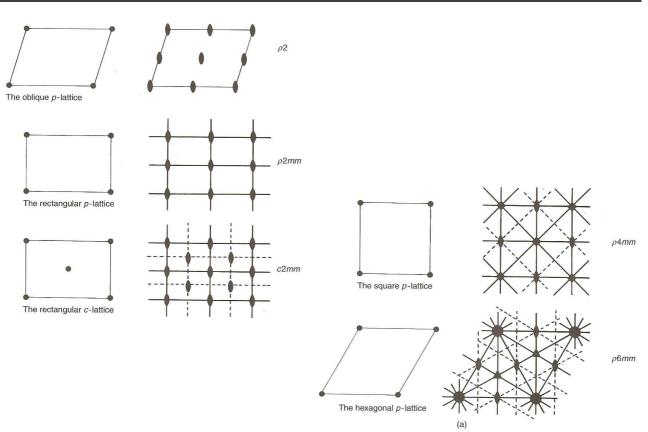


Fig. 2.1. (a) A pattern with the motif \mathbf{R} , (b) with the lattice points indicated and (c) the lattice and a unit cell outlined (Drawn by K. M. Crennell).

- > Ten 2-D point groups (plane point groups)
 - ✓ 1, 2, 3, 4, 6, m, 2mm, 3m, 4mm, 6mm
 - ✓ Only these combinations of axes & mirror lines can occur in regular repeating patterns in two dimensions
- > 5 lattices in 2-D (5 plane lattices)
- > A basis can possess one of ten point group symmetries in two dimension
- > There are only ten different types of two-dimensional patterns, distributed among the five plane lattices (10 plane point groups)
- > 17 plane groups
 - ✓ p1, p2, p3, p4, p6, pm, pg, cm, p2mm, p2mg, c2mm, p2gg, p4mm, p4gm, p31m, p3m1, p6mm
- > 3-D, 14 possible lattices, 7 different axis systems
- The application and permutation of all symmetry elements to patterns in space give rise to 230 space groups (instead of <u>17 plane groups</u>) distributed among <u>14 space lattices</u> (instead of <u>5 plane lattices</u>) and <u>32 point group symmetries</u> (instead of <u>10 plane point group symmetries</u>)
- > Space group symmetry the way things are packed together and fill space
- Space group translational component = point group
- 31 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses



5 plane lattices

17 plane groups

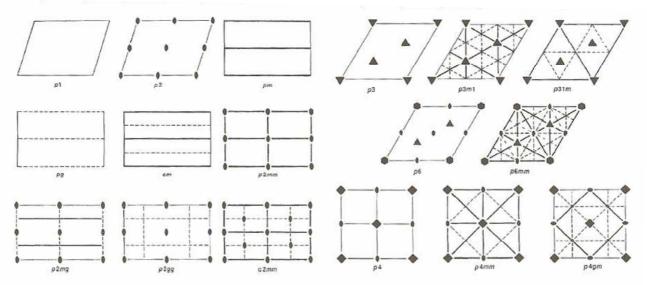


Fig. 2.6. (a) The seventeen plane groups (from *Point and Plane Groups* by K. M. Crennell). The numbering 1–17 is that which is arbitrarily assigned in the International Tables. Note that the 'shorthand' symbols do not necessarily indicate all the symmetry elements which are present in the patterns. (b) The symmetry elements outlined within (conventional) unit cells of the seventeen plane groups, heavy solid lines and dashed lines represent mirror and glide lines respectively (from *Manual of Mineralogy* 21st edn, by C. Klein and C. S. Hurlbut, Jr., John Wiley, 1999).

33 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Hammond Chap 2

plane groups vs. space groups Rotation Reflection Inversion 10 plane point groups 5 plane lattices Glide (translation + reflection) 17 plane space groups

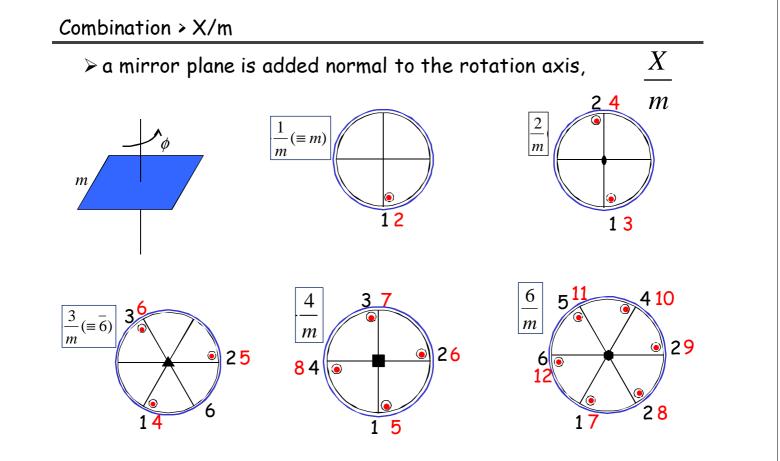
 A group of point symmetry operations whose operation <u>leaves</u> <u>at least one point unmoved</u> (lattice translation is not considered in point group)

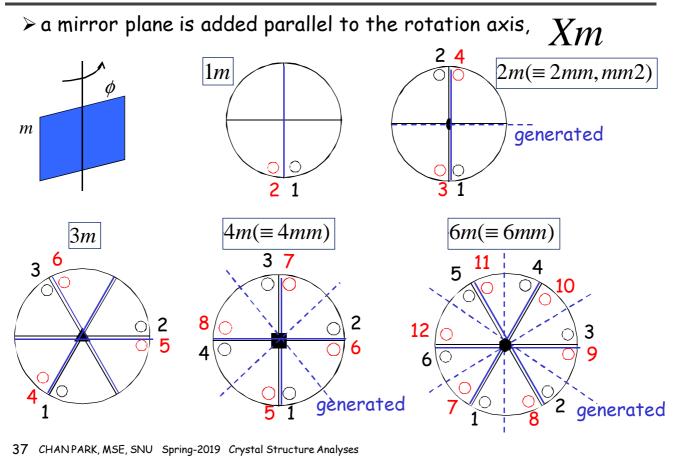
> 32 unique combination of symmetry operations about a point

in space \rightarrow <u>32 point groups</u> (32 three-dimensional point groups; ten two-dimensional point groups)

35 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

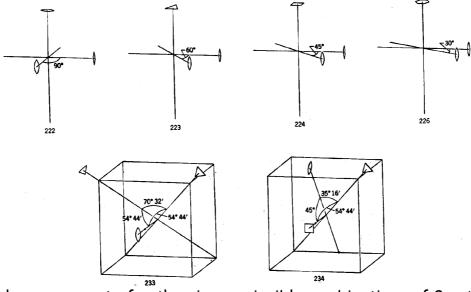
Ott Chap 9





Combination of rotation axes - should be mutually consistent

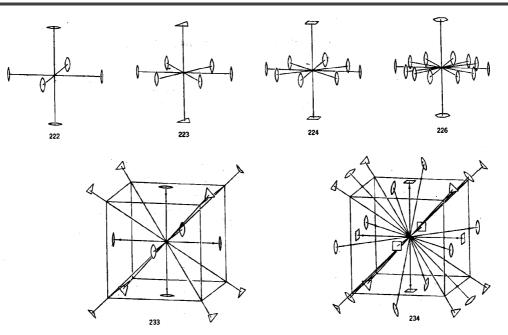
Allowed sets of simultaneous rotational symmetries passing thru a point



Spatial arrangements for the six permissible combinations of 3 rotational symmetry axes passing through a point in crystals

Page 149, Allen & Thomas, The Structure of Materials (MIT Series in Materials Science and Engineering) (1999) Page 43, Buerger, Elementary Crystallography: An introduction to the fundamental geometric features of crystals (1978)

Combination of rotation axes

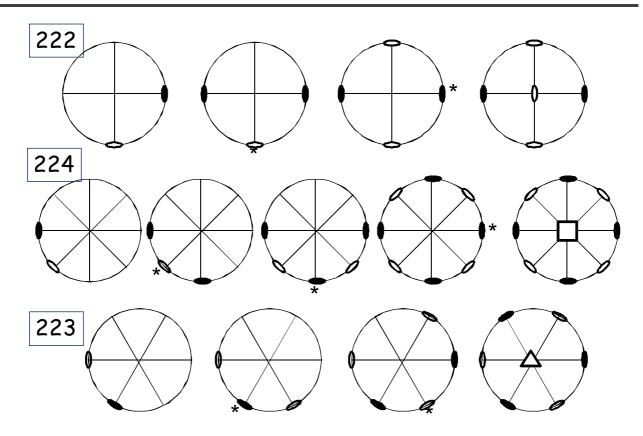


Spatial arrangements for the 6 permissible combinations of rotational symmetry axes passing through a point in crystals <u>after allowing all rotational repetitions</u>

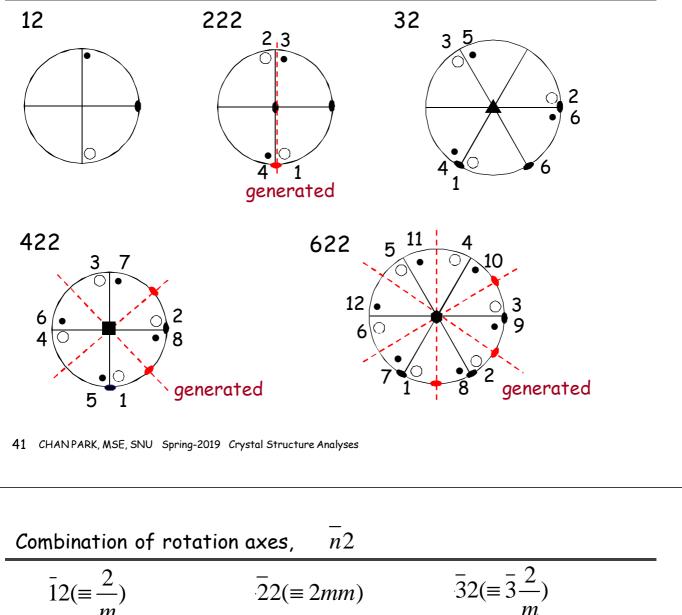
Page 150, Allen & Thomas, The Structure of Materials (MIT Series in Materials Science and Engineering) (1999) Page 44, Buerger, Elementary Crystallography: An introduction to the fundamental geometric features of crystals (1978)

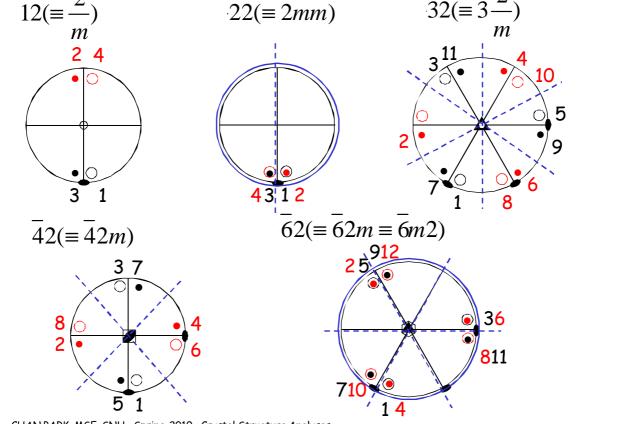
39 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Combination of rotation axes

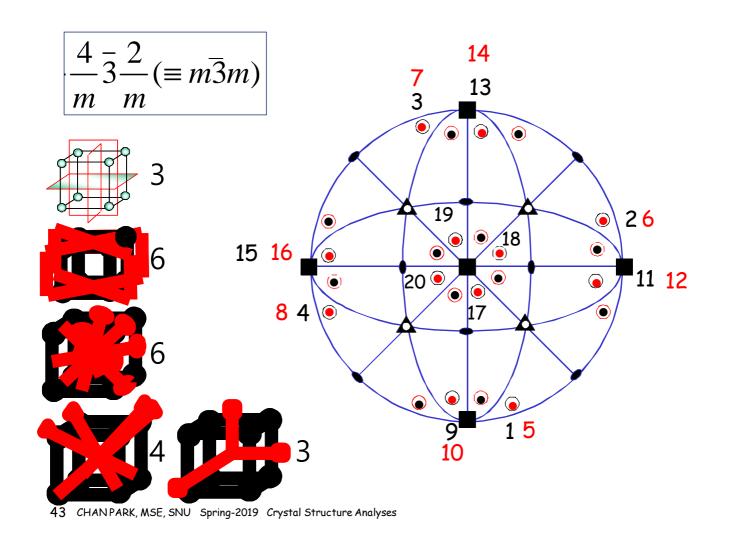


Combination of rotation axes, n2





42 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses



32 Point Groups

- The point groups are made up from point symmetry operation and combinations of them (translation is excluded)
- > X : x-fold rotation axis
- > m : mirror plane
- $\geq \overline{1}$: inversion centre
- $\succ \overline{X}$: rotoinversion axis
- > X2 : X-fold rotation axis + 2-fold rotation axis (X \perp 2)
- > Xm(m) : X + m (X // m)
- $\gg \overline{X}$ 2(2): \overline{X} + 2-fold axis (Xbar \perp 2)
- > X̄m : X̄ + m (X // m)
- > X/mm : X + m1 + m2 (X \perp m1, X // m2)

> Schönflies symbol vs. International (Hermann-Mauguin) symbol

C _n : n-fold rotat	tion axis; identi	cal with X			
C _n	Cı	C ₂	C ₃	C ₄	C ₆
X	1	2	3	4	6
C _s : (s for Germ	rotation axis an an Spiegeleben reflection axis (c	e) = mirror plan	ne;		
	Ci	Cs	$C_{3i} \equiv S_6$	S ₄	
Ā	Ī	(2≡) m	3	4	

C_{nh} : n-fold axis normal to mirror plane = X/m

C _{nh}	C _{2h}	C_{3h}	C _{4h}	C _{6h}
X/m	2/m	(3/m≡) ē	4/m	6/m

45 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Symmetry directions

Xtal systems	Syr	nmetry dire	ections	
Triclinic	۵	Ь	С	a1≠a2≠a3,a≠β≠γ≠90°
Monoclionic	۵	b	С	a1≠a2≠a3,α=γ=90°≠β
Orthorhombi c	۵	b	С	a1≠a2≠a3,α=β=γ=90°
Tetragonal	С	<a>	<110>	a1 = a2 ≠ a3, a = β = γ = 90°
Trigonal	С	<a>	-	a1 = a2 = a3, α = β = γ < 120° ≠ 90°
Hexagonal	С	<a>	<210>	a1 = a2 ≠ a3, a = β = 90° , γ = 120°
Cubic	<۵>	<111>	<110>	α1 = α2 = α3, α = β = γ = 90°

Table 8.2. The 32 point groups

Crystal system	Point groups			
Triclinic	ī	1	2	
Monoclinic	2/m	m, 2	3	
Orthorhombic	2/m 2/m 2/m (mmm)	mm2, 222	3	full symbols
Tetragonal	4/m 2/m 2/m (4/mmm)	ā2m, 4mm, 422 4/m, ā, 4	7	(short symbols)
Trigonal	3 2/m (3m)	3m, 32, 3, 3	5	
Hexagonal	6/m 2/m 2/m (6/mmm)	ōm2, 6mm, 622 6/m, δ, 6	7	
Cubic	4/m 3 2/m (m3m)	43m, 432, 2/m3, 23 (m3)	5	Total 32

47 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Ott Chap 9

Laue class, Laue group; 11 point groups with center of symmetry

Crystal system	Laue class	"Powder" Laue clas	ss Point groups
Triclinic	1	1	1, Ī
Monoclinic	2/m	2/m	2, m, 2/m
Orthorhombic	mmm	mmm	222, mm2, mmm
Tetragonal	4/m	4/mmm	$4, \bar{4}, 4/m$
	4/mmm	4/mmm	422, 4mm, 4m2, 4/mmm
Trigonal	3	6/mmm	3, 3
	3m	6/mmm	32, 3m, 3m
Hexagonal	6/m	6/mmm	6, 6 , 6/m
	6/mmm	6/mmm	622, 6mm, 6m2, 6/mmm
Cubic	m3	m3m	$23, m\bar{3}$
	m3m	m3m	432, 43m, m3m
Table 2.10 Lattice sy	mmetry and uni	t cell shapes.	
Crystal family	Un	it cell symmetry	Unit cell shape/parameters
Triclinic	1		$a \neq b \neq c; \alpha \neq \beta \neq \gamma \neq 90^{\circ}$
Monoelinic	2/n	n	$a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$
Orthorhombic	mn	nm	$a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$
Fetragonal	4/n	nmm	$a = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$
Hexagonal and Trigor	al 6/n	nmm	$a = b \neq c$; $\alpha = \beta = 90^\circ, \gamma = 120^\circ$
Cubic	m3	m	$a = b = c; \alpha = \beta = \gamma = 90^{\circ}$

Notation	Description			
\bigcirc	Asymmetric unit in the plane of the page			
)+)-	Asymmetric unit above $(+)$ or below $(-)$ the plane of the page			
)	Apostrophe indicating a left-handed asymmetric unit and clear circle indicating righthandedness.			
- () +	Two asymmetric units directly on top of one another, with the " $+$ " meaning above the plane and the " $-$ " meaning below the plane.			
	Two asymmetric units directly on top of one another, one left handed and the other right-handed			

Table 1.1. Notation for Asymmetric Units Used to Represent Point Group Symmetry

Note: The notation derives from the International Tables for Crystallography.

down
 up
 Black & Red; enantiomorphs
 down, left
 up, right
 Krawitz page 10

49 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

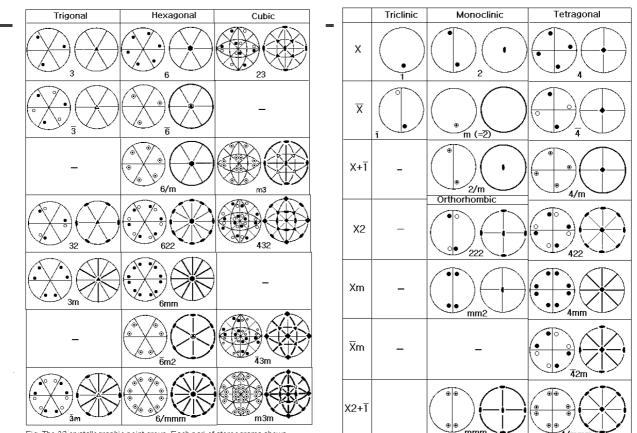


Fig. The 32 crystallographic point group. Each pari of stereograms shows (left) the poles of a general form , (righr) the symmetry elements of the point group