Interaction between X-ray and Matter

Basics of diffraction

Hammond Chapter 8, 9, 10

Pecharsky - Chapter 2

Sherwood Chapter 6

Krawitz - Chapter 5, 6

Birkholz - Chapter 1

1 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Interaction between X-ray and Matter

- > Incoherent (Compton) scattering λ of scattered beam increases due to partial loss of photon energy in collision with the core electrons (Compton effect)
- > Coherent scattering scattered beam has the same λ as the primary beam

e' beam - matter interaction

When an electron beam strikes a sample . . .

Interaction between two or more trains of waves of the same frequency emitted from coherent sources.

A series of stationary nodes and antinodes is established, known as interference.

5 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Diffraction

- ≻ Read
 - ✓ Pecharsky Chap 2, Hammond Chap 7, 8; Cullity Chap 2, Appendix 1;
 Krawitz Chap 3, 5
- Diffraction: coherent and elastic scattering of radiation by periodic arrays of objects resulting in concerted constructive interference at specific angles
- Diffraction occurs whenever wave motion encounters a set of <u>regularly spaced scattering objects</u>, provided the wavelength λ of the wave motion is the <u>same order of magnitude</u> as the repeat distance between the scattering centers

X-ray diffraction

- Diffraction occurs when each object in a periodic array scatters radiation coherently, producing concerted constructive interference at specific angles
- > The electrons in an atom coherently scatter light
 - ✓ The electrons interact with oscillating electric field of light wave
- > Atoms in a crystal form a **periodic array** of coherent scatterers
 - \checkmark The wavelength of X rays are similar to the distance between atoms
 - Diffraction from different planes of atoms produces a diffraction pattern, which contains information about the atomic arrangement within the crystal
- X rays are also reflected, scattered incoherently, absorbed, refracted, and transmitted when they interact with matter
- 7 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

X-ray Diffraction

- X-rays are an ideal probe of electromagnetic radiation for the study of crystals as the <u>wavelength λ is of the same order as</u> <u>the distances between the atoms</u> in crystals
- \succ Elastic scattering \rightarrow no energy transfer & no wavelength change
- When the <u>periodic array</u> consists of crystalline matter of 3-D arrangement of atoms, monochromatic X-ray radiation diffracts in a number of different directions in 3-D space

Kinematical vs. Dynamical theories of diffraction

> Kinematical

- ✓ <u>A beam scattered once is not scattered again</u>
- ✓ <u>Interaction</u> of diffracted beam with crystal is negligibly <u>small</u>
 ■Crystal consists of individual <u>mosaic blocks</u>
 - Size of the crystallites is small
 - •Misalignment of crystallites is large enough, so that interaction of X-ray with matter at length scale larger than the size of the mosaics is negligible

> Dynamical

- ✓ Accounts for <u>scattering of diffracted beam & other interactions of</u> <u>waves</u> inside the crystal
- ✓ Needed when crystals are nearly perfect or when there is a strong interaction of the radiation with the material (electron diffraction
- Many dynamical effects (primary & 2ndary extinction, simultaneous diffraction, thermal diffuse scattering, etc.) are accounted for as corrections to the kinematical diffraction model
 Rigaku Journal, 25(2), 2009, X-ray thin film measurement techniques
- 9 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Mosaic structure

- > Not perfectly regular lattice → collection of tiny blocks each slightly disoriented one from the other
- > Angle of disorientation between the blocks is ε (< 1 degree) \rightarrow diffraction occurs at all angles between θ_B and $\theta_B + \varepsilon$

Range of Applications of X-Ray Analytical Methods

- > Qualitative and quantitative element analysis (XRF)
- > Qualitative and quantitative phase analysis (XRD)
- > % crystallinity
- > Micro-strain and crystallite size determination
- > Residual stress and texture analysis
- > Grazing incidence diffraction (GID) and reflectometry (XRR)
- > High Resolution X-ray Diffraction (HRXRD)
- Structure solution and refinement
- > Micro-diffraction (phase identification, texture, stress...)
- > Nano-structure investigations by small angle X-ray scattering (SAXS)

11 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

What can we do with XRPD?

- > Qualitative phase analysis (Identification of unknown phases)
- > Quantitative phase analysis
- Accurate lattice parameter measurement
- > % crystallinity
- Measurement of crystal size
- Measurement of internal elastic strains
- Preferred orientation measurement
- > Cation site disorder
- > Micro-diffraction (phase identification, texture, stress...)
- > Structure refinement (vs. single crystal)

13 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

17 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Camera vs. Diffractometer

- Diffraction camera
 - ✓ I is measured thru amount of blackening it produces on a <u>film.</u>
 - ✓ All diffraction lines recorded simultaneously. Variation in I of incident beam during exposure has no effect on the relative I.
 - ✓ Quantitative measurements of line position & intensity need at least two steps (recording pattern on the film + microphotometer record of the film).
- Diffractometer
 - ✓ I is measured directly by an electronic X-ray <u>detector.</u>
 - ✓ Diffraction lines recorded one after another → incident beam intensity must be kept constant → voltage & current needs to be stabilized.
 - ✓ Quantitative measurement of line position & intensity is made in one operation.

≻Laue

- ✓ Crystals consist of <u>3-D network of rows of atoms.</u>
- ✓ Crystal behaves as a <u>3D diffraction grating.</u>
- ✓ Laue equations

➢ Bragg

- Crystals consist of <u>planes of atoms</u> which behaves as reflecting planes.
- Strong reflected beam is produced when the path difference between reflections from successive planes in a family is equal to whole number of wavelengths.
- ✓ <u>Bragg's law</u>

19 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

- > h, k, I --- Miller indices of the peaks
- ➤ a, c --- lattice parameter
- > a, c known \rightarrow can get θ , the peak position
- \triangleright θ , peak position known \rightarrow can get lattice parameters

The path difference between the waves scattered by atoms from adjacent (*hkl*) lattice planes of spacings d_{hkl} is given by

 $(AB + BC) = (d_{hkl} \sin \theta + d_{hkl} \sin \theta) = 2d_{hkl} \sin \theta.$

Hence for constructive interference:

$$n\lambda = 2d_{hkl}\sin\theta,$$

where n is an integer (the order of reflection or diffraction).

$$\lambda = 2\left(rac{d_{hkl}}{n}
ight)\sin heta = 2d_{nh\,nk\,nl}\sin heta$$
 Bragg's law

23 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Bragg's law $|\mathbf{s} - \mathbf{s}_{0}| = 2 \sin \theta$ $|\mathbf{d}_{hkl}^{*}| = 1/d_{hkl}$ $\lambda = 2\left(\frac{d_{hkl}}{n}\right) \sin \theta = 2d_{nh\,nk\,nl} \sin \theta$ $\frac{(\mathbf{s} - \mathbf{s}_{0})}{\lambda} = \mathbf{d}_{hkl}^{*} = h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*}.$ $\frac{\mathbf{a} \cdot (\mathbf{s} - \mathbf{s}_{0}) = n_{x}\lambda}{Laue \text{ equation}} = \mathbf{a} \cdot \mathbf{d}_{hkl}^{*} \cdot \lambda = \mathbf{a} \cdot (h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*})\lambda = h\lambda$

Hammond

$$b(\cos \beta_n - \cos \beta_0) = \mathbf{b} \cdot (\mathbf{s} - \mathbf{s}_0) = n_y \lambda = \mathbf{k} \lambda$$

$$c(\cos \gamma_n - \cos \gamma_0) = \mathbf{c} \cdot (\mathbf{s} - \mathbf{s}_0) = n_z \lambda = \mathbf{k} \lambda$$

3rd order diffaction from (111) = 1st order diffraction from 333 (Laue index). 333 planes have 1/3 spacing of (111).

25 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Hammond p162

Bragg's law

Scattered by atoms P, K (1', 1a') : The beams are in phase Scattered by atoms K and L : $ML + LN = 2d'sin\Theta = n\lambda$ For fixed value of λ there can be several angles of incidence; $\Theta_1, \Theta_2, \Theta_3$

27 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Prof. Jeong Hyo Tae, Kangnung National Univ.

$2d \sin \Theta = n\lambda$

Ewald reflecting sphere

 $|OC| = (1/\lambda)\sin\theta = \frac{1}{2} |\mathbf{d}_{hkl}| = \frac{1}{2} (1/d_{hkl}) \rightarrow \lambda = 2d_{hkl}\sin\theta$

Ewald reflecting sphere

33 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Texture Measurement by Diffraction

Debye rings from ----

Ewald reflecting sphere

Origin of the reciprocal lattice is not at the center of the sphere, but is at the point where the direct beam exits the sphere

Ewald reflecting sphere

Change $\lambda \rightarrow$ radius of sphere changes \rightarrow other points can intersect sphere

If λ can change continuously \rightarrow other planes can reflect as their reciprocal lattice points successively intersect the sphere \rightarrow Laue's original X-ray experiment using <u>white radiation</u>

- > All the planes in the shaded region satisfy Bragg's law for the particular sphere on which they lie (for that particular λ)
- ➤ Monochromatic radiation → crystal and the sphere should move to have more intersection (to have diffracted beams from more planes)

 θ - 2 θ X-ray diffraction pattern

Size & Shape of unit cell

≻ 2θ

- ✓ Size & shape of the unit cell ($\leftarrow \lambda = 2d \sin \theta$)
- \succ Intensity
 - ✓ Atomic scattering factor
 - ✓ Structure factor (atomic position, occupancy, etc.)
 - ✓ Polarization
 - ✓ Multiplicity
 - ✓ Temperature
 - ✓ Microabsorption
 - ✓ Crystallite size
 - ✓ Residual stress
 - ✓ Preferred orientation (texture)
 - ✓ Degree of crystallinity
 - ✓ Anomalous scattering
 - ✓ Source intensity, voltage drift, take-off angle, slit width, axial divergence, detector dead time, etc.

ntensity

41 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

≻ 2theta D-spacing accuracy Diffractometer misalignment ✓ Geometry (crystal system, lattice parameter) (shape & size) Specimen displacement error ✓ Contents of unit cell Problems in establishing true \succ Intensity peak position ✓ Atom type > Background ✓ Arrangement > Κα2 ✓ Orientation > Shape of diffraction lines ✓ Instrument broadening ✓ Particle dimension ✓ Strain

43 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Intensity

- Structure sensitive
 - ✓ Atomic scattering factor
 - \checkmark Structure factor
 - ✓ Polarization
 - ✓ Multiplicity
 - ✓ Temperature
- > Sample sensitive
 - ✓ Absorption
 - ✓ Crystallite size
 - ✓ Degree of crystallinity
 - \checkmark Particle orientation

- Instrument sensitive
 - ✓ Absolute intensities
 - Source intensity
 - Diffractometer efficiency
 - Take-off angle of tube
 - Receiving slit width
 - Axial divergence allowed
 - ✓ Relative intensities
 - Divergence slit aperture
 - Detector dead-time
- Measurement sensitive
 - ✓ Method of peak area measurement
 - ✓ Method of background subtraction
 - $\checkmark \alpha 2$ stripping or not
 - ✓ Degree of data smoothing employed

> Two step process

(1) Determination of the size & shape of the unit cell \leftarrow peak position

(2) Determination of lattice type & distribution of the atoms in the structure ← intensities of the diffraction spots

45 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

A single crystal specimen in a Bragg-Brentano diffractometer would produce only one family of peaks in the diffraction pattern.

The (110) planes would diffract at 29.3°20; however, they are not properly aligned to produce a diffraction peak (the line perpendicular to those planes does not bisect the incident and diffracted beams). Only background is observed.

A polycrystalline sample can contain thousands of crystallites. \rightarrow all possible diffraction peaks can be observed.

- For every set of planes, there will be a small percentage of crystallites that are properly oriented to diffract (the plane which perpendicularly bisects the incident and diffracted beams)
- Basic assumptions of powder diffraction are that for every set of planes there is an equal number of crystallites that will diffract and that there is a statistically relevant number of crystallites, not just one or two.

47 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Scott A Speakman