# Precise lattice parameter

Structure Analysis Materials Science & Engineering Seoul National University CHAN PARK

1 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

variance, weight, mean, weighted mean

- > standard deviation ( $\sigma$ ); a measure of how spread out numbers are
- > variance ( $\sigma^2$ ); the average of the squared differences from the mean (square of expected error)  $2 \qquad 1 \qquad \sum_{n=1}^{n} c_{n}^{n}$

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\Rightarrow \text{ weight}(\omega_{i}) \quad w_{i} = \frac{1}{\sigma_{i}^{2}}.$$

$$\sigma^{2} = \frac{n}{n-1} \frac{\sum_{i=1}^{n} w_{i}(x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} w_{i}},$$

$$\sigma^{2} = \frac{n}{n-1} \frac{\sum_{i=1}^{n} w_{i}(x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} w_{i}},$$

> Minimizing the sum of the squares of the deviations from the mean  $\rightarrow$  <u>"least square minimization"</u>

- > Interpolation
  - ✓ connect the data-dots
  - If data is reliable, we can plot it and connect the dots



Depicting the trend in the data variation by assigning a single function to represent the data across its entire range



## The goal is to identify the coefficients 'a' and 'b' such that f(x) 'fits' the data well

3 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

From presentatin of Ashish Garg of IIT Kanpur

#### Linear curve fitting, linear regression

A straight line function f(x) = ax + b

How can we pick the coefficients that best fits the line to the data?

First guestion: What makes a

particular straight line a 'good' fit?

- > Square the distance
- Denote data values as (x, y) and points
   on the fitted line as (x, f(x))
- > Sum the error at the four data points





The 'best' line has minimum error between line and data points.

•

least square minimization

the square of the error is minimized

- > Just as was the case for linear regression;
- > How can we pick the coefficients that best fit the curve to the data?
- > The curve that gives minimum error between data  $\rightarrow$  fit is 'best'
- > Quantify the error for these two second order curves ...
  - ✓ Add up the length of all the red and blue vertical lines
  - $\checkmark$  pick curve with minimum total error



5 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

From presentatin of Ashish Garg of IIT Kanpur

### Linear least square

4 measurements (observations) 2 unknown parameters

- 4 (x,y) data sets
- (1,6), (2,5), (3,7), (4,10)

Fundamental  

$$\beta_1 + \beta_2 x = y$$
  
Fundamental  
Equation form  
 $\beta_1 + 1\beta_2 = 6$   
 $\beta_1 + 2\beta_2 = 5$   
 $\beta_1 + 3\beta_2 = 7$   
 $\beta_1 + 4\beta_2 = 10$   
Line of linear regression

#### More equations than the # of unknowns

 $\rightarrow$  There are no values of  $\beta_1$  and  $\beta_2$  that satisfy the equations exactly

 $\rightarrow$  can get the  $\beta_1$  and  $\beta_2$  that satisfy the equations as much as possible (best straight line thru the points)

→ best fit  $\equiv$  values of  $\beta_1$  and  $\beta_2$  that minimizes  $\sum \epsilon_i^2$  when residual (error)  $\epsilon_i = y - \beta_1 - \beta_2 x$ 



 $\pm \Delta 2\theta$ 



### Least square fitting

> a way of finding the best curve to fit a given set of observations

> it gives the best values of the constants in the equation selected

- ✓ q is a function of 3 variables x, y and z
- $\checkmark$  measurement of q at various values of x, y and z
- ✓ 3 unknown parameters a, b and c

>With only 3 measurements at various x, y and z, 3 equations can be uniquely solved for a, b and c

>When number of measurements > 3,

 $\rightarrow$  (1) can use only 3 measurements (equations) to solve for a, b, and c  $\rightarrow$  (2) can get more accurate values of a, b and c by taking advantage of the redundancy of the data; the best line that fits the experimental points

$$q_j = ax_j + by_j + cz_j \quad (j > 3)$$

For every measurement  $q_j$ , the error  $\mathsf{E}_j$  is given by  $E_j = a x_j + b y_j + c z_j - q_j$ 

The sum of the squares of errors for all  $q_j$  must be minimum w.r.t. unknowns

$$\sum_{j} E_j^2 = \sum_{j} \left( ax_j + by_j + cz_j - q_j \right)^2$$

9 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Sherwood & Cooper chap 15

Linear least square analysis

$$\sum_j E_j^2 = \sum_j ig( a x_j + b y_j + c z_j - q_j ig)^2$$
 must be minimum w.r.t. unknowns

At minimum, 
$$\frac{\partial \sum_{j} E_{j}^{2}}{\partial a} = \frac{\partial \sum_{j} E_{j}^{2}}{\partial b} = \frac{\partial \sum_{j} E_{j}^{2}}{\partial c} = 0$$

$$\frac{\partial \sum_{j} E_{j}^{2}}{\partial a} = 2 \sum_{j} x_{j} \left( ax_{j} + by_{j} + cz_{j} - q_{j} \right) = 0$$

$$a\sum_{j} x_{j}^{2} + b\sum_{j} x_{j}y_{j} + c\sum_{j} x_{j}z_{j} - \sum_{j} q_{j}x_{j} = 0$$
  
$$a\sum_{j} x_{j}y_{j} + b\sum_{j} y_{j}^{2} + c\sum_{j} y_{j}z_{j} - \sum_{j} q_{j}y_{j} = 0$$
  
$$a\sum_{j} x_{j}z_{j} + b\sum_{j} y_{j}z_{j} + c\sum_{j} z_{j}^{2} - \sum_{j} q_{j}z_{j} = 0$$

3 equations can be solved for 3 unknowns

Linear least square analysis



observation equation

Least square solution is that which minimizes the sum of squares of residuals of the observation equations

 $w_{i}$  ; inversely proportional to the (expected error)^{2} of each observation equation

W weight matrix

11 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

n linear equations & m unknown parameters

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1m}x_{m} = y_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2m}x_{m} = y_{2}$$

$$\dots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nm}x_{m} = y_{n}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}; \quad \mathbf{x} = \begin{pmatrix} x_{1} \\ x_{2} \\ \dots \\ x_{m} \end{pmatrix}; \quad \mathbf{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{pmatrix}$$

When n > m, vector x can be found, which will be the best solution for all n existing equations using the least square technique.

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1m}x_m - y_1 = \varepsilon_1$   $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2m}x_m - y_2 = \varepsilon_2$ ...  $a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nm}x_m - y_n = \varepsilon_n$ 

Find the minimum of  $\Phi(x_1, x_2, \dots x_m) = \sum_{i=1}^n \varepsilon_i^2$ 



13 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

#### Linear least square analysis

$$\begin{bmatrix} x_{1}\sum_{i=1}^{n}a_{i1}^{2} + x_{2}\sum_{i=1}^{n}a_{i1}a_{i2} + \dots + x_{n}\sum_{i=1}^{n}a_{i1}a_{im} = \sum_{i=1}^{n}a_{i1}y_{i} \\ x_{1}\sum_{i=1}^{n}a_{i2}a_{i1} + x_{2}\sum_{i=1}^{n}a_{i2}^{2} + \dots + x_{m}\sum_{i=1}^{n}a_{i2}a_{im} = \sum_{i=1}^{n}a_{i2}y_{i} \\ \dots \\ x_{1}\sum_{i=1}^{n}a_{im}a_{i1} + x_{2}\sum_{i=1}^{n}a_{m}a_{i2} + \dots + x_{m}\sum_{i=1}^{n}a_{im}^{2} = \sum_{i=1}^{n}a_{im}y_{i} \end{bmatrix}$$

$$\begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1m} & a_{2m} & \dots & a_{nm} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix} \times = (A^{T}y)$$

$$A^{T} \qquad A \qquad (A^{T}A)x = A^{T}y$$

$$\therefore x = (A^{T}A)^{-1}(A^{T}y)$$

Bragg's law  $\lambda = 2 d s i n \theta$ 

>  $\lambda$ ,  $\theta$  known  $\rightarrow$  d can be calculated

## $1/d^2 = (h^2 + k^2)/a^2 + l^2/c^2$

d-value of a <u>tetragonal</u> elementary cell



## Evaluation of $\mathsf{F}_\mathsf{N}$

| - 50 possible lines                                          | ]              | $2\theta_{calc}$                     |                     |                             | $2\theta_{obs}$                     | Δ2θ                                 |
|--------------------------------------------------------------|----------------|--------------------------------------|---------------------|-----------------------------|-------------------------------------|-------------------------------------|
| - 42 have observable intensity                               |                | Use of the Smith-S<br>Metric         | Snyder F<br>Aspects | OM for the<br>of a Powder I | Evaluation<br>Pattern <sup>a</sup>  | of the                              |
|                                                              | No.<br>1<br>2  | 2θ <sub>calc</sub><br>6.710<br>8.820 | 21<br>48            | d (Å)<br>13.162<br>10.018   | 2θ <sub>obs</sub><br>6.790<br>8.780 | $\Delta 2\theta$<br>0.080<br>-0.040 |
| - $2\theta_{calc}$ ; calculated $2\theta$ values based       | 3 4            | 11.710<br>14.320                     | 12<br>37            | 7.551<br>6.180              | 11.760<br>14.360                    | 0.050                               |
| on the known lattice parameters                              | 67             | 17.210<br>18.950<br>20.230           | 25<br>95            | 4.679<br>4.386              | 18.970<br>20.210                    | 0.020                               |
| - 120 - 20 - 20                                              | 8<br>9<br>10   | 20.730<br>21.819<br>26.263           | 45<br>11<br>5       | 4.281<br>4.070<br>3.391     | 20.760<br>21.809<br>26.283          | 0.030<br>- 0.010<br>0.020           |
|                                                              | 11<br>12<br>13 | 31.721<br>32.618<br>34.618           | 12<br>              | 2.818<br>2.743<br>2.589     | 31.727<br>                          | 0.006                               |
| $F_N = \frac{1}{ \Delta 2\theta } \frac{N}{N_{\text{poss}}}$ | 14<br>15       | 38.210<br>46.262<br>47.183           | 31<br>3             | 2.353<br>1.961              | 38.221<br>46.260                    | -0.011<br>-0.002                    |
|                                                              | 17<br>18       | 47.523<br>48.325                     | 39<br>68            | 1.912                       | 47.517<br>48.318                    | -0.006<br>-0.007                    |
| SS figure of merit                                           | 20<br>21       | 49.199<br>50.999<br>52.503           | 21<br>4<br>27       | 1.850<br>1.789<br>1.741     | 49.200<br>51.003<br>52.509          | 0.001<br>0.004<br>0.006             |
|                                                              | 22<br>23<br>24 | 56.215<br>56.973<br>58.201           | 26<br>11            | 1.635<br>1.615<br>1.584     | 56.991<br>58.200                    | 0.018                               |
|                                                              | 25<br>26       | 59.000<br>59.421                     | 3                   | 1.564                       | 59.012<br>59.460                    | 0.012<br>0.039                      |
|                                                              |                |                                      |                     |                             |                                     |                                     |

N; # experimental lines (peaks) considered N<sub>poss</sub>; # possible, space group-allowed diffraction lines

## Evaluation of $\mathsf{F}_\mathsf{N}$

| (Cont'd.)                                    |                      |               |        |                     |                  |
|----------------------------------------------|----------------------|---------------|--------|---------------------|------------------|
| No.                                          | $2\theta_{\rm calc}$ | $I^{\rm rel}$ | d (Å)  | $2\theta_{\rm obs}$ | $\Delta 2\theta$ |
| 40                                           | 80.253               | 5             | 1.195  | 80.238              | -0.015           |
| 41                                           | 81.772               | 9             | 1.177  | 81.776              | 0.004            |
| 42                                           | 82.025               | 1             | 1.174  |                     |                  |
| 43                                           | 84.002               | 1             | 1.151  |                     |                  |
| 44                                           | 84.923               | 1             | 1.141  | 84.916              | -0.007           |
| 45                                           | 85.773               | 3             | 1.132  | 85.770              | -0.003           |
| 46                                           | 8.246                | 6             | 1.106  | 88.249              | 0.003            |
| 47                                           | 89.114               | 2             | 1.098  | 89.110              | -0.004           |
| 48                                           | 90.002               | 1             | 1.089  |                     |                  |
| 49                                           | 90.734               | 4             | 1.082  | 90.720              | -0.014           |
| 50                                           | 91.720               | 1             | 1.073  | 91.726              | 0.006            |
| $\frac{\operatorname{Avg}\Delta 2\theta}{a}$ | 0.0066               | 0.0066        | 0.0083 | 0.0104              | 0.0084           |
| N <sub>poss</sub>                            | 50                   | 50            | 40     | 30                  | 20               |
| Nobs                                         | 50                   | 42            | 35     | 27                  | 18               |
| FOM                                          | 151.6                | 127.4         | 104.9  | 86.2                | 107.3            |

<sup>*a*</sup> Wavelength = 1.54056.

$$F_{N} = \frac{1}{|\Delta 2\theta|} \frac{N}{N_{\text{poss}}}$$

17 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses



#### > <u>Precision</u> ; the degree to which further measurements show the same or similar results

> <u>Accuracy</u>; the degree of conformity of a measured quantity to its true value.

celebrating200years.noaa.gov/magazine/tct/accuracy\_vs\_precision\_220.jpg

18 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Jenkins & Snyder, page 314

- > How to prepare powder?
  - ✓ Grind in mortar & pestle (wet or dry)
  - ✓ Crush (percussion mill)
  - ✓ Cryo-grind
  - ✓ Micronising mill
  - ✓ Treatments/separations

- > Mounting specimen
  - ✓ Front, side, back-loaded powders
  - ✓ Films & disks
  - ✓ Diluents & dispersants
  - ✓ Adhesives
  - ✓ Reactive samples (windows)
  - ✓ Capillaries
  - ✓ Odd shapes
  - ✓ Zero-background holders (ZBH)







www2.arnes.si/~sgszmera1/html/xrd/preparation2.html

19 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

## Spray drying - can eliminate preferred orientation

BRUKER



Jenkins & Snyder, page 252

Ure a atter spray drying Jenkins & Snyder, page 253







#### $\Delta 2\theta \& \Delta d$

- > Typical error windows
  - $\checkmark\,$  Debye Scherrer camera  $\pm\Delta2\theta$  = 0.1°
  - ✓ diffractometer  $\pm \Delta 2\theta$  = 0.05°
  - $\checkmark\,$  diffractometer (internal standard corrected)  $\pm\Delta2\theta$  = 0.01°
  - ✓ diffractometer (internal standard corrected & peaks profile fitted)  $\pm$ ∆2 $\theta$  = 0.005°
- $> \Delta 2\theta$  d relationship is non-linear

 $\checkmark$  Low angle (low 2 $\theta$ , large d-value) lines have large error

|          | Table 12.2. E       | Crrors in <i>d</i> -Values     | s Resulting from                   | n Fixed 2θ Erro                | rs                 |
|----------|---------------------|--------------------------------|------------------------------------|--------------------------------|--------------------|
| d<br>(Å) | $2\theta$ (degrees) | $\pm \Delta 2\theta$ (degrees) | $\frac{\pm}{(\text{\AA})}\Delta d$ | $\pm \Delta 2\theta$ (degrees) | $\pm \Delta d$ (Å) |
| 5        | 17.73               | 0.1                            | 0.04                               | 0.05                           | 0.014              |
| 4        | 22.20               | 0.1                            | 0.02                               | 0.05                           | 0.008              |
| 3        | 29.76               | 0.1                            | 0.01                               | 0.05                           | 0.005              |
| 2        | 45.30               | 0.1                            | 0.004                              | 0.05                           | 0.002              |
| 1.5      | 61.80               | 0.1                            | 0.002                              | 0.05                           | 0.0011             |
| 1.0      | 100.76              | 0.1                            | 0.0007                             | 0.05                           | 0.0004             |



Spectral dispersion; peak breadth increases with  $2\theta$ 



## Line (peak) profile analysis



27 CHANPARK, MSE, SNU Spring-2019 Crystal Structure Analyses

Smith & Snyder FOM 
$$F_N = \frac{1}{|\Delta 2\theta|} \frac{N}{N_{\text{poss}}}$$

De Wolff FOM 
$$M_{20} = \frac{\mathbf{d}_{20}^{*2}}{2|\Delta \mathbf{d}^{*2}|} \frac{1}{N_{\text{poss}}}$$

Jenkins & Snyder, page 316

Intensity FOM 
$$R_{I} = \sum \frac{I_{\rm obs} - I_{\rm calc}}{I_{\rm obs}}$$



## Zero Background Holder

A single crystal of quartz that is cut and polished in an orientation such that it produces no diffraction peaks.



## 20 calibration techniques

| The Effects of Calibration on the Figure of Merit $F_N$ |                            |                                               |      |                             |  |  |
|---------------------------------------------------------|----------------------------|-----------------------------------------------|------|-----------------------------|--|--|
| Method                                                  | Arser<br>(                 | Arsenic Trioxide $(N = 29)$                   |      | Quartz $(N = 30)$           |  |  |
| No correction                                           | 9.9                        | (0.049,59)                                    | 16.4 | (0.052,35)                  |  |  |
| External standard                                       | 15.4                       | (0.026,59)                                    | 30.0 | (0.028,35)                  |  |  |
| Internal standard                                       | 42.0                       | (0.012,59)                                    | 66.1 | (0.013,35)                  |  |  |
|                                                         | $F_N = \frac{1}{ \Delta }$ | $\frac{1}{2\theta} \frac{N}{N_{\text{poss}}}$ |      | $\Delta 2\theta   N_{poss}$ |  |  |

N; # experimental lines (peaks) considered

 $N_{\text{poss}}$ ; # possible, space group-allowed diffraction lines

Internal Standard Calibration



### Calibration curve



Jenkins & Snyder, page 252 Misture, etal. Powder Diffraction 9, 172-9 (1994)

## Calibration curve



35 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

## Errors removed by calibration

#### Effectiveness of Standards for the Correction of $2\theta$ Errors

|                            |      | Type of Standard     |                      |             |                         |  |  |
|----------------------------|------|----------------------|----------------------|-------------|-------------------------|--|--|
| Use of<br>Standard         | None | External $(2\theta)$ | Internal $(2\theta)$ | ZBH<br>(2θ) | External<br>(Intensity) |  |  |
| Instrument<br>misalignment | No   | Yes                  | Yes                  | Yes         | (Yes)                   |  |  |
| Inherent<br>aberrations    | No   | Yes                  | Yes                  | Yes         | No                      |  |  |
| Specimen<br>transparency   | No   | No                   | Yes                  | Yes         | No                      |  |  |
| Specimen<br>displacement   | No   | No                   | Yes                  | Yes         | No                      |  |  |
| Instrument<br>sensitivity  | No   | No                   | No                   | No          | Yes                     |  |  |

- $\blacktriangleright$  None on a random instrument = 0.1°
- $\succ$  None on a well-aligned instrument = 0.05°
- > External standard method = 0.025°
- > Internal standard method = 0.01°
- Zero background holder method = 0.01°
- Profile fit peak positions = 0.005°

37 CHAN PARK, MSE, SNU Spring-2019 Crystal Structure Analyses

| Material Parameter |                 | 2nd-derivative peak location |              | Profile-fitted peak<br>location | Smith & Snyder                   |  |
|--------------------|-----------------|------------------------------|--------------|---------------------------------|----------------------------------|--|
|                    | Uncalibrated    | C                            | alibrated    | figure of merit                 |                                  |  |
|                    | F <sub>N</sub>  | F(9) = 84                    | F(9) = 245   | F(9) = 168                      | $F_{} = \frac{1}{1} \frac{1}{1}$ |  |
| Ag                 |                 | (0.0119, 9)                  | (0.0041, 9)  | (0.0060,9)                      | $1 N = (\Lambda 2\theta) N$      |  |
|                    | $a(\text{\AA})$ | 4.0858(14)                   | 4.08616(5)   | 4.08639(7)                      |                                  |  |
|                    | $F_N$           | F(9) = 235                   | F(9) = 137   | F(7) = 69                       |                                  |  |
| $Al_2O_3$          |                 | (0.0029, 13)                 | (0.0050, 13) | (0.0079, 13)                    |                                  |  |
| (Linde C)          | $a(\text{\AA})$ | 4.7582(2)                    | 4.7598(3)    | 4.7592(8)                       |                                  |  |
|                    | $c(\text{\AA})$ | 12.9849(7)                   | 12.9895(11)  | 12.9951(75)                     |                                  |  |
|                    | $F_N$           | F(13) = 172                  | F(13) = 190  | F(13) = 274                     |                                  |  |
| LaB <sub>6</sub>   |                 | (0.0058, 13)                 | 0.0053,13)   | (0.0036,13)                     |                                  |  |
|                    | a(Å)            | 4.1552(1)                    | 4.1562(1)    | 4.15635(8)                      |                                  |  |
|                    | $F_N$           | F(11) = 57                   | F(11) = 56   | F(11) = 53                      |                                  |  |
| Urea               |                 | (0.0107, 18)                 | (0.0108, 18) | (0.0115,18)                     |                                  |  |
|                    | a(Å)            | 5.6478(7)                    | 5.6499(7)    | 5.6493(6)                       |                                  |  |
|                    | $c(\text{\AA})$ | 4.6972(23)                   | 4.6989(24)   | 4.6982(22)                      |                                  |  |

## Calibration – quartz crystal