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coating

Substrate

Coatings – effect of stress

 Tensile (+) stress

Leads to cracking and 

crack growth

 Compressive (–) stress

Good, can close cracks

Too high  buckling

Panalytical
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Compressive and tensile stress

dll

d┴

dsubstrate < dfilm  compressive in film 
dsubstrate > dfilm  tensile in film

Birkholtz, Thin film analysis by X-ray scattering, p245

stress  changes of d
 can get info on strain  can get info on stress

interplanar spacing d
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X-ray diffraction

Θ= sin2dnλ
d

θ

Bragg’s Law

2θ 2θ 2θ
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Scott A Speakman
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X-ray diffraction

Cullity 3rd ed. p441

2θ 2θ 2θ

Θ= sin2dnλ
The value of d can be obtained from the 
peak position (2θ) of the XRD pattern

The change of d can be obtained from XRD @ many different 
angles  info on strain  info on stress

hkl plane (hkl)

Scott A Speakman
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Macro-stress & Micro-stress

 Diffraction does not measure stresses directly

 Changes in d-spacing  strains (macro-strain)

 Changes in line width  micro-strain

 The lattice planes of the individual grains in the 

material act as strain gauges

 Macro-stress ; stress is uniform over large 

distances

 Micro-stress ; vary from one grain to another on a 

microscopic scale

Macro-strain is uniform  peak shift

Micro-strain is nonuniform  peak broadening

Cullity 3rd ed. p176

λ = 2d sinθ
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Applied stress & Residual stress

Stress = applied stress + residual stress

Applied stress ; any externally applied load 

Residual stress ;

stress existing in a solid body in the absence of applied force

 Typically caused by forming or heating (mechanical working, differential thermal 

expansion)

 Especially welding, casting, forging, rolling, machining, cooling, etc.

 Important in Fatigue Life,  Corrosion Resistance, Dimensional Stability,  Brittle 

Fracture, Distortion 

 Can be found in metals, ceramics, biological materials, composites, films – everything

can affect material performance

can be beneficial or detrimental

 Residual Surface Stress (e.g. in toughened glass)

 Stress corrosion cracking

 We can’t measure stress directly, only strains
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Residual stress

 tension or compression which exists in the bulk of a material without
application of an external load

residualappliedpresent σσσ +=

A

F
applied =σ

residualpresent σσ =When F = 0 (no external force),

failresidualapplied σ<σ+σ  Safe design

 Unexpected failure
failpresent σ≥σ

failresidualapplied σ≥σ+σ
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Residual stress

 When the nuts on the central bar are 

tightened, the bar is put into tension and 

the outer frame into compression

 There is no external load but the 

components are stressed

 During welding the central bar undergoes 

thermal expansion

 On cooing, this leaves the bar under 

tension and the outer frame under 

compression

Cullity 3rd ed. p437

tightening 
a screw

welding
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Residual stress

 Bend a bar so that the outer and inner 

parts of the bar deform plastically, but 

the inner portion is only deformed 

elastically (b). 

 If the external stress is released, the 

inner part of the bar will try to return to 

its original shape, but the outer part can 

not, because it has plastically deformed. 

 The bar does not completely return to its 

original shapes, and there are residual 

stresses.

Cullity 3rd ed. p438

Loaded below elastic limit

Unloaded

Loaded beyond elastic limit

Plastically 
deformed region
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Residual stress – no external forces
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Stress in thin films

Intrinsic stress

 Stress developed during film deposition

 Misfit strain

 Microstructural change (e.g. grain growth)

 Phase transition (due to differences in density)

Extrinsic stress

 Thermal stress (due to difference of CTE b/w film and substrate)

CTE; coefficient of thermal expansion
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How to measure stress ?

 Only strain can be measured

 Stress is calculated

00

0

l
l

l
ll ∆=−=ε

εσ ⋅= *C

stiffness
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Stress Analysis of thin films
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Residual Stress Measurement

 Mechanical methods

 Hole-drilling technique

 Deep hole

 Sectioning

 Contour

 Excision, Splitting, Curvature, Layer removal, Slitting, etc.

 Diffraction methods

 X-ray diffraction

 Synchrotron X-ray diffraction

 Neutron diffraction

 Magnetic Barkhausen noise method

 Ultrasonic method

 Thermoelastic, Photoelastic (birefringent), Indentation

Non-destructive methods have an 
advantage 
 measurements can be repeated at 
will and further data can be collected



17 CHAN PARK, MSE, SNU   Spring-2019   Crystal Structure Analyses

RS measurement techniques

www.veqter.co.uk/residual-stress-measurement/overview

BRSL ; Block Removal, Splitting and Layering
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Measurement depth in steel, mm
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RS measurement techniques

Technique Advantage Disadvantage

X-ray 
diffraction

Versatile, Widely available, Portable, Wide 
range of materials, Macro and Micro RS

Lab-based systems, Small components, surface 
stress measurement

Synchrotron 
XRD

Improved penetration & resolution of X-rays, 
Depth profiling, Fast, Macro and micro RS

Special facility needed, Lab-based systems

Neutron 
Diffraction

Optimal penetration & resolution, 3D maps, 
Macro and Micro RS

Special facility needed, Lab-based system

Hole Drilling
Fast, Easy use, Widely available, Hand-held. 
Wide range of materials, Deep hole drilling 
for thick section components

Destructive, Interpretation of data, 
Limited strain sensitivity and resolution

Sectioning
Wide range of material, Economy and speed
Hand-held

Destructive, Interpretation of data, 
Limited strain resolution

Contour
High-resolution maps of the stress normal to 
the cut surface, Hand-held, Wide range of 
material, Larger components

Destructive, Interpretation of data, 
Impossible to make successive slices close 
together

Barkhausen
Noise

Very fast, Hand-held, Sensitive to 
microstructure effects especially in welds

Only ferromagnetic materials, Need to divide 
the microstructure signal from that due to 
stress

Ultrasonic
Widely available, Very fast, Low cost, Hand-
held

Limited resolution, Bulk measurements over 
whole volume

Raman/Fluor
escence

High resolution, Portable systems
Surface measurements, Interpretation, 
Calibration, Limited range of materials
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Why use diffraction?

 Diffraction methods offer a nondestructive method for evaluating 

stress and residual stress in a material

 Understanding residual stress is important as it is not just the external 

stress that determines when a material will fail

 Alternative methods are destructive

 Diffraction can be used to examine stresses in multiphase materials and 

how they are partitioned between phases

 Useful in composites to understand e.g. how a fiber reinforcement is 

performing

 Modern X-ray methods allow measurements on a micron length scale 

stress distributions can be mapped out
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Stress measurement by diffraction

 Diffraction techniques do not measure stresses 

in materials directly

 Changes in d-spacing  strains

 Changes in line width  microstrain

 The lattice planes of the individual grains in the 

material act as strain gauges

Cullity 3rd ed. p176

 To get an estimate of the stress in a part of the diffraction, 

measurement must be calibrated or a calculation must be performed
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RS Measurement > cutting vs. diffraction, diffraction vs. strain gauge

 Compliance/cutting methods 

 Cutting or drilling changes the restraint and the object deforms 

 The stresses can only be calculated in one direction 

 Diffraction methods

 The distance between atoms in crystalline materials can be measured by 

diffraction (X-ray, neutron)

 All stress directions can be measured

 Diffraction methods

 Measured lattice strains are “absolute quantities”  relative to a zero-strain data

 Allows RS as well as applied stress to be measured

 Strain gauge

 Can only measure the strain difference between the initial condition when the 

gauge was attached and some subsequent condition
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RS Measurement > XRD

 Advantages 
 Non-destructive; Widely available; Macro and micro stresses can be measured;

 Laboratory or “on-site” measurements; Bi-axial residual stress measurements;

 Small gauge volume  great for measuring surface stress gradients;

 High magnitude residual stresses are measured accurately;

 Complex shapes can be measured providing rotation of the measuring head is not 

restricted;

 Very quick and easy to apply the process, and therefore cheap

 Disadvantages 
 Measurement depths of only 10-20μm as standard, 

 when coupled with electro-polishing, surface removal depths of up to 1–1.5mm 

are achievable;

 Only applicable to polycrystalline materials;

 Accuracy seriously affected by grain size and texture;

 A good component surface finish is essential, so may need delicate preparation.

www.veqter.co.uk/residual-stress-measurement/x-ray-diffraction
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RS Measurement > XRD > conventional vs. synchrotron

 Conventional XRD

 Penetration depth ~ 10s of um 

 surface stress measurement 

 irradiated volume can be considered to be in a state of plane stress 

(biaxial  stress) 

 Simple stress-strain equation, no need for precise determination of stress-

free lattice plane dimension

 Synchrotron XRD

 Penetration depth ~ 100s of mm 

 irradiated volume can not be considered to be in a state of plane stress.

 full 3-Dim stress condition must be considered.

 need to have precise value of stress-free lattice plane dimension (major 

source of error)
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Neutrons vs. X-rays

 Absorption is not such a big issue for neutrons.

 You can make measurements inside components.

neutron X-ray

Z µl(cm-1) t50% (mm) µl(cm-1) t50% (micron)

Al 0.10 69.3 131 52.9

Ti 0.45 15.4 938 7.39

Fe 1.12 6.19 2424 2.86

Ni 1.86 3.73 407 17.0

W 1.05 6.60 3311 2.09

Krawitz
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RS Measurement > X-ray & Neutron diffraction

 X-ray strain measurement provides information on the surface of a 
material.

 Surface information is important as failure often starts at the surface.

 Info from the inside can be obtained. 

 Removing the surface layer can destroy the specimen, and the relaxation can 

change the residual stress.

 Neutron diffraction can be used to make measurements inside a part.

Krawitz
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How to measure stress using XRD ?

00

0

l
l

l
ll ∆=−=ε

 Accurate/precise(A/P) stress  A/P strain  A/P peak position 

excellent alignment of diffractometer

 Instrument alignment/calibration is VERY important

εσ ⋅= E
Elastic modulus

stress

 Diffraction does not measure stress or strain  gives the changes in d-spacing 

(change in peak position)

 d-spacing  strain  stress ; 

 need to understand assumptions

strain

2θ
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different

ψ values
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Stress-strain

εσ ⋅= E

stressedunstressed

ε = −νσ/E

ε = σ/E

σ

σ

Poisson ratio ν

Nye, page 82

11 21 31

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 
 
 
  

Tensor properties of 
stress & strain

kkijijij EE
σνδσνε −+= 1
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Uniaxial stress on a bar specimen

 Uniaxial stress:

 Parallel: ε = σ/E 

 Transverse: ε = −νσ/E

 E = Young's modulus      ν = Poisson's ratio

 Esteel = 200 Gpa νsteel = 0.28
 Let σ11 = 200 MPa:

 εparallel = 0.001 = (Δd/d)parallel

 εtransverse = -0.00028 = (Δd/d)transverse

Krawitz

 λ = 2d sinθ  Δθ = -(Δd/d) tanθ

 At θ = 45°:

(Δ2θ)parallel = - 0.115°

(Δ2θ)trans = + 0.0321°

stressedunstressed

ε = −νσ/E

ε = σ/E

σ

σ
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Strain as a function of direction

 When the d-spacing of a reflection is 

measured, only grains with the planes 

oriented in a given direction contribute to 

diffraction.

 If we change the orientation of the 

specimen and re-measure the d-spacing, we 

are looking at a different population of 

grains and we get a different d-spacing due 

to different stress levels.

Cullity 3rd ed. p441

hkl plane (hkl)
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Orientation dependence of d-spacing

Cullity 3rd ed. p442

Measurement of dn Measurement of di

Ns, Np

Ns

Np

Ns

 Length of vector;  d-spacing
 Direction of vector;  plane-normal direction

Ns; normal to specimen surface
Np; normal to diffraction plane

ψ psi
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Elastic constants

 The elastic constants (E in                  ) used in the stress calculation 

should be obtained from diffraction measurements on reference materials 

or by using values mechanically measured in different directions on single 

crystal specimens.

 Individual crystallites are not elastically isotropic.

 Young’s modulus and Poisson’s ratio for the (111) reflection will not in 

general be the same as those e.g. for the (110) reflection.

Krawitz

εσ ⋅= E

kkijijij EE
σνδσνε −+= 1

 E can also change when the 

stress state changes 

32 CHAN PARK, MSE, SNU   Spring-2019   Crystal Structure Analyses

Stress free reference

 Strain is obtained from a diffraction measurement 

using ε = (dψφ – d0)/d0

 dψφ ; measured d-spacing in some direction ψφ

 d0 ; d-spacing for the stress free material

 It is very difficult to get d0 directly  to prepare 

a stress free piece of material with exactly the 

same composition is very difficult.

 Using a similar piece of material may not be good 

enough as we are trying to measure very small 

changes in d-spacing.

 We can sometimes avoid the need to measure d0 by 

making diffraction measurements at several angles 

(ψ).

Krawitz

hkl plane (hkl)
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Optics & sample preparation

 Using a divergent beam is not desirable. The 

instrument needs constant realignment.

 Parallel beam optics are the way to go.        

 sample displacement and focusing are not 

issues.

 Sample preparation

 Smooth clean surface

 The polishing of the surface can change the stresses that 

you wish to measure !

source detector

sample
Bragg-Brentano geometry
(parafocusing geometry)

parallel beam geometry

source detector

sample
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Stress as a function of depth

 To measure residual stress as a 

function of depth using X-rays, you 

may need to carefully remove some 

of the surface.

 The stress relief that occurs will 

have to be accounted for.

Cullity 3rd ed. p456
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Sample preparation

 Sample preparation

 Smooth clean surface

 However, if you try to polish the surface, you will change the stresses that 

you wish to measure !!!

 Portable instrument

 In case one needs to measure surface residual stress in large components, 

it is possible to buy small mobile diffractometers that can be moved to the 

specimen and mounted on the specimen surface.

Krawitz
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Practical problems

 Stress measurement uses positions of powder diffraction lines (d-spacing). 

 If the sample contains very large grains, you do not really have powder lines, 

just single crystal spots. It can be very difficult to accurately estimate the 

position of a powder line under these conditions.

 Texture can lead to very low intensity for some sample orientations.

 Highly textured bodies may not be elastically isotropic  some of the 

assumptions (isotropic, biaxial stress) that go into the basic theory for 

converting the strain measurements to stress tensor components in sin2ψ 

method, fail.

Krawitz
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Residual stress

F

deformation  strain  displacement in the body 
relative to a reference length

Deformation of a rod induced by external force

deformation  strain  displacement relative to 
inter-atomic length

Deformation of simple cubic induced by external force

F

Residual stress can be calculated from displacement

Deformation of simple cubic induced by residual stress

no residual stress

no applied stress
Displacement  of atoms  change of lattice parameter
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Residual stress measurement

Stress

εtotal

εgrain

εgrain = εtotal

Assumption : isotropic materials

L0

L

l0

l

0

0
total

L L

L
ε −= 0

0
grain

l l

l
ε −

=



39 CHAN PARK, MSE, SNU   Spring-2019   Crystal Structure Analyses

Stress measurement by XRD

 Film subjected to biaxial tension

 The elastic strain ⊥to the plane of the film

 The intensity of the diffracted 

beam is very small 

 small interaction volume

 How to align the sample??Stress

X-ray

Plane 
normal

~10um
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Stress measurement by XRD

 high intensity of diffracted beam 

 simple sample alignment

Strain is proportional to inclination angles 
with respect to sample normal

x-ray

plane 
normal
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Stress measurement by XRD

Unstressed sample
Stressed sample

In stressed sample, diffraction angle changes with the offset angle

Residual stress measurement: 
determine the variations in lattice parameter as a function of 
the offset angle

Panalytical

Assumption : isotropic materials
biaxial stress

λ = 2d sin θθ1 θ4θ3
θ2 θ1
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Stress measurement by XRD

L3x-rayS3

εL
33

εs
11

ψ

εs
11 can be determined by εL

33 values at different ψ’s

???

Measured data
direction 
cosine 
matrix
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Symbol

 : strain

 : stress

d : interplanar spacing

ε
σ

L : Laboratory reference frame

S : Specimen reference flame

superscript : reference frame

1 2 3

 : normal stress

 : shear stress (i j)

L  = L ,  L  = L , L  = L

ii

ij

x y z

subscript : component of  tensor

σ
σ ≠

33
Lε

33
Lε

Laboratory 
reference 
frame

Normal strain 
that is // to L3 
direction

strain

13

23

33

12

22

32

11
21

31
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Stress measurement by XRD

2θ
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e
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y

2θ

)
2

1(sin
1

0
2

0 σνψσν
ψ E

d
E

dd −++=

d
-s
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ng

ψ2sin

slope
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Angles

 2-theta (2θ) – The Bragg angle, the angle between the incident 

(transmitted) and diffracted X-ray beams

 Omega (ω) - The angle b/w the incident X-ray beam and the sample 

surface.  Both ω and 2θ lie in the same plane

 Phi (φ) - The angle of rotation of the sample about its surface normal

 Chi (χ) - Chi rotates in the plane normal to that containing ω and 2θ.  

This angle is also sometimes (confusingly) referred as ψ

 Psi (ψ)
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Angles

 2-theta (2θ), Omega (ω), Phi (φ), Chi (χ)

Psi (ψ) - Angle through which the sample is rotated, in the sin2 ψ
method.  We start at ψ  = 0, where ω is half of 2θ and add (or 

subtract) successive ψ offsets. For example, 10, 20, 30 and 40°.
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States of stress

 possible states 

 3 unequal principal stresses (σ1, σ2, σ3)  Triaxial state of stress

 2 out of 3 principal stresses are equal (say σ1, σ2 = σ3)  Cylindrical state 

of stress

 All 3 are equal (say σ1 = σ2 = σ3)  Hydrostatic/spherical state of stress

 1 of 3 is zero (say σ1, σ2, σ3 = 0)  Biaxial/2D state of stress

 2 of 3 is zero (say σ1, σ2 = σ3 = 0)  Uniaxial state of stress

 By convention, the diffracting planes are 
normal to L3

 Li laboratory coordinate system

 Si sample coordinate system

11 21 31

21 22 23

31 32 33

σ σ σ
σ σ σ
σ σ σ

 
 
 
  

Nye, page 82
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Reference frame

 S; specimen reference frame

 L; laboratory reference frame

 If φ = ψ = 0, L = S

33
L

ψφε ε= S1
S2

S3

L2

L3

ψ

φ

L1
S3

S2

S1

L3

L2

L1
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Reference frame

S3 ⊥ sample surface

L3 ⊥ diffraction plane

S3

S2

S1

φ
ψ
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Translation L→S 

 Direction cosine matrix : transformation from the L frame to S 
frame cos cos sin cos sin

sin cos 0

cos sin sin sin cos

LS
ija

ψ φ ψ φ φ
ψ ϕ

ψ φ ψ φ φ

− 
 = − 
 
 

33 3 3
,

L LS LS S
i j ij

i j

a aε ε=
11 12 13

21 22 23

31 32 33

S
ij

ε ε ε
ε ε ε ε

ε ε ε

 
 =  
 
 

S1
S2

S3

L2

L3

ψ

φ

L1

33 3 3

2 2 2
33 11 12 13

2 2 2
22 23 33

cos sin sin 2 sin cos sin 2

          sin sin sin sin 2 cos

L
k l kl

L S S S

S S S

a aε ε

ε ε ϕ ψ ε ϕ ψ ε ϕ ψ
ε ϕ ψ ε ϕ ψ ε ψ

=

= + +

+ + +
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Translation L→S 

ψεψφεψφε
ψφεψφεψφεε

2
3323

22
22

13
2

12
22

1133

cos2sinsinsinsin          

2sincossin2sinsincos
SSS

SSSL

+++
++=

S

L

εL
33

εS
11

εS
22

εS
12

εS
21

strains measured in L frame  (diffraction plane)  strains in 
the S frame (sample)

S1
S2

S3

L2

L3

ψ

φ

L1

(1)
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Residual stress measurement

Stress

εtotal

εgrain

εgrain = εtotal

L0

L

l0

l

0

0
total

L L

L
ε −

= 0

0
grain

l l

l
ε −=

Assumption : isotropic materials
biaxial stress
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Strain and Stress
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Hooke’s Law
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Biaxial stress
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ε  d
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sin2Ψ method

ε

positive: tensile stress

negative: compressive stress
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sin2Ψ method

Dr. Jongmin Bak
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Step by step
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sin2ψ method

Dr. Jongmin Bak
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Appearance of sin2ψ plots

Biaxial or uniaxial stress gives linear sin2ψ plots

sin2ψ
Cullity 3rd ed. p447

Ψ>0
Ψ<0

Triaxial stress (all principle components of stress 

tensor are none zero) does not give a straight 

line  psi-splitting

Oscillatory – significant levels of texture are present  

(inhomogeneous stress/strain state within the 

materials)  the material is no longer elastically 

isotropic
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Residual stress measurement using XRD

 Understanding of the assumptions

 Is the sample homogeneous or heterogeneous?

 Texture?

 The relationship between the beam size & grain size? 

Sampling statistics?

 What components of the stress tensors are considered to be 

zero?
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