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Design Procedures For Dynamically Loaded Foundations 
 
Choice of parameters for equivalent lumped systems 
 

Lumped mass  :  the mass of the foundation and supported machinery 
 
Damping :  ① Geometrical(or radiation) damping – by the decrease in energy 

density through propagation of elastic waves away from the vicinity 
of the footing. (Table A-2) (Fig. 7-19) 

 
② internal damping – by energy loss within the soil due to hysteretic  

and viscous effects. (Table 10-12)    
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 Typical value of the internal damping ratio – 0.05 (Table 10-12) 
 → for vertical & sliding mode, negligible (Fig 7-19) (∵geometric damping >>0.05) 
 → for torsional & rocking mode, should be included (Fig-7-19) 

 
 

 Influence of partial embedment – reduction in amplitude on the order of 10~25% 
depending on the mode of vibration 

 → neglection of embedment effect errs on the conservative side 
 

 Influence of the underlying rigid layer increase the amplitude of vibration at 
resonance 
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 Spring constant : the most critical factor 
 

Governs   ① The static displacement 
    ② magnification factor, M 
          ③ the resonant frequency 
 

Obtained by ① Tests on prototype foundation 
     ② Tests on model footings 
                 (the extrapolation procedure governs the value) 
     ③ formulas (Tables 10-13, 10-14) 
                (applies to rigid block or mat foundations w/  shallow embedment) 
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 Elastic constants : G & v  
 

v  – cohesionless soils (0.25~0.35) → 1
3

 

cohesive soils (0.35~0.45) → 0.40 
 

G  – ① From static plate-bearing tests → get → backcalculate G using formula k
  ② resonant – column test in the lab 
  ③ from the void ratio of the soil & the probable confining pressure  
 

 For round-grained sands (e < 0.80) 
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 For angular-grained material (e > 0.6) 
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  (also good for NC clay w/  low surface activity) 
 
  ④ From the shear wave velocity 
   2
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 Brief review of other methods or results  

DEGEBO(Deutschen Forschungsgesellschaft fu
⋅⋅

r Bodenmechanik) : 
 

  
 
Using a rotating-mass mechanical oscillator 
(fig 10-11), run extensive number of tests. 
 
 
 
 

 In 1933, reported the followings, 
- dynamic response → non-linear 
- progressive settlement developed 
- dynamic response depends on 

 

① the total weight of the oscillator and base plate 
  ② the area of the base plate 

③ dynamic force applied 

④ the characteristics of the soil 

- established a table for the ‘characteristic frequency’ for a variety of soils  

→ ‘natural frequency’ of soil (incorrect concept) 

 
 In 1934, reported on the effect of oscillator weight, base-plate area, and 

exciting force 
- increasing the total weight → lowered the resonant frequency  

- increase in the base-plate area → raised the resonant frequency. 

- increase in exciting force → lowered resonant frequency. 

 (this indicates that the soil response is non-linear) 
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 In-phase mass : a mass of soil moved with the footing  
the resonant frequency 
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sm
 
depends on  

 

① the dead load 
② exciting force 
③ base-plate area 
④ mode of vibration 
⑤ type of soil 
 
 

 At present, difficult to obtain reliable magnitude of sm  and do not contribute to 

the evaluation of the amplitude  
→ not a significant factor at this stage of development. 

  
 Dynamic subgrade reaction : dynamic subgrade reaction modulus ( 'k ) obtained 

from static repeated loading tests on model footing. 
 

'k k A=  
k  : spring constant 
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-  extrapolating formula(Terzaghi, 1955)  

      cohesive : 1
1' '

2z zk k
d

=  

      cohesionless : 2
1

2 1' ' (
4z z
dk k

d
)+

=
 

2d=width(or least dimension) of beam, =least dimension = 1ft 1'zk
 

- or Table 10-10 

 
 

 
 Other modes ( 'zk  = vertical mode) 

 

 Horizontal ' 0.5 'x zk k≈  

 Rocking ' 2 zk kψ '≈  

 Torsional  ' 1.5 'zk kθ ≈

 
- Gives no useful information on the amplitude of motion at frequencies near 

resonance 
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Isolation of foundations 
 
  Mechanical isolation 

  Isolation by location 
  Isolation by barriers 
 

 Mechanical isolation 
 

use isolation absorbers : rubber, springs, spring-damper system, pneumatic spring 
 

 Isolation by location :  
 

 
- geometrical damping  

    

1
1

rw w
r

=
                                                        

(where,  w : amplitude of motion,  r : distance) 
 

 (note that 1 1w r w r=  = constant, ie. no energy loss) 

 
- material damping [∵soil is not perfectly elastic] 

 

1
1 1exp[ ( )], ( )rw w r r r r

r
α= − − 1>  

 α  : the coefficient of attenuation. (0.01~0.04 (1/ft)) 
(energy loss due to material damping) 
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 Isolation by barriers  [at least reduction of amplitude to 0.25] 
 

 Active isolation : isolation at the source 
 Passive isolation : screening at a distance 
 
 
Examples from practice 
 

 active isolation (covers the area extending to 10 RL ) 

- with trenches fully surrounding the source 
/ 0RH L ≥ .6  

(H : trench depth,  : Rayleigh wave length(RL R
R

vL
f

= ) ) 

[note that , not much improvement, i.e. > 0.10] / 2RH L = .0

.6

R

 - with partially surrounding trenches 
/ 0RH L ≥  

  
 
 
 
 
 

 passive isolation 
-  (for ) / 1.33RH L ≥ 2 7R RL R L≤ ≤

- vertical trench area( ) should    / /RH L L L×

be increased as the R increases 
   
ex. For the same degree of isolation 

trench area 2.5 at R=2 → 6 at R=7  RL RL
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Figure 8-4. Isolation of standards laboratory(after McNeill et al., 1965) 

 
 

 
Figure 8-7. Schematic of vibration isolation using a straight trench to create a 

quiescent zone – passive isolation(from Woods, 1968) 


