Design Procedures For Dynamically Loaded Foundations

Choice of parameters for equivalent lumped systems

- Lumped mass : the mass of the foundation and supported machinery
- Damping : ① Geometrical(or radiation) damping by the decrease in energy density through propagation of elastic waves away from the vicinity of the footing. (Table A-2) (Fig. 7-19)
 - internal damping by energy loss within the soil due to hysteretic and viscous effects. (Table 10-12)

- Typical value of the internal damping ratio 0.05 (Table 10-12)
- → for vertical & sliding mode, negligible (Fig 7-19) (∵geometric damping >>0.05)
- \rightarrow for torsional & rocking mode, should be included (Fig-7-19)

Type Soil	Equivalent D	Reference
Dry sand and gravel Dry and saturated	0.03-0.07	Weissmann and Hart (1961)
sand	0.01-0.03	Hall and Richart (1963)
Dry sand	0.03	Whitman (1963)
Dry and saturated	and the second	
sands and gravels	0.05-0.06	Barkan (1962)
Clay	0.02-0.05	Barkan (1962)
Silty sand	0.03-0.10	Stevens (1966)
Dry sand	0.01-0.03	Hardin (1965)

Influence of partial embedment – reduction in amplitude on the order of 10~25% depending on the mode of vibration

 \rightarrow neglection of embedment effect errs on the conservative side

Influence of the underlying rigid layer increase the amplitude of vibration at resonance

Mode of Vibration	Mass (or Inertia) Ratio	Damping Ratio D
Vertical	$\mathbf{B}_{z} = \frac{(1-\nu)}{4} \frac{m}{\rho r_{o}^{3}}$	$D_z = \frac{0.425}{\sqrt{B_z}}$
Sliding	$\mathbf{B}_{x} = \frac{(7 - 8\nu)}{32(1 - \nu)} \frac{m}{\rho r_{o}^{3}}$	$D_x = \frac{0.288}{\sqrt{B_x}}$
Rocking	$\mathbf{B}_{\psi} = \frac{3(1-\nu)}{8} \frac{I_{\psi}}{\rho r_o^5}$	$D_{\varphi} = \frac{0.15}{(1+B_{\varphi})\sqrt{B_{\varphi}}}$
Torsional	$\mathbf{B}_{\Theta} = \frac{I_{\Theta}}{\rho r_{o}^{s}}$	$D_{\Theta} = \frac{0.50}{1 + 2B_{\Theta}}$

• Spring constant : the most critical factor

Governs ① The static displacement

- ② magnification factor, M
- ③ the resonant frequency

Obtained by ① Tests on prototype foundation

- ② Tests on model footings
- (the extrapolation procedure governs the value)
- ③ formulas (Tables 10-13, 10-14)

(applies to rigid block or mat foundations w/ shallow embedment)

Table 10-13. Spring Constants for Rigid Circular Footing Resting on Elastic Half-Space

Motion	Spring Constant	Reference
Vertical	$k_{z} = \frac{4Gr_{o}}{1-\nu}$	Timoshenko and Goodier (1951)
Horizontal	$k_x = \frac{32(1-\nu)Gr_o}{7-8\nu}$	Bycroft (1956)
Rocking	$k_{\psi} = \frac{8Gr_o^3}{2(1-v)}$	Borowicka (1943)
Torsion	$k_{\Theta} = \frac{16}{3}Gr_o^3$	Reissner and Sagoci (1944)

Table 10-14. Spring Constants for Rigid Rectangular Footing Resting on Elastic Half-Space

Motion Spring Constant		Reference	
Vertical	$k_z = \frac{G}{1-\nu} \beta_z \sqrt{4cd}$	Barkan (1962)	
Horizontal	$k_x = 4(1+\nu)G\beta_x\sqrt{cd}$	Barkan (1962)	
Rocking	$k_{\psi} = \frac{G}{1 - \nu} \beta_{\psi} 8cd^2$	Gorbunov-Possadov (1961)	

(Note: values for β_z , β_z , and β_{ψ} are given in Fig. 10-16 for various values of d/c)

Soil Dynamics

- Elastic constants : G & v
 - v cohesionless soils (0.25~0.35) → $\frac{1}{3}$ cohesive soils (0.35~0.45) → 0.40
 - G ① From static plate-bearing tests \rightarrow get $k \rightarrow$ backcalculate G using formula
 - 2 resonant column test in the lab
 - (3) from the void ratio of the soil & the probable confining pressure $\overline{\sigma_0}$
 - For round-grained sands (e < 0.80) $G = \frac{2630(2.17 - e)^2}{1 + e} (\overline{\sigma}_0)^{0.5} [lb/in^2]$
 - For angular-grained material (e > 0.6) $G = \frac{1230(2.97 - e)^2}{1 + e} (\overline{\sigma}_0)^{0.5} [lb/in^2]$

(also good for NC clay w/ low surface activity)

④ From the shear wave velocity

 $G = \rho v_s^2$

Brief review of other methods or results

DEGEBO(Deutschen Forschungsgesellschaft fur Bodenmechanik) :

Using a rotating-mass mechanical oscillator (fig 10-11), run extensive number of tests.

- In 1933, reported the followings,
- dynamic response \rightarrow non-linear
- progressive settlement developed
- dynamic response depends on
 - ① the total weight of the oscillator and base plate
 - ② the area of the base plate
 - ③ dynamic force applied
 - ④ the characteristics of the soil
- established a table for the 'characteristic frequency' for a variety of soils
- → 'natural frequency' of soil (incorrect concept)
- In 1934, reported on the effect of oscillator weight, base-plate area, and exciting force
- increasing the total weight \rightarrow lowered the resonant frequency
- increase in the base-plate area \rightarrow raised the resonant frequency.
- increase in exciting force \rightarrow lowered resonant frequency.

(this indicates that the soil response is non-linear)

 In-phase mass : a mass of soil moved with the footing the resonant frequency

 m_s depends on

- ① the dead load
- ② exciting force
- ③ base-plate area
- ④ mode of vibration
- ⑤ type of soil
- At present, difficult to obtain reliable magnitude of *m_s* and do not contribute to the evaluation of the amplitude
 - \rightarrow not a significant factor at this stage of development.
- Dynamic subgrade reaction : dynamic subgrade reaction modulus (k') obtained from static repeated loading tests on model footing.

- extrapolating formula(Terzaghi, 1955)

cohesive:
$$k'_{z} = k'_{z^{1}} \frac{1}{2d}$$

cohesionless: $k'_{z} = k'_{z^{1}} (\frac{2d+1}{4d})^{2}$

2d=width(or least dimension) of beam, k'_{z1} =least dimension = 1ft

- or Table 10-10

Soil Group	Allowable Static Bearing Stress (ton/ft ²)	Coefficient k' (ton/ft ³)
Weak soils (clay and silty clays with sand, in a plastic state; clayey and silty sands)	1.5	95
Soils of medium strength (clays and silty clays with sand, close to the plastic limit; sand)	1.5-3.5	95-155
Strong soils (clay and silty clays with sand, of hard consistency; gravels and		
gravelly sands, loess and loessial soils)	3.5-5	155-310
Rocks	5	310

• Other modes (k'_z = vertical mode)

Horizontal $k'_x \approx 0.5k'_z$ Rocking $k'_{\psi} \approx 2k'_z$ Torsional $k'_{\theta} \approx 1.5k'_z$

- Gives no useful information on the amplitude of motion at frequencies near resonance

Isolation of foundations

Mechanical isolation

— Isolation by location

___ Isolation by barriers

Mechanical isolation

use isolation absorbers : rubber, springs, spring-damper system, pneumatic spring

• Isolation by location :

- geometrical damping

 $w = w_1 \sqrt{\frac{r_1}{r}}$ (where, w: amplitude of motion, r: distance)

(note that $w\sqrt{r} = w_1\sqrt{r_1}$ = constant, i.e. no energy loss)

- material damping [::soil is not perfectly elastic]

$$w = w_1 \sqrt{\frac{r_1}{r}} \exp[-\alpha(r - r_1)], \quad (r > r_1)$$

 α : the coefficient of attenuation. (0.01~0.04 (1/ft)) (energy loss due to material damping)

Isolation by barriers [at least reduction of amplitude to 0.25]

Active isolation : isolation at the source

Passive isolation : screening at a distance

Examples from practice

- active isolation (covers the area extending to 10 L_R)
 - with trenches fully surrounding the source

 $H/L_R \ge 0.6$

(H : trench depth, L_R : Rayleigh wave length($L_R = \frac{v_R}{f}$))

[note that $H/L_R = 2.0$, not much improvement, i.e. > 0.10]

- with partially surrounding trenches

 $H/L_R \ge 0.6$

passive isolation

H / *L_R* ≥1.33 (for 2*L_R* ≤ *R* ≤ 7*L_R*)
vertical trench area(*H* / *L_R* × *L* / *L_R*) should be increased as the R increases

ex. For the same degree of isolation trench area 2.5 at R=2 $L_R \rightarrow 6$ at R=7 L_R

Figure 8-4. Isolation of standards laboratory (after McNeill et al., 1965)

Figure 8-7. Schematic of vibration isolation using a straight trench to create a quiescent zone – passive isolation *(from Woods, 1968)*