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Deformation modes
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Spaepen, Acta Metall. 25 (1977) 407.
Sun et al., Nature Rev. Mater. 1 (2016) 16039.

(1) Elastic deformation 

- Elastic + anelastic component

(2) Homogeneous deformation 

- Newtonian flow

- Non-Newtonian flow

(3) Inhomogeneous deformation

- ‘Shear banding’ or shear localization
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Bulk metallic glass
( Brittleness, Strength ~0.02E )

Nanoscale metallic glass
(The smaller is the stronger, 

and be also more ductile!)

Sample size effect on the strength and elastic limit of metallic glasses

Tian et al., Nature Comm. 3 (2012) 609.Wang et al., Acta. Mater. 60 (2012) 5370. 
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Non-Newtonian
homogeneous flow
of nanoscale MGs

Strain rate-dependent
Homogeneous flow behavior 

(Transition btw. Newtonian
and Non-Newtonian  flow)



Limited Plasticity by shear softening and shear band
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What governs plasticity in metallic glasses?



interrupt the localization of stress and deformation

• Prevent propagation of single shear band        BMG matrix composites

• Multiple shear band formation

Plastic deformation in metallic glass
• No dislocation / No slip plane

• Inhomogeneously localized plastic flow in the shear band

Plastic deformation in metallic glasses



1) Casting : hard/ductile particle

2) Extrusion :  ductile powder

extrusion direction
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strain rate at room temp. = 6x10-5s-1
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Monolithic BMG
Max. compressive strength: 2.44 GPa

(Johnson et al., Acta Mater.,1999)

(Kim et al., J. Non-cryst. Solids, 2002)

Ex-situ BMG matrix composites



1) Solidification : formation of primary ductile phase 

(Johnson et al., Acta Mater., 2001)

In-situ BMG matrix composites

2) Solidification : precipitation of ductile phase

(Cu60Zr30Ti10)95Ta5

Ta rich particle (Johnson et al., Acta Mater., 2001)



TEM Image of a shear band

~20  nm

Shear bands are ~20 nm in width

Size of heterogeneity

• Prevent propagation of single shear band

Micro- or nanometer scale heterogeneity



Elementary flow event in an metallic glasses

Size of heterogeneity
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Flow governed by localized defect (~10 atoms) and creates defects



• Flow governed by localized defect (~10 atoms)

• Flow creates defects

• Shear bands form by accumulation of defects

Plastic deformation in metallic glasses

Understanding how shear bands form and propagate 
in metallic glasses

Shear

Crystal; constant volume

Amorphous: dilatation



Fragile network glass : Vogel-Fulcher relation

Strong network glass : Arrhenius behavior
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Fragility ~ extensively use to figure out liquid dynamics and   
glass properties corresponding to “frozen” liquid state

Slope of the logarithm of viscosity, η (or structural relaxation time, τ ) at 
Tg



Correlation between fragility and plasticity
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Low G/B High ν
(poisson’s ratio)

(shear modulus / bulk modulus)

shear collapse
(multiple shear band)

Correlation between elastic constants and plasticity

Jan Schroers et al, , Phys. Rev. Lett. 93, 255506 (2004).

* J. Mater. Res.  23, 523 (2008)
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* Appl. Phys. Lett.,  91, 031907.



Enhancement plasticity in BMGs with atomic scale heterogeneity

a) Effect of quenched-in quasicrystal nuclei 



Effect of quenched-in quasicrystal nuclei

Fully amorphous structureβ-Zr particle (~70 nm) in amorphous matrix

50 nm200 nm

β-Zr

(b) Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5(a) Zr63Ti5Nb2Cu15.8Ni6.3Al7.9

2 mm rod

I-phase particle in amorphous matrix

200 nm

I5 I3 I2

I-phase

3 mm rod
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Uniaxial Compression
Strain Rate = 1 x 10-4s-1
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σf = 1.70 GPa, εf= 2.37 %
σf = 1.71 Gpa, εf= 4.64 %

σf = 1.72 Gpa, εf= 2.05 % 

5 nm

HRTEM image in [b] alloy

Effect of quenched-in quasicrystal nuclei

Compression test * unpublished (2008)



Enhancement plasticity in BMGs with atomic scale heterogeneity

a) Effect of element having positive enthalpy of mixing 
among constituent elements



* Enhancement of plasticity in monolithic BMGs
No clear explanations so far.

* Reports for enhancement of plasticity in monolithic BMGs

Compressive plastic strain, εp (%)

Zr59Ta5Cu18Ni8Al10
1

Zr57Ti5Cu20Ni8Al10

~ 6.1
~ 1.1

Ni59Zr16Nb7Ti13Si3Sn2
2

Ni59Zr20Ti16Si2Sn3

~ 6.2
~ 2.1

Cu47Ti33Zr7Nb4Ni8Si1 3

Cu47Ti33Zr11Ni8Si1 

~ 4.1
~ 1.5

Cu43Ag7Zr43Al7 4

Cu50Zr43Al7 

~ 4.1 
~ 1.5

1 Xing et al., Phys. Rev. B (2001)

2 Lee et al., Intermetalics (2004), BMG III

3 Park et al., J. Non-cryst. Sol. (2005)

4 Sung et al., Met. Mater. –Int (2004) and

Oh et al., Scripta Mater. (2005)

(Ta-Zr: +13KJ/mol, Nb-Zr: +17KJ/mol, Nb-Ti: +9KJ/mol,Cu-Ag: +5 KJ/mol)

: Effect of elements having positive heat of mixing

- Previous results on the effect of micro-alloying on plasticity

Improvement of plasticity in monolithic BMGs



* Substitution of Zr with Y in Cu-Zr-Al system

Cu-Zr-Al , Cu-Y-Al

Possibility of two phase !!! 

Indirect evidence of inhomogeneity
= Phase separationD. Xu, G. Duan and W.L. Johnson, Phys. Rev. Lett. 92, 245504 (2004)
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Alloy design

* Acta Materialia, 54, 2597 (2006)
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Temperature (K)

Exothermic peak which exhibit that Y rich amorphous phase crystallize

Thermal analysis : DSC results



Cu46Zr22Al7Y5

100 nm

Cu46Zr22Al7Y25

Cu53.4Zr31.8Y8.3Al6.5 (CuZr-rich) 

Cu35.7Zr12.8Y44.3Al7.2 (CuY-rich) 

As-melt-spun

- With increasing Y content,
Compositional inhomogeniety           Phase separation

Structural analyses : TEM results
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⇒ Enhancement of the plasticity with the addition of small amount (2~5 %) of  Y 
But, no nanocrystals and structural ordering  (conformed by HREM and HRND) 

Performed at HANARO, KEARI.

Compression test in Cu-Zr-Al-Y alloy system

20㎛

Cu46Zr42Al7Y5

A larger amount of strain along the shear band led to localized melting before fracture
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Applied load : 50 mN 
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Cu46Zr42Al7Y5Cu46Zr47Al7
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<

Relatively easy crystallization 

<Supercooled liquid region> <1st Crystallization behavior>

: nucleation and growth

Measurement of viscosity using TMA



As-melt-spun Heated up to 480℃

Cu46Zr42Al7Y5

* Acta Materialia, 54, 2597 (2006)

: nanocrystallization of Y rich amorphous phase due to relatively lower GFA

Structural analyses: HRTEM
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In-situ WAXS analysis of Cu46Zr42Al7Y5 during heating

(c) 495℃

(d) 525℃

(a) 435℃

(b) 465℃

Tg Tx

406℃ 498℃

Tg Tx

406℃ 498℃

Tg Tx

406℃ 498℃

Tg Tx

406℃ 498℃

Obtained from Argon National Lab.



Visualization of Atoms by FIM
Poralized gas 
atom

Gas ion

Microchannel plate

Phosphor screen

FIM tip
cooled to 20
~100 K

H
V



Analysis of atoms by 3DAP

η’ precipitates in Al-Zn-Mg alloy

~2
0 

nm



reflectron

detector

specimen

HV

Energy-compensating reflectron lens

HV



NIMS 3DAP



Complementary structural analysis

Local Chemical Composition

Local Structure

Average Scale

SAXS or SANS



APT results of Cu46Zr47-xAl7Yx (x = 0, 5, 10, 15) ribbons

20 nm 20 nm 20 nm 20 nm

(a) Y0 (b) Y5 (d) Y15(c) Y10

APT reconstructions showing the distribution of the alloy metallic elements (Cu-Yellow; Zr-blue; 
Al-purple; Y-red). The upper images are three-dimensional views for cylindrical regions, and the 
lower images  are 2 nm-thick virtual slices of the respective reconstructions.



Statistical binomial frequency distribution analysis
The quality of the binomial fit was quantified using p-value and  μ parameters, as listed in the inset tables.



Proxigrams with respect to interfaces btw Zr- and Y-rich region

The interfaces (distance=0) in (a) and (b) are estimated from the frequency distribution 
analysis results to be the positions with Y composition of 10 at. % and 16 at.%, respectively.

calculated with a bin size of 0.3 nm 

Compositional heterogeneity
with nanoscale network

Phase separation 
with interconnected structure
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APT results of Cu46Zr37Al7Y10 vs Cu46Zr32Al7Y15 ribbons

Compositional heterogeneity
with nanoscale network

Y10 Y15

Phase separation 
with interconnected structure

20 nm 20 nm
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Effect of element having positive enthalpy of mixing

Abnormal behavior of supercooled liquid region



(a) As-cast (b) H876 (c) H897

Atom probe concentration depth profiles in Ni61Zr22Nb7Al4Ta6

easy crystallization 

Effect of element having positive enthalpy of mixing



Ordering in supercooled liquid region
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Effect of element having positive enthalpy of mixing



Enhancement plasticity in BMGs with atomic scale heterogeneity

b) Effect of element having significantly different 
enthalpy of mixing among constituent elements
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* Acta Materialia,  56 3120 (2008)

Effect of element having large different enthalpy of mixing

Cu-Zr-Be ternary alloy system
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Effect of element having large different enthalpy of mixing



(a) FIM image and (b)-(d) composition depth profile 
of the as-spun Cu47.5Zr40Be12.5 ribbon sample

3DAP-FIM results

Effect of element having large different enthalpy of mixing



r (Å) N
Total N

σ2

Cu-Cu Cu-Zr Cu-Cu Cu-Zr Cu-Cu Cu-Zr

Cu60Zr40 2.49 2.69 3.0 3.7 6.7 0.0116 0.0233

Cu47.5Zr40Be12.5 2.51 2.70 2.5 4.8 7.3 0.0107 0.0227

Zr-Zr Zr-Cu Zr-Zr Zr-Cu Zr-Zr Zr-Cu

Cu60Zr40 3.10 2.68 6.9 4.4 11.3 0.0263 0.0124

Cu47.5Zr40Be12.5 3.12 2.69 6.2 3.5 9.7 0.0257 0.0130

Atoimic diameter in Å: Cu-Cu = 2.56, Cu-Zr = 2.88, Zr-Zr = 3.20.

Cargill-Spaepen short-range order parameters, η

ZAB <Z> Z*AB Z**AB η

Cu60Zr40 3.7 8.540 3.416 3.546 0.043

Cu47.5Zr40Be12.5 4.8 7.348 2.939 3.855 0.245

EXAFS analysis

><= ZZZxZ ABBAB /**

Cargill-Spaepen SRO parameter
1/ ** −= ABAB ZZη

chemical ordering between AB nearest-neighbor pairs

-142

Zr

BeCu

-53

- 3

η > 0

Effect of element having large different enthalpy of mixing

* Acta Materialia,  56 3120 (2008)



Enhancement plasticity in BMGs with atomic scale heterogeneity

c) Effect of atomic scale heterogeneity on SB nucleation 



Effect of alloy composition on SB nucleation

Ni Nb
-143

-167
+15

Zr

Ni-ZrNi-Nb

Compositional inhomogeniety

2 nm

*Ni-Nb-Zr ternary alloy system

Ni60Nb40

Zr addition

(conformed by EXAFS)

Ni60Nb40 and Ni60Nb20Zr20 alloys



Experimental equipment

25 frames per sec
Interval : 0.04 sec

Normal camera



Effect of local favored structure on SB nucleation

Ni60Nb40: fully amorphous phase

100 μm

S=0.016 mm/sec 



Ni60Nb20Zr20: amorphous phase with local favored structure

Increased nucleation sites of shear bands
; evaluate the local heterogeneity in amorphous phase

100 μm

S=0.016 mm/sec 

Effect of local favored structure on SB nucleation



Alloy design                  +               Process control
atomic scale inhomogeneity generation Solidification under appropriate conditions

Enhanced plasticity in Ni60Nb32Zr8, Ni60Nb30Zr10 BMGs (σmax : 3.2 GPa, εp : 2.5 %)

Tailoring of structural inheterogeneity
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Comparison of Work-hardenability depending on 2nd Phases

H.C.

SMA

S.C.



𝜎𝜎𝑝𝑝 = 𝜎𝜎 − 𝜎𝜎𝑦𝑦
𝜀𝜀𝑝𝑝 = 𝜀𝜀 − 𝜀𝜀𝑦𝑦 −

𝜎𝜎𝑝𝑝
𝐸𝐸

• SMA : Strain hardening
• H.C., S.C. : Strain softening
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Comparison of Work-hardenability depending on 2nd Phases



Investigation of deformation of BMGC with “soft” phases

• Zr based metallic glass + 8% Ta

• Compression test with in-situ X-ray synchrotron diffraction
(Beamline 1-ID beamline of the Advanced Photon Source at Argonne National Laboratory)

* BMGCs with soft crystalline 2nd phases



Investigation of deformation of BMGC with “soft” phases

• At approximately 325 MPa applied stress, the particles yield, which are 
constrained by amorphous matrix causing plastic misfit stress near the 
particles. 

• At an applied stress of 1450 MPa (just below yield stress), the lattice stress–
strain curve changes slope again for both the longitudinal and transverse 
directions, indicating an increase in the fraction of the load being 
transferred to Ta particles.

* BMGCs with soft crystalline 2nd phases 



Investigation of deformation of BMGC with “soft” phases

• Plastic misfit strain creates a significant stress concentration around the particles.

• Shear bands initiates near the particles due to the localized stress concentration.

• If a shear band initiates at the particle and propagates away, it will quickly encounter 
a region where the yield criterion is not satisfied and the shear stress is insufficient to 
sustain shear band propagation.

Principle of multiple shear band initiations & blocking shear bands propagation

* BMGCs with soft crystalline 2nd phases 



Investigation of deformation of BMGC with “hard” phases

* BMGCs with hard ceramic 2nd phase 

• Residual strain were measured by 
neutron diffraction. 

• Each phase strain in the ZrC-BMG 
during compressive loading was 
estimated from the residual strains 
in each specimen according to 
following equations:



Investigation of deformation of BMGC with “hard” phases

* BMGCs with hard ceramic 2nd phases 
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2nd phase

Matrix
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“Strain hardening of 2nd phase contributes to work hardening behavior of BMGC.” 

Strain hardening

St
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ss

Strain

BMGMC

Work hardening

Mechanism of Work-hardening in BMGC with transformable 2nd phase



Deformation behaviors of BMGC depending on 2nd phase
< Compression >

Strain hardening(2nd)                  Work hardening

(SMA > S.C. > H.C.)            (SMA > S.C. > H.C.)
BMGMCs   





1) Work softening behavior by ductile secondary phase

High fracture toughness: > 10 % plastic strain in tensile test



Stress-induced phase transformation of secondary phase
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In-situ high energy X-ray diffraction under compression (APS 11-ID-C)

Longitudinal

Transverse

APS 11-ID-C

(TiCuNiSnSi)98Zr2

VolB2=11.3%

PT stress of 2nd phase ~ 850 MPa 0.5 1.0 1.5 2.0 2.5 3.0
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1) Loading    ~ 2050 MPa
2) Unloading ~  150 MPa
3) Loading  ~ 2150 MPa

Cyclic compression test (3 
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In-situ diffraction under compression: 1st loading ~ 2050 MPa

Amorphous diffuse peak

Not-fully isotropic

Before deformation After deformation

→ strong texture
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- M.T. is constrained by horizontal frame of MG matrix because of the imbalance of Poisson’s ratio 
during M.T.(~0.5) with elastic loading of MG matrix (~0.33). 

- Preferred orientation before deformation = B2 (110), Preferred orientation after deformation 
for Longitudinal direction = B19 (020) and  for Transverse direction = B19(002), B19(020), B19 (111) 

Yield

B2(110)



In-situ diffraction under compression: Unloading ~  150 MPa

- After unloading down to ~150MPa, most of B19 reverse transformed to B2, but small fraction 
of B19(002) & (111) remained.
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- Preferred orientation before deformation = B19 (020) / after deformation = B2(110)  
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In-situ diffraction under compression: 2nd loading ~ 2150 MPa
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- M.T. is constrained by horizontal frame of MG matrix because of the imbalance of Poisson’s ratio 
during M.T.(~0.5) with elastic loading of MG matrix (~0.33). 

- Preferred orientation before deformation = B2 (110), Preferred orientation after deformation 
for Longitudinal direction = B19 (020) and  for Transverse direction = B19(002), B19(020), B19 (111) 

Longitudinal Transverse



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase
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The observed work hardening in the CuZr based
BMG composites cannot be solely attributed to the 1)
intrinsic strain hardening of the B2 phases, but
also arises from 2) a constraining effect of the glassy
matrix on the martensitic transformation and the
subsequent deformation of the transformed phases.
In theory, this constraint effect, also called Eshelby
back stress effect, increases the elastic energy stored
in the whole composite system, which leads to an
increase in the applied stress and thus manifests as
strain hardening in the BMG composite



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

1) “Strain hardening of transformable 2nd phase” 
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Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase
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The observed work hardening in the CuZr based
BMG composites cannot be solely attributed to the 1)
intrinsic strain hardening of the B2 phases, but also
arises from 2) a constraining effect of the glassy
matrix on the martensitic transformation and the
subsequent deformation of the transformed
phases. In theory, this constraint effect, also called
Eshelby back stress effect, increases the elastic
energy stored in the whole composite system, which
leads to an increase in the applied stress and thus
manifests as strain hardening in the BMG composite



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

2) “Strong Eshelby back stress effect of transformable 2nd phase”

The schematic illustration of the three stages of Eshelby approach for solving 
the stress and strain fields due to the deformation of an inclusion in the matrix. 

* Eshelby inclusion with elastic mismatch 
→ Inhomogeneous stress/strain distribution
→ applying a effective transformation strain



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase
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D.C. Hofmann, et al., Nature vol.451, 1085 (2008)

H.Kato et al., Scripta mater. vol.43, 503 (2000)

BMG composite with ceramic ZrC



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase
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100 μm



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase
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10μm
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10μm

1st
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4th

Martensitic transformation occurred during compressive deformation.
Direction of shear bands : perpendicular to the loading direction

In-situ SEM  test



In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C
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In-situ compression Rietveld refinement

Fitting through whole azimuth angle 

• Fitting at single azimuth angle

Lattice information, Phase fraction, Texture

Fitting through whole stress level

Rwp : 5.81% (<10% is good fitting)
• Amorphous : Cu3Zr, orthorhombic, Pnma – Paracrystalline

(small crystallite, large residual stress, 
Ref. M.Baricco, et al., J.Allo.Comp. 495, 377 (2010))

• NiTi_B2, NiTi_B19’

Transverse

Longitudinal

Diffraction beam

2θ
Specimen

Synchrotron
X-ray beam

Distance = 1800mm

2-dimensional detector
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In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C
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The fraction of martensitic transformation in elastic region
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• Martensitic transformation occurred gradually.
• Martensitic transformation is delayed by the interaction between 

2nd phase and metallic glass matrix. (Δmodulus btw matrix & 2nd phase >30GPa)

T. Waitz et al., Europhys. Lett. 71 (2005) 98.

Ni
Ti



In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C
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Before load

Texture of B2
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E100 = 143GPa
E110 = 216GPa
E211 = 240GPa

𝝈𝝈𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝝈𝝈𝒂𝒂𝒂𝒂𝒂𝒂

1. Martensitic transformation occurred at <100> 
B2 crystallites.



Compare with soft crystalline 2nd phase
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𝝈𝝈𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝝈𝝈𝒂𝒂𝒂𝒂𝒂𝒂

R.T. Ott et al. , Acta Mater. vol. 53, 1883 (2005)BMG composite with 10% Ta

{211}

2. Misfit stress between matrix and 2nd phase become less   
pronounced by martensitic transformation of 2nd phase. 

Shape memory

+ P.T.



DFT-based MD simulation
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25 %20 %10 %0 %

[100]

30 %

B2 [100]

B19’ [100]

[010]

[010]

[010]

* Visualized based on the common neighbor analysis

* Visualized based on the atomic strain analysis (min=0, max=0.9)

Stress-induced phase transition :
2 ~ 10 % strain 

Formation of multiple martensite 
domains

Formation of shear band along 
lateral directions

0 % 2 %

4% 6%

Stress-induced phase transformation of NiTi in BMGC
Potential based MD simulation



DFT-based MD simulation
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bcc Nb [100] fcc Ni [100] fcc Ni [111]

Front
view -

30% strain

Lateral view -
30% strain

NiTi [100]

* Visualized based on the atomic strain analysis (min=0, max=0.9)

Soft HardSoft Hard Phase transformable

Strain localization of NiTi containing cell is less pronounced than other cases

bcc Nb [111]



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase
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Contribution to 
mechanical properties

Mono
lithic Soft Hard Transformable

Character of 2nd phase no
elastic+
plastic

elastic
elastic+
plastic+
TRIP

1. Eshelby backstress effect - depends weak Strong

2. Damage 
management

Blocking shear band 
propagation

no middle middle Superior 
(reusable for SE phase)

Stress/strain
localization

- localized localized Delocalized

bcc Nb [100] bcc Nb [111] NiTi [100]

Soft crystalline Hard ceramic Transformable
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