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Deformation modes

/ Plastic deformation \

E Spaepen : Free volume theory

Homogeneous flow @ steady state

Inhomogeneous flow @ steady state

Competition of shear-induced disordering and
a diffusion controlled reordering;
creation of FV vs. relaxation

Avet = Avy

(»©T) 4 5. Argon / C. A Schuh: STZ model

Homogeneous plastic flow
Viscous flow of a SCL

Steady-state flow

Structural disordering®} ordering,

Z free volume creationd} annihilation AtO|2| 7.
Ave = Avy

Local diffusive jump E+ STZ operationO| stress& &=
AA|7] 1, dilatation S &Sl free volumeS THS X| OF
S Al 0]l relaxationO| 218 £| 0] free volume= 2 ML},
Structural maintanance

Non-steady-state flow

Structural transience’} 40| 4.

o H 0| O| F0{ X| X| O} net gain / loss of free
volumeO| R 0{'e == ULCE.

“overshoot” “undershoot”

Inhomogeneous plastic flow

Localization — Shear band formation

local production of FV (dilatation)

local evolution of structural order due to STZ operation
redistribution of internal stresses



Deformation mode of bulk metallic glasses

Inhomogeneous flow —"
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Spaepen, Acta Metall. 25 (1977) 407.
Sun et al., Nature Rev. Mater. 1 (2016) 16039.



Deformation behavior of nanoscale metallic glass

Bulk metallic glass
( Brittleness, Strength ~0.02E )

Nanoscale metallic glass

(The smaller is the stronger,
and be also more ductile!)

» Sample size effect on the strength and elastic limit of metallic glasses

Wang et al., Acta. Mater. 60 (2012) 5370.

Tian et al., Nature Comm. 3 (2012) 609.
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lll. Construction of deformation map of nanoscale metallic glasses
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Limited Plasticity by shear softening and shear band

e Microscopically brittle fracture

==) Death of a material for structural applications

3.0
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FIGURE 8.11

(a) Variation of strength with glass transition temperature, T, for a number of BMGs.
(b) Relationship between the calculated fracture strength from a free—wolume model and the
ratio of AT, /V for a variety of BMGs. (Reprinted from Yang, B. et al., Appl. Phys. Lett., 88, 221911-1,
2006. Wlth permission.)
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Relationship between (a) tensile strength and Young's modulus and (b) Vickers hardness and
Young's modulus for some typical BMGs. The data for crystalline alloys are also shown for
comparison. (Reprinted from Inoue, A., Acta Mater., 48, 279, 2000. With permission.)



FIGURE 8.27

Scanning electron micrograph of the fractured surface of a bulk metallic glass alloy specimen.
Note the vein pattern, which is typical of many metallic glasses that fracture along a shear
band. Such microstructures are obtained both in tension and compression.



FIGURE 8.28

Comparison of the fracture surfaces of Zr,Cu Al Ni;Ti, BMG alloy that has failed under
(a) compressive loading and (b) tensile loading. Notice that the specimen that has failed under
compressive loading exhibits vein-like pattern while the specimen that had failed in tension
shows round cores with vein-like features radiating outward from their centers. The arrow in
{a) shows the shear direction, while the arrows in (b) indicate the location of the round cores.
(Reprinted from Zhang, Z.F. et al., Acta Mater., 51, 1167, 2003. With permission.)




What governs plasticity in metallic glasses?




Plastic deformation in metallic glasses

Plastic deformation in metallic glass
« No dislocation / No slip plane

« Inhomogeneously localized plastic flow in the shear band

interrupt the localization of stress and deformation

« Prevent propagation of single shear band ==) BMG matrix composites

e Multiple shear band formation




Ex-situ BMG matrix composites

1) Casting : hard/ductile particle
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In-situ BMG matrix composites

1) Solidification : formation of primary ductile phase
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2) Solidification : precipitation of ductile phase
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(Johnson et al., Acta Mater., 2001)



Size of heterogeneity

Shear bands are ~20 nm in width

.

_TEM__Image of'a shear band

o ot

= Prevent propagation of single shear band

m=) Micro- or nanometer scale heterogeneity



Size of heterogeneity

e Elementary flow event in an metallic glasses

atomic 0 o

volume *

vV

Probability exp(AV_)
f

/

D average free volume
o
defect free volume :
volume fluctuation shear strain

Flow governed by localized defect (~10 atoms) and creates defects

atomic scale heterogeneity |:>

=17,EXP AVO\
=1, v

f J




Plastic deformation in metallic glasses

* Flow governed by localized defect (~10 atoms)

* Flow creates defects

Crystal; constant volume

Amorphous: dilatation

e Shear bands form by accumulation of defects

\ 4

Understanding how shear bands form and propagate
In metallic glasses



Fragility

@ Fragility ~ extensively use to figure out liquid dynamics and
glass properties corresponding to “frozen” liquid state

< Classification of glass >

Strong network glass : Arrhenius behavior

E
= e a
I n=n, X|0[RT]

Fragile network glass : Vogel-Fulcher relation

e
1= explr—

< Quantification of Fragility >

m:dlogn(T) _dlogz(T)
d(Ty/T)|

=Tgn

d(T,/T) -

Log (viscosity in Pa-s)

12

Intermediate
(Moderately
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Somewhat
Fragile
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Slope of the logarithm of viscosity, n (or structural relaxation time, T ) at



Correlation between fragility and plasticity

@ Correlation between elastic constants and plasticity

Low G/B —> High v m=) shear collapse

oo |
(shear modulus / bulk modulus) (poisson’s ratio) (multiple shear band)

Jan Schroers et al, , Phys. Rev. Lett. 93, 255506 (2004).

Polymer

100 Bulk Metallic Glass

80r
m 60}

40f

207%F

m—17 =29(B/G —1) m-17 =14(B/G -1)

* J. Mater. Res. 23, 523 (2008)



Correlation between fragility and plasticity

L?W G/B — High m ms) Large Plasticity
High v (fragility index) (multiple shear band)
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* Appl. Phys. Lett., 91, 031907.



Enhancement plasticity in BMGs with atomic scale heterogeneity

a) Effect of quenched-in quasicrystal nuclei




Effect of guenched-in quasicrystal nuclel

2 mm rod

(@) Zrg3TisNb,CuysgNig 3Al7 (b) Zrs;TigNb, 5Cuy3gNiyq 1Al 5

3 mm rod

B-Zr particle (~70 nm) in amorphous matrix |-phase particle in amorphous matrix



Effect of quenched-in quasicrystal nuclei

e Compression test * unpublished (2008)

Injection-cast

1500

Stress (MPa)
s

S




Enhancement plasticity in BMGs with atomic scale heterogeneity

a) Effect of element having positive enthalpy of mixing
among constituent elements




Improvement of plasticity in monolithic BMGs

* Enhancement of plasticity in monolithic BMGs
==» NO clear explanations so far.

* Reports for enhancement of plasticity in monolithic BMGs

Compressive plastic strain, g, (%)

ZregTasCu gNigAl o 1 ~6.1
Zr o Ti-CuNigAl ~11
NicoZr,Ti,Si,Sn, ~2.1
CU47TI33ZI’7Nb4NI85I1 3 - 41
Cu,,TizaZr NigSiy ~1.5
CU43Ag7ZI’43A|7 4 - 41
Cu.,Zr Al ~ 1.5

1 Xing et al., Phys. Rev. B (2001)

2 Lee et al., Intermetalics (2004), BMG 111

3 Park et al., J. Non-cryst. Sol. (2005)

4 Sung et al., Met. Mater. —Int (2004) and
Oh et al., Scripta Mater. (2005)

(Ta-Zr: +13KJ/mol, Nb-Zr: +17KJ/mol, Nb-Ti: +9KJ/mol,Cu-Ag: +5 KJ/mol)

- Previous results on the effect of micro-alloying on plasticity

. Effect of elements having positive heat of mixing



Alloy design
* Substitution of Zr with Y in Cu-Zr-Al system
CuyeZry; ALY,

] @ crystal
7 ® O (D amor.+cryst.
9 D / O O amorphous
— 8 o O
g -]
E I @) O
) 6—_ O O o
% 5—_ O O D *
g 4- ® O O @) ’
® 3 O O O O .
27 0 O O O ® Possibility of two phase !!!
14
0. 0 0O © © Y mmmd) Cu-Zr-Al , Cu-Y-Al
I OI I I2 I I 5I I I I I 1I() I I I I 1I5 I
Y content, X (at%) Indirect evidence of inhomogeneity
D. Xu, G. Duan and W.L. Johnson, Phys. Rev. Lett. 92, 245504 (2004) = Phase separation

* Acta Materialia, 54, 2597 (2006)



Thermal analysis : DSC results

ALY, AH=-24.6 J/g
;-\ Zr 2A|7Y35 578 AH,_=-38.8J/g 749 AH _=-11.5J/g
- — V
O |zr ALY, 5 AH,_=-285 /g Y AH,=-18 /g
Q’ ——
Q |zr ALY, AH, = -24.3 Jig W AH =-
= |z, Ay, 5% _ @7 AH, =-17.6 J/
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L0
S|4 2A|7 15 606y AH, =-8.1JMg AH,=-165J/g
O |Zr ALY Y 68.5
é 377 V7 10 A AHlst_ 23.5J/g
= ALY 6035 A 6.1 Jig 711
2r 27 Ys Vo L AH_=-407Jlg— ./ \_ .
= 701 76 9035 929
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Exothermic peak which exhibit that Y rich amorphous phase crystallize



Structural analyses : TEM results
As-melt-spun

- With increasing Y content,
Compositional inhomogenietysss  Phase separation

Full scale = 769 counts Cursor: 19.95275 ke¥

Full scale = 252 counts Cursor: 11.3675 ke¥

0 2 4 B 8 10 12 14 18 18 20

Cuss 7Zrq58Y443Al7, (CuY-rich)




Compression test in Cu-Zr-Al-Y alloy system

2200

injection-cast

2000

Stress(MPa)

D A larger amount of strain along the shear band led to localized melting before fracture



Viscosity (Pas)

Measurement of viscosity using TMA

<Supercooled liquid region> <1st Crystallization behavior>
1012: o
] - o ® 1mmrod . -
0 o Applied load : 50mN 3 | Cllyefr oAl Y, 10mm dia rod
o ) Heating rate ; 40 K/min ~— |lsothermal annealing
1 E o E |at 720K
107 = 0 @
= Q =
5 4 o | %
Tr|'- o i
o |
10 & S R —
% 1 6 & 10 1z 14
S Time [ min)
: nucleation and growth
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CuygZr /Al < CugeZrpAlrYs

rlmin = 28*108 paS rlmin = 19*109 paS
Relatively easy crystallization



Structural analyses: HRTEM

Cu,eZr, ,AlLY

As-melt-spun Heated up to 480T

: nanocrystallization of Y rich amorphous phase due to relatively lower GFA

* Acta Materialia, 54, 2597 (2006)



In-situ WAXS analysis of Cu,¢Zr,,Al,Y: during heating

y
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Obtained from Argon National Lab.
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Analysis of atoms by 3DAP

Mg alloy

n’ precipitates in Al-Zn-

wu 0z~

.n ..u -
e el -
A . e

29 at %Mg

34 al.%Z

T T T |
2000 3000 4000 5000
Total Number of Atoms

T
1000

2 & @ ¢

swoly B 'uZ jo JequinN




Energy-compensating reflectron lens

detector

specimen |

HV

b

|ttt

reflectron

HV




NIMS 3DAP

klass Spectrum

Ll bl 1

-1t

1.4

-F

134

2nh

EEna

an.r

VAT 1084-CEAD

Top View

SAES SORE-AC GPS

0103-CE11
/%




Complementary structural analysis

Local Chemical Composition

b
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APT results of Cu,Zr,, Al.Y, (x=0,5, 10, 15) ribbons

APT reconstructions showing the distribution of the alloy metallic elements (Cu-Yellow; Zr-blue;
Al-purple; Y-red). The upper images are three-dimensional views for cylindrical regions, and the
lower images are 2 nm-thick virtual slices of the respective reconstructions.



The quality of the binomial fit was quantified using p-value and u parameters, as listed in the inset tables.

(@)

Counts (a.u.)

Counts (a.u.)

Statistical binomial frequency distribution analysis

‘llru & AlDbsarved
Element | p-walue [ —— Al Binomial
o Al 0.8191 0.0512 @ Fr Obsarved
G 08492 | 0.0822 — Zr Binomial
Bl Cu | 09ees | 0.0820 @ CuObsered
Cu Binomial
I
0 20
Concentration (at %)
\lll'-'lu @ AlQbssrved
Element | p-value " —— Al Binomial
- <0.0001 | 0.1649 @ Y Observed
[ <0.0001 | 0.9776 Y Binomial
B z | =00001 | 0.8487 @ ZrObserved
p —Zr Binomial
B Cu «0.0001 | 0.4739 a Cu Observed
Cu Binomial
0 20 40 60

Concentration (at %)

(b)

Counts (a.u.)

Counts {a.u.)

Y5

Element | p-walue I}
- 05230 | 0.0825
v 0.0126 | 0.0880
Il = 0.0580 0.1308
Hl Cu 01584 | 0.1228
|
20

Concentration (at %)

& AlQObserved
—— Al Binomial
@ Y Obsarved
—% Binomial
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Y15
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Element | p-walue I Al Binomial
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B = | <00001 | 08aTz # ZrObserved
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Proxigrams with respect to interfaces btw Zr- and Y-rich region

calculated with a bin size of 0.3 nm

Compositional heterogeneity Phase separation
with nanoscale network with interconnected structure

Tomn)
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The interfaces (distance=0) in (a) and (b) are estimated from the frequency distribution
analysis results to be the positions with Y composition of 10 at. % and 16 at.%, respectively.
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APT results of Cu,Zr;,Al.Y,, vs Cu,.Zr;,Al. Y, - ribbons

Compositional heterogeneity Phase separation
with nanoscale network with interconnected structure

Y15




Effect of element having positive enthalpy of mixing

2 Abnormal behavior of supercooled liquid region

(@) Ni Zr Nb_Al,Ta,_

(b) Cu, Zr, ALY, $ '

-(C) Zr36 =

(d) Mg Cu

15Ag 10 dFO

<—Exothermic (0.5 w/g per div.)
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Temperature (K)




Effect of element having positive enthalpy of mixing

@ Atom probe concentration depth profiles in Nig,Zr,,Nb-Al,Ta,

(a) As-cast (b) H876 (c) H897
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Effect of element having positive enthalpy of mixing
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Enhancement plasticity in BMGs with atomic scale heterogeneity

b) Effect of element having significantly different
enthalpy of mixing among constituent elements




@ Cu-Zr-Be ternary alloy system

Effect of element having large different enthalpy of mixing

* Acta Materialia, 56 3120 (2008)
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Effect of element having large different enthalpy of mixing

@ Compression test

Injection-cast

(@ Cuzr,,
o, = 2085 MPa, & =2.05%

(b)Cu,, 2Zr,Be

47.5 12.5

o, = 2045 MPa, & =5.25%

Stress (MPa)
N
S

Uniaxial Compression
Strain Rate =1 x 10”s™
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Strain (%)
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Effect of element having large different enthalpy of mixing

@ 3DAP-FIM results
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(a) FIM image and (b)-(d) composition depth profile
of the as-spun Cu,; Zr,,Be;, s ribbon sample



Effect of element having large different enthalpy of mixing

_ * Acta Materialia, 56 3120 (2008)
% EXAFS analysis

r (A) N o2
Total N

Cu-Cu Cu-Zr Cu-Cu Cu-Zr Cu-Cu Cu-Zr
CuUgoZr a0 2.49 2.69 3.0 3.7 6.7 0.0116 0.0233
CUy75Zr0Be;s s 2.51 2.70 2.5 4.8 7.3 0.0107 0.0227
Zr-Zr Zr-Cu Zr-Zr Zr-Cu Zr-Zr Zr-Cu
CUgoZr 40 3.10 2.68 6.9 4.4 11.3 0.0263 0.0124
Cuyy 5ZrBegss 3.12 2.69 6.2 3.5 9.7 0.0257 0.0130

Atoimic diameter in A: Cu-Cu = 2.56, Cu-Zr = 2.88, Zr-Zr = 3.20.

@Cargill-Spaepen short-range order parameters, n

Zng <z> | Z% | Z%s n Cargill-Spaepen SRO parameter
CUgoZr 40 3.7 8.540 | 3.416 | 3.546 1 0.043 n= ZAB /Z:;a -1
Cuy; 5Zr,0Be1ss 4.8 7.348 | 2939 | 3.855 § 0.245 wE
______ ZAB - XBZBZA/< Z>
o
n>0

chemical ordering between AB nearest-neighbor pairs



Enhancement plasticity in BMGs with atomic scale heterogeneity

c) Effect of atomic scale heterogeneity on SB nucleation




*Ni-Nb-Zr ternary alloy system

NigoNb 5 and NiggNb,yZr,, alloys

20 50050 0000

RS 5383035855550
DD{: o0 0 Qo
loo GQC}ODDDOOD%C}D{}DG

Q €]
500 GDQ e
DDDG DODD ODOOSDD

Compositional inhomogeniety
(conformed by EXAFS)



Experimental equipment

Normal camera
25 frames per sec
Interval : 0.04 sec




Effect of local favored structure on SB nucleation

@ NigNb,,: fully amorphous phase S=0.016 mm/sec

100 pm



Effect of local favored structure on SB nucleation

@ NigoNb,,Zr,,: amorphous phase with local favored structure

S=0.016 mm/sec

a Increased nucleation sites of shear bands

; evaluate the local heterogeneity in amorphous phase



Tailoring of structural inheterogeneity

> Alloy design

+ Process control

atomic scale inhomogeneity generation Solidification under appropriate conditions

|:> Enhanced plasticity in NiggNbg,Zrg, NiggNbgoZr; o BMGS (0, 3.2 GPa, g, : 2.5 %)

3500

2500

Stress (MPa)

Injection-cast
d=1mm

(@)x=0 o;=2958 MPa,&,=0.0%
(b)x=5 o, =2969 MPa,g,=0.0%
(C)x=8 ©;=3121MPa, &, =2.4%
(d)x=10c; = 3138 MPa, g, = 2.7 %
(€)x=15 ;= 2856 MPa, g, =0.2 %
(f) =20, = 2556 MPa, &, = 0.5 %

Uniaxial Compression
Strain Rate=1x 10"s™

4 8 10

6
Strain (%)
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Comparison of Work-hardenability depending on 2"d Phases

2200
2000- 1919 . B
1800- v 1725 . Op = 0 — 0y
= 1600 e —e_g 9
L 1400- p Yy F
= _
@ 1200+
L 10004 [H.C. [SMA [s.C. 20
@ 800 o, SMA
- T ]
= 6004 200
" 400 T 0]
L S 160—_
200+ 7 104
o/ _J % 120
0O 1 2 3 4 5 6 7 8 9 2 128 S.C.
True strain(%) £ o
40 4
« SMA : Strain hardening ] | | | H.C.
« H.C., S.C.: Strain softening 00 05 10 15

Plastic strain(%o)

Higher strain hardening of SMA, then larger work hardenability of BMGMCs
Strain hardening(2"¥) m) Work hardening

(SMA > S.C. > H.C)) (SMA >S.C.>H.C))
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Investigation of deformation of BMGC with “soft” phases

* BMGCs with soft crystalline 2"d phases

1800 —

0.2% Offset Y.S.
ATO0 s o7 i o o o e e T

1600 —

B0 s @ e o g g

o, (MPa)

1400 —

1300 —

1200—|

o Zr based metallic glass + 8% Ta

« Compression test with in-situ X-ray synchrotron diffraction

(Beamline 1-ID beamline of the Advanced Photon Source at Argonne National Laboratory)




Investigation of deformation of BMGC with “soft” phases

* BMGCs with soft crystalline 2"d phases

von Mises Effective Stress (MPa)

2000 —
1800 —
! Longitudinal Transverse
1600 —
1500 — - -
1400 —
E 1200
=
1000 — g 1000
2 800 —
2
& 600 —
500 — <
400 —
200 —
0 = 0 —
I | I I
0 1 2 3 -4000 -2000 0 2000 4000
Strain (%) Lattice Strain (x10°)

At approximately 325 MPa applied stress, the particles yield, which are
constrained by amorphous matrix causing plastic misfit stress near the

particles.

At an applied stress of 1450 MPa (just below yield stress), the lattice stress—
strain curve changes slope again for both the longitudinal and transverse
directions, indicating an increase in the fraction of the load being
transferred to Ta particles.




Investigation of deformation of BMGC with “soft” phases

* BMGCs with soft crystalline 2"d phases

2000 —

1500 — d

1000 —

s6q
B 7e0

500 —

von Mises Effective Stress (MPa)

| 1 | |
0 1 2 3
Strain (%)

« Plastic misfit strain creates a significant stress concentration around the particles.
» Shear bands initiates near the particles due to the localized stress concentration.

« If a shear band initiates at the particle and propagates away, it will quickly encounter
a region where the yield criterion is not satisfied and the shear stress is insufficient to
sustain shear band propagation.

Principle of multiple shear band initiations & blocking shear bands propagation



Investigation of deformation of BMGC with “hard” phases

* BMGCs with hard ceramic 2" phase

-

|

Residual strain were measured by
neutron diffraction.

Each phase strain in the ZrC-BMG
during compressive loading was
estimated from the residual strains
in each specimen according to
following equations:

Gappl. b B A ER = e — VO appl. |

E

EA —
E

Relative residual strain

2500

2000 A

= =
o wu
o o
o o
1 1
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500 -

0

@ o ®

@ Fracture

0.02 0.04 0.06 0.08 0.1

Compressive stop strain

Radial

T T T T

0.02 0.04 0.06 0.08 0.1
Compressive stop strain



Investigation of deformation of BMGC with “hard” phases

* BMGCs with hard ceramic 2" phases
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Mechanism of Work-hardening in BMGC with transformable 2" phase

“Strain hardening of 2"d phase contributes to work hardening behavior of BMGC.”

BMGMC

Stress

Work hardening

Strain

Matrix
7p]
7p]
o
o
2"d phase
0
O : :
= Strain hardening
’ v
Strain

2019-12-10
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Stress

~ Lattice strain

Deformation behaviors of BMGC depending on 2™? phase

Soft crystalline 2nd phase Hard ceramic 2" phase
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MATERIALS SCIENCE 10 SEFTEMEBER 2010 VOL 329 SCIENCE

S h a p e M e mo rv B UI k M Etal I i c Glasl..:-fmming and sh a!]e l‘.I'IEH'lUI'},I' m.etals fna}.r
. provide a route to fabricating materials with
Glass Composites

enhanced mechanical properties.
Douglas C. Hofmann

Zr48Cu47.5Al4CoDI5

1 Work-hardening in tension
2000 S ;
from martensitic transformation

1600-
g 1200~ Necking in tension
= from soft bce crystal
o
&% goo-
DPC.Ca=d
1mm dendrite BMG
400 ZrCuAlCo G (GPa) ZiTiNbCuBe G (GPa)
Cubic CuZr 29 bcc ZrTiNb 28
Glass 33 Glass 33
0 | 1 | I | |
0 2 4 6 8 10 12

Strain (%) —



LETTERS NATURE|Vol 451|28 February 2008

1) Work softening behavior by ductile secondary phase

a ¢ 2000
Vitreloy 1
DH1
T 1,500
= /\
9 DH2
g = DH3
@ 1,000
[#)]
=
=
8
=
=
=
[WN)
| I 1 1 1 1
2 4 6 8 10 12

Engineering strain (%)

> 10 % plastic strain in tensile test



n atu r e Full text ac:cetwjded to

materials »

nature.com *» journal home » archive = issue » letter » full text

L / Stress-induced phase transformation of secondary phase

Transformation-mediated ductility|in CuZr-based bulk metallic glasses

5. Pauly, 5. Gorantla, G. Wang, U. Kiihn & J. Eckert

Nature Materials 9, 473477 (2010) | doi10.1038/nmat2767
Affiliations | Contributions | Corresponding author Received 17 MNovember 2009 | Accepted 09 April 2010 | Published online 16 May 2010
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Figure 3: Microstructure of a Cuy; <fry; Als specimen deformed to fracture.




Work-hardening behavior of BMGCs in tension

Mkl ¢ B2 «—tmeaue B "

{a) : B2 CuZr

www.MaterialsViews.com o-B1E CuZr

w111

%Nﬁ E e
As-cost

Relative Intensity

2 Theta, degree

BMG matrix CuZr B2

Transformation media | =
metastable phase at RT |

Yuan Wu, et al. Adv. Mater. 2010, 22, 2770-2773 [XRD pattern & Morphology of secondary phase before / after tensile test]



Work-hardening behavior of BMGCs in tension

s ADVANCED
M s MATERTALS
www.MaterialsViews.com
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©
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fer)
"
o -
£ / I -
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000 002 004 006 008 010
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Figure 2. Engineering tensile stress—strain curves of the BMG compos-
. ites. Dashed lines indicate the unloading process. Top inset shows the
BMG matrix cuzr Bz outer appearance of the tensile samples pre-strained at the different
Transformation media stages and the lower inset shows the true tensile stress-strain curves,

indicating a significant strain-hardening behavior.

metastable phase at RT

Yuan Wu, et al. Adv. Mater. 2010, 22, 2770-2773

® Cu-Zr-Al system



Two different deformation behaviors of BMGC depending on 2™ phase

1) Ductile phase Zr,, Ti, Nb, Cu, Be . < Tension >
—+ Work softening Douglas C. Hofmann, SCIENCE VOL 329 10 SEPTEMBER 2010

d;];él‘:i'te 2000~ Work-hardening in tension
e from martensitic transformation

1600~
i 2 :
E 1200~ Necking in tension
= from soft bee crystal
2) Transformation media zr cu_ Alco,. &
v

— Work hardening 800~

+ SGUbicshape

1mm

400~ ZrCuAlCo G (GPa) ZrTiNbCuBe G (GPa)
Cubic CuZr 29  bcc ZrTiNb 28
e ) Glass 33 Glass 33
G‘ 1 I 1 1 I I
0 2 4 6 8 10 12

Strain (%)



Developmentofa New Ti-based BMGC with High Work-hardenability

> Alloy system  Cu-Zr-Al system Ti-Cu-Ni system
Secondary CuZr Elt: Ti-X
phase Metastable B2 phase at RT Stable B2 phase at RT
“Shape Memory Behavior” “Super-elastic Behavior”
Shape Memory Alloy (SMA) Super-Elastic Alloy (SE alloy)
" o” martensite " o” martensite
A &
/,— stable B at RT
ME  Ms As  Af ME  Ms As Af
RT Temperature RT Temperature
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Developmentofa New Ti-based BMGC with High Work-hardenability

D> Alloy system  Cu-Zr-Al system Ti-Cu-Ni system
Secondary CuZr E:> Ti-X
phase Metastable B2 phase at RT Stable B2 phase at RT
“Shape Memory Behavior” “Super-elastic Behavior”
Ref: 5.P. Alisova, et al, Russian Metallurgy, (5), 207-209 (19586

“‘ > TiCu-NiTi pseudo-binary eutectic

Eﬂ am- \ 5 High glass forming ability ~ 1.5¢
g wi \ +
- 3 \\\\ Al s\k\\\\\\\\\\\% NiTi ~ representative SMA

Bulk Metallic Glavs \\\\\\\\\\\\§\\\\\\\\S_ or

forming region i3
\\\\\\\\\\\\\\? Ti-X ~ Superelastic alloy b
\\\\\ \\\\\ i-X ~ Superelastic alloy by
O T x DI %k\\\\\\i“\\\; phase transformable B2 phase



In-situ high energy X-ray diffraction under compression (APS 11-ID-C)

400 600 900 1000 1200 1400 1600 1800 2000

APS 11-ID-C

Transversdl

| Cyclic compression test (3
o0 stages)
L .
3
¢3 10004
1) Loading ~ 2050 MPa
5004
3) Loading ~ 2150 MPa

d N 05 10 15 20 25 30
PT stress of 2"d phase ~ 850 MPa Srain %)



In-situ diffraction under compression: 15t loading ~ 2050 MPa

1600
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- M.T. is constrained by horizontal frame of MG matrix because of the imbalance of Poisson’s ratio
during M.T.(~0.5) with elastic loading of MG matrix (~0.33).
- Preferred orientation before deformation = B2 (110), Preferred orientation after deformation

for Longitudinal direction = B19 (020) and for Transverse direction = B19(002), B19(020), B19 (111)



In-situ diffraction under compression: Unloading ~ 150 MPa

B2(110)
B19(002)

B2(110)

B19(111)

stress (MPa)
ress(MPa)

2 8
31400 3
1600 1600
1800 Longitudina 1800
2000 2000
28 29 30 31 32 33 34 35 28 29 30 31 32 33 34 35

2 theta (degree) 2 theta (degree)

- After unloading down to ~150MPa, most of B19 reverse transformed to B2, but small fraction
of B19(002) & (111) remained.

- Preferred orientation before deformation = B19 (020) / after deformation = B2(110)



In-situ diffraction under compression: 2" loading ~ 2150 MPa

B2(110)
B19(020) B19(002) | B19(020) B19(111)
‘ |
2000 — 2000 N 0
1800 1800
1600 o L
— /CE
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g % 1400
B 1200 @ 1200
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_’E 1000 @ 1000
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§ 800 ?% 800
600 600
400
Longitudina 0 Transverse
200 . . 200
28 29 30 3.1 32 33 34 3.5 2.8 29 3.0 31 32 33 34 35
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- M.T. is constrained by horizontal frame of MG matrix because of the imbalance of Poisson’s ratio
during M.T.(~0.5) with elastic loading of MG matrix (~0.33).
- Preferred orientation before deformation = B2 (110), Preferred orientation after deformation

for Longitudinal direction = B19 (020) and for Transverse direction = B19(002), B19(020), B19 (111)

Seoul National University ESPark Research Group



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

The observed work hardening in the CuZr based
BMG composites cannot be solely attributed to the 1)
intrinsic strain hardening of the B2 phases, but
also arises from 2) a constraining effect of the glassy
matrix on the martensitic transformation and the
subsequent deformation of the transformed phases.
In theory, this constraint effect, also called Eshelby
back stress effect, increases the elastic energy stored

in the whole composite system, which leads to an
increase in the applied stress and thus manifests as
strain hardening in the BMG composite

ESPark Research Group 79



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

1) “Strain hardening of transformable 2" phase

Matrix
BMGMC 7
L
)
Work hardening _
Strain
wn
(2]
)
= 2"d phase
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79}
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= Strain hardenin
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Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

The observed work hardening in the CuZr based
BMG composites cannot be solely attributed to the 1)
intrinsic strain hardening of the B2 phases, but also
arises from 2) a constraining effect of the glassy
matrix on the martensitic transformation and the
subsequent deformation of the transformed
phases. In theory, this constraint effect, also called
Eshelby back stress effect, increases the elastic
energy stored in the whole composite system, which
leads to an increase in the applied stress and thus
manifests as strain hardening in the BMG composite
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Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

2) “Strong Eshelby back stress effect of transformable 2"d phase”

* Eshelby inclusion with elastic mismatch
— Inhomogeneous stress/strain distribution -
— applying a effective transformation strain €;;

Stage Il

Stage |

9

Inclusion

Inclusion

Stage Il

9

Inclusion

The schematic illustration of the three stages of Eshelby approach for solving
the stress and strain fields due to the deformation of an inclusion in the matrix.



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

BMG composite with ceramic ZrC

“H.Kato et al., Scripta mater. vol.43, 503 (260 O)~Z.

e o
e
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Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

ESPark Research Group



Origin for Improved work-hardenability in TRIP BMGC by SE 2nd phase

In-situ SEM test

1st

3rd

4th

Martensitic transformation occurred during compressive deformation.
Direction of shear bands : perpendicular to the loading direction
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In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C

In-situ compression Rietveld refinement

gitudinal .
Diffraction beam ﬂ Y e M —

Synchrotron B —
X-ray beam B L

%

nsverse 20

Distance = 1800mm Specimen «  Fitting at single azimuth angle
Rwp : 5.81% (<10% is good fitting)
*  Amorphous : Cu3Zr, orthorhombic, Pnma — Paracrystalline

(small crystallite, large residual stress,
Ref. M.Baricco, et al., J.Allo.Comp. 495, 377 (2010))

" 2-dimensional detector = NITLB2, NiTi_B19'

Fitting through whole azimuth angle Fitting through whole stress level

2D Multiplot for NiTi2-4-1990
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Lattice information, Phase fraction, Texture
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In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C

The fraction of martensitic transformation in elastic region
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© o I L
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Applied Stress (MPa)

* Martensitic transformation occurred gradually.

 Martensitic transformation is delayed by the interaction between
2"d phase and metallic glass matrix. (Amodulus btw matrix & 2nd phase >30GPa)
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In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C
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1. Martensitic transformation occurred at <100>
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Compare with soft crystalline 2nd phase

BMG Composite with 10% Ta R.T. Ott et al. , Acta Mater. vol. 53, 1883 (2005)
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2. Misfit stress between matrix and 2"d phase become less
pronounced by martensitic transformation of 2" phase.




DFT-based MD simulation

Stress-induced phase transformation of NiTi in BMGC
Potential based MD simulation

Stress-induced phase transition :
2 ~10 % strain

T T 25 .

[100]

. =
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Qe m 15}
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o c
55. 4 BMG .0 10r ;oo 0w o9 0o o] §
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Py - . . h
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Strain Strain Formation of multiple martensite

*Visualized based on the common neighbor analysis domains

[010]

[010]

[010]

*Visualized based on the atomic strain analysis (min=0, max=0.9) Formation of shear band along
lateral directions
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DFT-based MD simulation

Soft Soft Hard Hard Phase transformable

bce Nb [100] fcc Ni [100] bee Nb [111] fec Ni [111] NiTi [100]

Front
view -
30% strain

J
N

Lateral view -
30% strain

.

*Visualized based on the atomic strain analysis (min=0, max=0.9)

Strain localization of NiTi containing cell is less pronounced than other cases
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Origin for Improved work-hardenability in TRIP BMGC by SE 2" phase

elastic+ HARE
Character of 2nd phase no olkaile elastic plastic+
TRIP
e
1. Eshelby backstress effect - depends weak Strong
Blocking _shear band o middle middle Superior
2. Damage propagation (reusable for SE phase)
management '
2 Stres; / strain - localized localized Delocalized
localization
Soft crystalline Hard ceramic Transformable
bce Nb [100] J bcc Nb [111] J NiTi [100] J
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