2018 Spring

"Advanced Physical Metallurgy" - Bulk Metallic Glasses -

06.18.2018

Eun Soo Park

Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by appointment

1

Deformation modes

redistribution of internal stresses

Deformation mode of bulk metallic glasses

Deformation behavior of nanoscale metallic glass

Bulk metallic glass

(Brittleness, Strength ~0.02E)

Nanoscale metallic glass

(The smaller is the stronger, and be also more ductile!)

Sample size effect on the strength and elastic limit of metallic glasses

III. Construction of deformation map of nanoscale metallic glasses

Limited Plasticity by shear softening and shear band

Microscopically brittle fracture

→ Death of a material for structural applications

(a) Variation of strength with glass transition temperature, T_g for a number of BMGs. (b) Relationship between the calculated fracture strength from a free-volume model and the ratio of $\Delta T_g/V$ for a variety of BMGs. (Reprinted from Yang, B. et al., *Appl. Phys. Lett.*, 88, 221911-1, 2006. With permission.)

Relationship between (a) tensile strength and Young's modulus and (b) Vickers hardness and Young's modulus for some typical BMGs. The data for crystalline alloys are also shown for comparison. (Reprinted from Inoue, A., *Acta Mater.*, 48, 279, 2000. With permission.)

Scanning electron micrograph of the fractured surface of a bulk metallic glass alloy specimen. Note the vein pattern, which is typical of many metallic glasses that fracture along a shear band. Such microstructures are obtained both in tension and compression.

Comparison of the fracture surfaces of Zr₅₉Cu₂₀Al₁₀Ni₈Ti₃ BMG alloy that has failed under (a) compressive loading and (b) tensile loading. Notice that the specimen that has failed under compressive loading exhibits vein-like pattern while the specimen that had failed in tension shows round cores with vein-like features radiating outward from their centers. The arrow in (a) shows the shear direction, while the arrows in (b) indicate the location of the round cores. (Reprinted from Zhang, Z.F. et al., *Acta Mater.*, 51, 1167, 2003. With permission.)

What governs plasticity in metallic glasses?

Plastic deformation in metallic glasses

Plastic deformation in metallic glass

- No dislocation / No slip plane
- Inhomogeneously localized plastic flow in the shear band

interrupt the localization of stress and deformation

- Prevent propagation of single shear band BMG matrix composites
- Multiple shear band formation

Ex-situ BMG matrix composites

1) Casting : hard/ductile particle

200µm (Johnson et al., Acta Mater., 1999)

In-situ BMG matrix composites

1) Solidification : formation of primary ductile phase

(Johnson et al., Acta Mater., 2001)

2) Solidification : precipitation of ductile phase

Size of heterogeneity

Shear bands are ~20 nm in width

• Prevent propagation of single shear band

Micro- or nanometer scale heterogeneity

Size of heterogeneity

Selementary flow event in an metallic glasses

Flow governed by localized defect (~10 atoms) and creates defects

atomic scale heterogeneity

$$\eta = \eta_0 \exp\left\{A\frac{V_0}{V_f}\right\}$$

Plastic deformation in metallic glasses

- Flow governed by localized defect (~10 atoms)
- Flow creates defects

Amorphous: dilatation

• Shear bands form by accumulation of defects

Understanding how shear bands form and propagate in metallic glasses

Fragility

Fragility ~ extensively use to figure out liquid dynamics and glass properties corresponding to "frozen" liquid state

Slope of the logarithm of viscosity, η (or structural relaxation time, τ) at

Correlation between fragility and plasticity

Correlation between elastic constants and plasticity

Correlation between fragility and plasticity

* Appl. Phys. Lett., 91, 031907.

Enhancement plasticity in BMGs with atomic scale heterogeneity a) Effect of quenched-in quasicrystal nuclei

Effect of quenched-in quasicrystal nuclei

2 mm rod

(a) $Zr_{63}Ti_5Nb_2Cu_{15.8}Ni_{6.3}AI_{7.9}$

 β -Zr particle (~70 nm) in amorphous matrix

(b) $Zr_{57}Ti_8Nb_{2.5}Cu_{13.9}Ni_{11.1}AI_{7.5}$

I-phase particle in amorphous matrix

Effect of quenched-in quasicrystal nuclei

Enhancement plasticity in BMGs with atomic scale heterogeneity a) Effect of element having positive enthalpy of mixing among constituent elements

Improvement of plasticity in monolithic BMGs

* Enhancement of plasticity in monolithic BMGs

 \longrightarrow No clear explanations so far.

* Reports for enhancement of plasticity in monolithic BMGs

	Compressive plastic strain, ε _ρ (%)	
Zr ₅₉ Ta ₅ Cu ₁₈ Ni ₈ Al ₁₀ ¹	~ 6.1	
Zr ₅₇ Ti ₅ Cu ₂₀ Ni ₈ Al ₁₀	~ 1.1	
Ni ₅₉ Zr ₁₆ Nb ₇ Ti ₁₃ Si ₃ Sn ₂ ²	~ 6.2	
Ni ₅₉ Zr ₂₀ Ti ₁₆ Si ₂ Sn ₃	~ 2.1	1 Xing et al., Phys. Rev. B (2001)
Cu ₄₇ Ti ₃₃ Zr ₇ Nb ₄ Ni ₈ Si ₁ ³	~ 4.1	2 Lee et al., Intermetalics (2004), BMG III
Cu ₄₇ Ti ₃₃ Zr ₁₁ Ni ₈ Si ₁	~ 1.5	3 <u>Park et al., J. Non-cryst. Sol. (2005)</u>
Cu ₄₃ Ag ₇ Zr ₄₃ Al ₇ ⁴	~ 4.1	4 Sung et al., Met. Mater. –Int (2004) and
Cu ₅₀ Zr ₄₃ Al ₇	~ 1.5	Oh et al., Scripta Mater. (2005)

(Ta-Zr: +13KJ/mol, Nb-Zr: +17KJ/mol, Nb-Ti: +9KJ/mol,Cu-Ag: +5 KJ/mol)

- Previous results on the effect of micro-alloying on plasticity
 - : Effect of elements having positive heat of mixing

Alloy design

* Substitution of Zr with Y in Cu-Zr-Al system

D. Xu, G. Duan and W.L. Johnson, Phys. Rev. Lett. 92, 245504 (2004)

* Acta Materialia, 54, 2597 (2006)

Thermal analysis : DSC results

Exothermic peak which exhibit that Y rich amorphous phase crystallize

Structural analyses : TEM results

As-melt-spun

- With increasing Y content, Compositional inhomogeniety

Phase separation

 $Cu_{53.4}Zr_{31.8}Y_{8.3}Al_{6.5}$ (CuZr-rich)

 $Cu_{35.7}Zr_{12.8}Y_{44.3}Al_{7.2}$ (CuY-rich)

Compression test in Cu-Zr-Al-Y alloy system

► A larger amount of strain along the shear band led to localized melting before fracture

Measurement of viscosity using TMA

Structural analyses: HRTEM

$Cu_{46}Zr_{42}Al_7Y_5$

As-melt-spun

Heated up to 480 $^\circ C$

: nanocrystallization of Y rich amorphous phase due to relatively lower GFA

* Acta Materialia, 54, 2597 (2006)

In-situ WAXS analysis of Cu₄₆Zr₄₂Al₇Y₅ during heating

Visualization of Atoms by FIM

Analysis of atoms by 3DAP

Energy-compensating reflectron lens

NIMS 3DAP

Complementary structural analysis

Local Chemical Composition

Local Structure

APT results of $Cu_{46}Zr_{47-x}Al_7Y_x$ (x = 0, 5, 10, 15) ribbons

APT reconstructions showing the distribution of the alloy metallic elements (Cu-Yellow; Zr-blue; Al-purple; Y-red). The upper images are three-dimensional views for cylindrical regions, and the lower images are 2 nm-thick virtual slices of the respective reconstructions.

Statistical binomial frequency distribution analysis

The quality of the binomial fit was quantified using *p*-value and μ parameters, as listed in the inset tables.

Proxigrams with respect to interfaces btw Zr- and Y-rich region

calculated with a bin size of 0.3 nm

Compositional heterogeneity with nanoscale network

Phase separation with interconnected structure

The interfaces (distance=0) in (a) and (b) are estimated from the frequency distribution analysis results to be the positions with Y composition of 10 at. % and 16 at.%, respectively.

APT results of $Cu_{46}Zr_{37}Al_7Y_{10}$ vs $Cu_{46}Zr_{32}Al_7Y_{15}$ ribbons

Compositional heterogeneity with nanoscale network

Y10

Phase separation with interconnected structure

Y15

20 nm

Effect of element having positive enthalpy of mixing

Abnormal behavior of supercooled liquid region

Effect of element having positive enthalpy of mixing

Atom probe concentration depth profiles in Ni₆₁Zr₂₂Nb₇Al₄Ta₆

easy crystallization

Effect of element having positive enthalpy of mixing

Ordering in supercooled liquid region

Enhancement plasticity in BMGs with atomic scale heterogeneity b) Effect of element having significantly different enthalpy of mixing among constituent elements

Cu-Zr-Be ternary alloy system

* Acta Materialia, 56 3120 (2008)

a 3DAP-FIM results

(a) FIM image and (b)-(d) composition depth profile of the as-spun $Cu_{47.5}Zr_{40}Be_{12.5}$ ribbon sample

r (Å) σ^2 N Total N Cu-Cu Cu-Zr Cu-Cu Cu-Zr Cu-Cu Cu-Zr Cu₆₀Zr₄₀ 2.49 2.69 3.0 0.0116 0.0233 3.7 6.7 0.0227 Cu_{47.5}Zr₄₀Be_{12.5} 2.70 2.5 0.0107 2.51 4.8 7.3 Zr-Cu Zr-Zr Zr-Cu Zr-Zr Zr-Zr Zr-Cu 6.9 11.3 0.0124 Cu₆₀Zr₄0 3.10 2.68 4.4 0.0263 Cu_{47.5}Zr₄₀Be_{12.5} 3.12 6.2 0.0130 2.69 3.5 9.7 0.0257

EXAFS analysis

Atoimic diameter in Å: Cu-Cu = 2.56, Cu-Zr = 2.88, Zr-Zr = 3.20.

Cargill-Spaepen short-range order parameters, η

	Z _{AB}	<z></z>	Z * _{AB}	Z ** _{AB}	η
Cu ₆₀ Zr ₄₀	3.7	8.540	3.416	3.546	0.043
Cu _{47.5} Zr ₄₀ Be _{12.5}	4.8	7.348	2.939	3.855	0.245
4 ************************************					
n > 0					

Cargill-Spaepen SRO parameter $\eta = Z_{AB} / Z_{AB}^{**} - 1$ $Z_{AB}^{**} = x_B Z_B Z_A / \langle Z \rangle$

chemical ordering between AB nearest-neighbor pairs

Enhancement plasticity in BMGs with atomic scale heterogeneity c) Effect of atomic scale heterogeneity on SB nucleation

Effect of alloy composition on SB nucleation *Ni-Nb-Zr ternary alloy system -167 Ni₆₀Nb₄₀ and Ni₆₀Nb₂₀Zr₂₀ alloys Ni Nb -143 Ni-Nb Ni-Zr Ni₆₀Nb₄₀ Zr addition 2 nm **Compositional inhomogeniety** (conformed by EXAFS)

Experimental equipment

Normal camera 25 frames per sec Interval : 0.04 sec

Effect of local favored structure on SB nucleation

100 µm

Effect of local favored structure on SB nucleation

Si₆₀Nb₂₀Zr₂₀: amorphous phase with local favored structure

- Increased nucleation sites of shear bands
 - ; evaluate the local heterogeneity in amorphous phase

Tailoring of structural inheterogeneity

Alloy design + Process control

atomic scale inhomogeneity generation

Solidification under appropriate conditions

 \Rightarrow Enhanced plasticity in Ni₆₀Nb₃₂Zr₈, Ni₆₀Nb₃₀Zr₁₀ BMGs (σ_{max} : 3.2 GPa, ϵ_{p} : 2.5 %)

Comparison of Work-hardenability depending on 2nd Phases

Comparison of Work-hardenability depending on 2nd Phases

Higher strain hardening of SMA, then larger work hardenability of BMGMCs

Strain hardening(2nd)

Work hardening

(SMA > S.C. > H.C.)

(SMA > S.C. > H.C.)

Investigation of deformation of BMGC with "soft" phases

* BMGCs with soft crystalline 2nd phases

- Zr based metallic glass + 8% Ta
- Compression test with in-situ X-ray synchrotron diffraction

(Beamline 1-ID beamline of the Advanced Photon Source at Argonne National Laboratory)

Investigation of deformation of BMGC with "soft" phases

* BMGCs with soft crystalline 2nd phases

- At approximately 325 MPa applied stress, the particles yield, which are constrained by amorphous matrix causing plastic misfit stress near the particles.
- At an applied stress of 1450 MPa (just below yield stress), the lattice stress– strain curve changes slope again for both the longitudinal and transverse directions, indicating an increase in the fraction of the load being transferred to Ta particles.

* BMGCs with soft crystalline 2nd phases

- <u>Plastic misfit strain creates a significant stress concentration around the particles.</u>
- Shear bands initiates near the particles due to the localized stress concentration.
- If a shear band initiates at the particle and propagates away, it will quickly encounter a region where the yield criterion is not satisfied and the shear stress is insufficient to sustain shear band propagation.

Principle of multiple shear band initiations & blocking shear bands propagation

Investigation of deformation of BMGC with "hard" phases

* BMGCs with hard ceramic 2nd phase

- Residual strain were measured by neutron diffraction.
- Each phase strain in the ZrC-BMG during compressive loading was estimated from the residual strains in each specimen according to following equations:

$$\varepsilon_{\rm A} = \frac{\sigma_{\rm appl.}}{E} + \varepsilon_{\rm res_A} \quad \varepsilon_{\rm R} = \varepsilon_{\rm res_R} - \frac{v\sigma_{\rm appl.}}{E}.$$

Investigation of deformation of BMGC with "hard" phases

Fracture surface

Mechanism of Work-hardening in BMGC with transformable 2nd phase

"Strain hardening of 2nd phase contributes to work hardening behavior of BMGC."

Deformation behaviors of BMGC depending on 2nd phase < Compression >

MATERIALS SCIENCE

Shape Memory Bulk Metallic Glass Composites

Douglas C. Hofmann

10 SEPTEMBER 2010 VOL 329 SCIENCE

Glass-forming and shape memory metals may provide a route to fabricating materials with enhanced mechanical properties.

LETTERS

1) Work softening behavior by ductile secondary phase

High fracture toughness: > 10 % plastic strain in tensile test

nature.com ▶ journal home ▶ archive ▶ issue ▶ letter ▶ full text

NATURE MATERIALS | LETTER

Stress-induced phase transformation of secondary phase

Transformation-mediated ductility in CuZr-based bulk metallic glasses

S. Pauly, S. Gorantla, G. Wang, U. Kühn & J. Eckert Affiliations | Contributions | Corresponding author

Nature Materials 9, 473–477 (2010) | doi:10.1038/nmat2767 Received 17 November 2009 | Accepted 09 April 2010 | Published online 16 May 2010

Work-hardening behavior of BMGCs in tension

Yuan Wu, et al. Adv. Mater. 2010, 22, 2770–2773

[XRD pattern & Morphology of secondary phase before / after tensile test]

Work-hardening behavior of BMGCs in tension

1800

1200

600

0-

0.00

0.02

Engineering stress, Mpa

www.MaterialsViews.com

BMG matrix CuZr B2 Transformation media metastable phase at RT indicating a significant strain-hardening behavior.

Figure 2. Engineering tensile stress-strain curves of the BMG composites. Dashed lines indicate the unloading process. Top inset shows the outer appearance of the tensile samples pre-strained at the different stages and the lower inset shows the true tensile stress-strain curves,

0.06

Engineering strain

Unload

0.04

Yuan Wu, et al. Adv. Mater. 2010, 22, 2770-2773

MPa

True Stress

0.08

COMMUNICATION

ADVANCED MATEDIAIS www.advmat.de

0.03 0.06 True strain

0.10

0.09

Two different deformation behaviors of BMGC depending on 2nd phase

- 1) Ductile phase Zr_{39.6}Ti_{33.9}Nb_{7.6}Cu_{0.5}Be_{12.5} → Work softening
 - b.c.c.

dendrite BMG matrix

- 2) Transformation media Zr₄₈Cu_{47.5}Al₄Co_{0.5}
 - → Work hardening

< Tension >

Development of a New Ti-based BMGC with High Work-hardenability

Development of a New Ti-based BMGC with High Work-hardenability

In-situ high energy X-ray diffraction under compression (APS 11-ID-C)

(TiCuNiSnSi)₉₈Zr₂

PT stress of 2nd phase ~ 850 MPa

In-situ diffraction under compression: 1st **loading** ~ 2050 MPa

- M.T. is constrained by horizontal frame of MG matrix because of the imbalance of Poisson's ratio during M.T.(~0.5) with elastic loading of MG matrix (~0.33).
- Preferred orientation before deformation = B2 (110), Preferred orientation after deformation for Longitudinal direction = B19 (020) and for Transverse direction = B19(002), B19(020), B19 (111)

In-situ diffraction under compression: Unloading ~ 150 MPa

- After unloading down to ~150MPa, most of B19 reverse transformed to B2, but small fraction of B19(002) & (111) remained.
- Preferred orientation before deformation = B19 (020) / after deformation = B2(110)

In-situ diffraction under compression: 2nd **loading** ~ 2150 MPa

- M.T. is constrained by horizontal frame of MG matrix because of the imbalance of Poisson's ratio during M.T.(~0.5) with elastic loading of MG matrix (~0.33).
- Preferred orientation before deformation = B2 (110), Preferred orientation after deformation for Longitudinal direction = B19 (020) and for Transverse direction = B19(002), B19(020), B19 (111)

The observed work hardening in the CuZr based BMG composites cannot be solely attributed to the **1**) intrinsic strain hardening of the B2 phases, but also arises from 2) a constraining effect of the glassy matrix on the martensitic transformation and the subsequent deformation of the transformed phases. In theory, this constraint effect, also called *Eshelby* <u>back stress effect</u>, increases the elastic energy stored in the whole composite system, which leads to an increase in the applied stress and thus manifests as strain hardening in the BMG composite

1) "Strain hardening of transformable 2nd phase"

The observed work hardening in the CuZr based BMG composites cannot be solely attributed to the 1) intrinsic strain hardening of the B2 phases, but also arises from **2**) a constraining effect of the glassy matrix on the martensitic transformation and the subsequent deformation of the transformed **phases.** In theory, this constraint effect, also called **Eshelby back stress effect**, increases the elastic energy stored in the whole composite system, which leads to an increase in the applied stress and thus manifests as strain hardening in the BMG composite

2) "Strong Eshelby back stress effect of transformable 2nd phase"

The schematic illustration of the three stages of Eshelby approach for solving the stress and strain fields due to the deformation of an inclusion in the matrix.

BMG composite with ceramic ZrC

In-situ SEM test

Martensitic transformation occurred during compressive deformation. Direction of shear bands : perpendicular to the loading direction

In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C

In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C

The fraction of martensitic transformation in elastic region

- Martensitic transformation occurred gradually.
- Martensitic transformation is delayed by the interaction between 2nd phase and metallic glass matrix. (Δmodulus btw matrix & 2nd phase >30GPa)

In-situ synchrotron radiation _Advanced Photon Source (APS) 11-ID-C

Compare with soft crystalline 2nd phase

R.T. Ott et al., Acta Mater. vol. 53, 1883 (2005)

2. Misfit stress between matrix and 2nd phase become less pronounced by martensitic transformation of 2nd phase.

DFT-based MD simulation

* Visualized based on the atomic strain analysis (min=0, max=0.9)

Strain localization of NiTi containing cell is less pronounced than other cases

Contribution to mechanical properties		Mono lithic	Soft	Hard	Transformable
Character of 2 nd phase		no	elastic+ plastic	elastic	elastic+ plastic+ TRIP
1. Eshelby backstress effect		-	depends	weak	Strong
2. Damage management	Blocking shear band propagation	no	middle	middle	Superior (reusable for SE phase)
	Stress/strain localization	-	localized	localized	Delocalized
Soft crystalline bcc Nb [100]		Hard ceramic		Transformable NiTi [100]	
		\langle			

ESPark Research Group

and a

Mary and