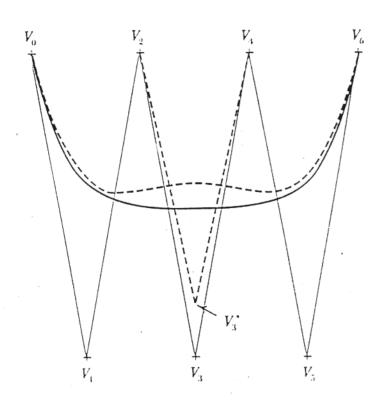
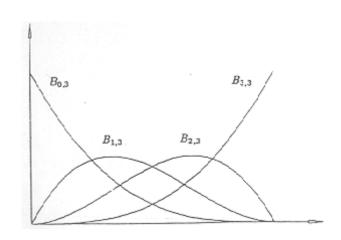
B-spline curve

Properties of B-spline curves

- B-spline curve:
 - Degree of curve is independent of number of control points
- Bezier curve: global modification
 Modification of any one control point changes the curve shape everywhere
 - All the blending functions have non-zero value in the whole interval 0≤u≤1





Bezier curve of degree 3

 P_1

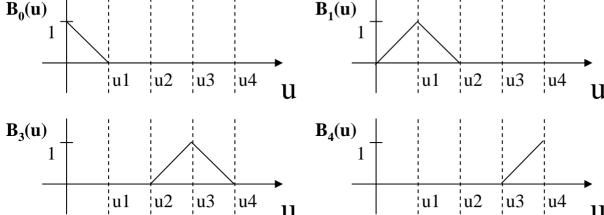
Desired Blending Function Bi(u)

 $B_2(u)$

lu3

$$P(u) = \sum_{i=0}^{n} P_i B_i(u)$$

Consider degree 1 blending functions, and n=4



has an effect only for $0 \le u \le u_1$ has an effect only for $0 \le u \le u_2$ has an effect only for $u_1 \le u \le u_3$ has an effect only for $u_2 \le u \le u_4$ has an effect only for $u_3 \le u \le u_4$

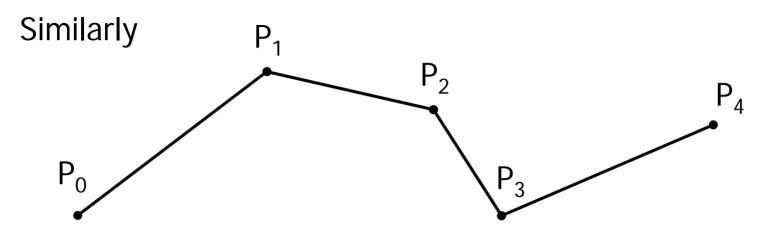
Resulting Curve

For
$$0 \le u \le u_1$$
 $P(u) = P_0 B_0(u) + P_1 B_1(u) = P_0(1-u) + P_1 u$

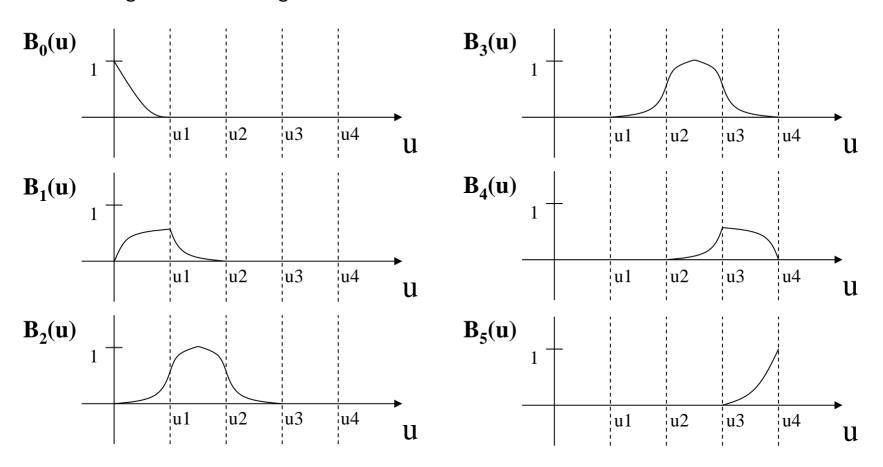
... straight line from P₀ to P₁

For
$$u_1 \le u \le u_2$$
 $P(u) = P_1 B_1(u) + P_2 B_2(u) = P_1(2-u) + P_1(u-1)$

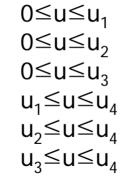
... straight line from P₁ to P₂

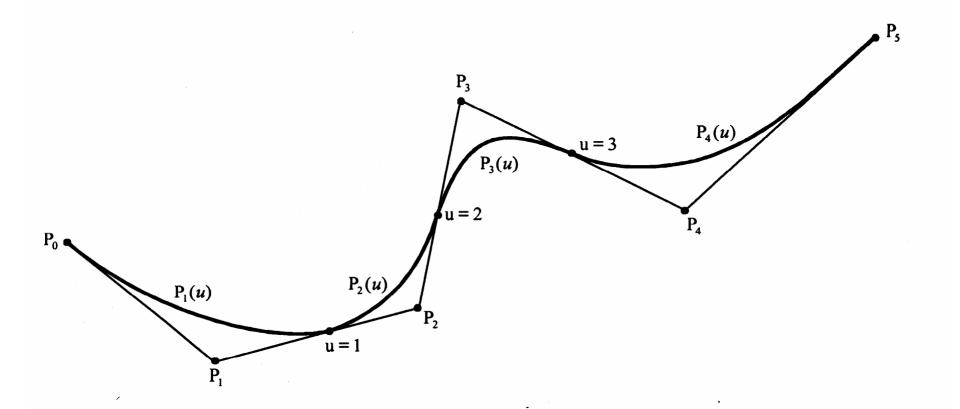


Consider degree 2 blending functions, and n=5



P_0	has an effect only for
P_1	has an effect only for
P_2	has an effect only for
P_3	has an effect only for
P_4	has an effect only for
P_5	has an effect only for





B-spline curve equation

$$P(u) = \sum_{i=0}^{n} P_{i}N_{i}, k(u) \quad t_{k-1} \le u \le t_{n+1}$$
 (a)

$$N_{i,k}(u) = \frac{(u-t_{i})N_{i,k-1}(u)}{t_{i+k-1}-t_{i}} + \frac{(t_{i+k}-u)N_{i+1,k-1}(u)}{t_{i+k}-t_{i+1}} \quad \left(\frac{0}{0}=0\right) \quad (b)$$

$$N_{i,1}(u) = \begin{cases} 1 & t_i \leq u \leq t_{i+1} \\ 0 & \text{otherwise} \ \rightarrow \text{Art any value of } u, \text{ there should} \\ & \text{be only one non-zero Ni}, 1(u) \end{cases} \tag{c}$$

 $N_{i,k}$: degree (k-1) of u, \underline{k} : order (independent of number of control points n)

t_i: knot values, boundary of non-zero range of each blending function

 t_0 (for i=0)to t_{n+k} (for i=n) are needed (n+k+1 values)

B-spline curve equation – cont'

- Only the differences in t_i (i=0, ..., n+k) is important in (b)
- Can be shifted as a whole, parameter range should be shifted together
- A portion of B-spline curve is affected by a limited number of control points
- For u in $[t_1, t_{1+1}]$

Control points associated with blending functions that are non-zero in $[t_1, t_{l+1}]$

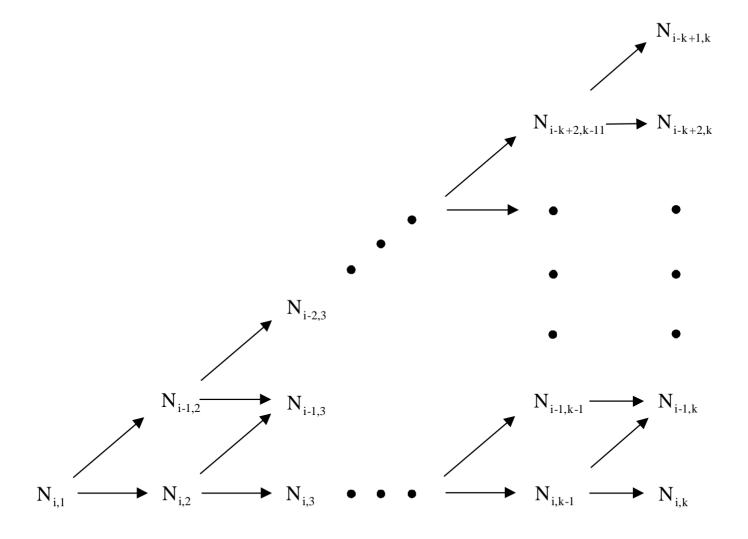
 $N_{1,1}(u)$ is nonzero in $[t_1, t_{1+1}]$ among $N_{i,1}(u)$

Substitute $N_{1,1}(u)$ into the right-hand side of (b)

 $N_{1,2}(u)$, $N_{1-1,2}(u)$ can be non-zero

Apply Recursive

From $N_{l,2}(u)$, $N_{l,3}(u)$, $N_{l-1,3}(u)$; from $N_{l-1,2}(u)$ $N_{l-1,3}(u)$, $N_{l-2,3}(u)$ can be non-zero



B-spline curve equation – cont'

• Control points that have influence in the region $[t_1, t_{1+1}]$ are

 $P_{l-k+1}, P_{l-k+2}, \dots, P_l$ k control points

Control points modify: **Example**

B-spline curve - Knot

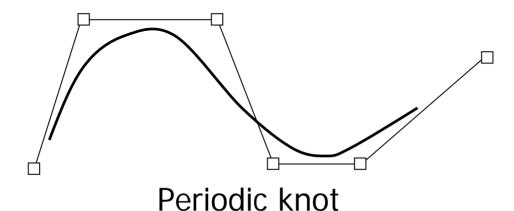
- Knot: t_0, t_1, \dots, t_{n+k}
 - parameter range is determined by knots
 - Periodic knots

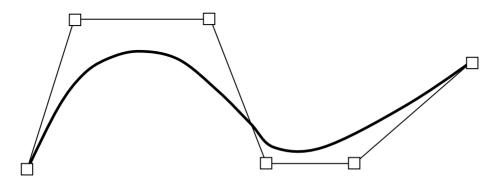
$$t_i = i-k$$
 $0 \le i \le n+k$

Non-periodic knots

$$t_i = \begin{cases} 0 & 0 \leq i < k & \text{duplicates } k \text{ times} \\ i - k + 1 & k \leq i \leq n \\ n - k + 2 & n < i \leq n + k & \text{duplicates } k \text{ times} \end{cases} \tag{d}$$

Periodic VS non-periodic





Non-periodic knot

B-spline curve - Knot

- By duplicating knot k times at the ends
 - Curve passes through first control point and last control point
- Periodic knot
 - First control point and last control point do not pass through curve as other control points
 - ⇒non-periodic knots are used in most CAD systems
- knot interval is uniform in (d)
 uniform B-spline (vs. non-uniform B-spline)
- During manipulation of curve shape, knots are added or removed
 - non-uniform knot ⇒ non-uniform B-spline curve

Example program

Knot Insertion

Example

Expansion of curve equation

Ex)

K=3, \mathbf{P}_0 , \mathbf{P}_1 , \mathbf{P}_2 non-periodic uniform B-spline

$$t_0=0, t_1=0, t_2=0, t_3=1, t_4=1, t_5=1$$

$$0 \le u \le 1$$

$$\uparrow \qquad \uparrow$$

$$(=t_2) \qquad (=t_3)$$

$$N_{0,1}(u) = \begin{cases} 1 & t_0 \le u \le t_1 \\ 0 & \text{otherwise} \end{cases} \quad (u = 0)$$

$$N_{1,1}(u) = \begin{cases} 1 & t_1 \le u \le t_2 \\ 0 & \text{otherwise} \end{cases} \quad (u = 0)$$

$$N_{2,1}(u) = \begin{cases} 1 & t_2 \le u \le t_3 \\ 0 & \text{otherwise} \end{cases} \quad (0 \le u \le 1)$$

$$N_{3,1}(u) = \begin{cases} 1 & t_3 \le u \le t_4 \\ 0 & \text{otherwise} \end{cases} \quad (u = 1)$$

$$N_{4,1}(u) = \begin{cases} 1 & t_4 \le u \le t_5 \\ 0 & \text{otherwise} \end{cases} \quad (u = 1)$$

Expansion of curve equation – cont'

- At u=0, select $N_{2,1}(u)$ to be non-zero among $N_{0,1}(0)$, $N_{1,1}(0)$, $N_{2,1}(0)$
- Selection of any one is O.K.
- At u=1, select $N_{2,1}(u)$ similarly
- => Only $N_{2,1}(u)$ needs to be considered among blending functions of order 1

$$N_{1,2}(u) = \frac{(u-t_1)N_{1,1}}{t_2-t_1} + \frac{(t_3-u)N_{2,1}}{t_3-t_2} = \frac{(1-u)N_{2,1}}{1} = (1-u)$$

$$N_{2,2}(u) = \frac{(u-t_2)N_{2,1}}{t_3-t_2} + \frac{(t_4-u)N_{3,1}}{t_4-t_3} = \frac{uN_{2,1}}{1} = u$$

$$N_{0,3}(u) = \frac{(u-t_0)N_{0,2}}{t_2-t_0} + \frac{(t_3-u)N_{1,2}}{t_3-t_1} = \frac{(1-u)N_{1,2}}{1} = (1-u)^2$$

$$N_{1,3}(u) = \frac{(u-t_1)N_{1,2}}{t_3-t_1} + \frac{(t_4-u)N_{2,2}}{t_4-t_2} = u(1-u) + (1-u)u = 2u(1-u)$$

$$N_{2,3}(u) = \frac{(u-t_2)N_{2,2}}{t_4-t_2} + \frac{(t_5-u)N_{3,2}}{t_5-t_3} = u^2$$

$$\therefore P(u) = (1-u)^2 P_0 + 2u(1-u)P_1 + u^2 P_2$$

Expansion of curve equation – cont'

Consider Bezier curve defined by P₀, P₁, P₂

$$\mathbf{P}(\mathbf{u}) = \binom{2}{0} \mathbf{u}^{0} (1 - \mathbf{u})^{2} \mathbf{P}_{0} + \binom{2}{1} \mathbf{u}^{1} (1 - \mathbf{u})^{1} \mathbf{P}_{1} + \binom{2}{2} \mathbf{u}^{2} (1 - \mathbf{u})^{0} \mathbf{P}_{2}$$

- Non-periodic B-spline curve having k (order) control points ends in Bezier curve
- Bezier curve is a special case of B-spline curve

Example

Ex)

K=3,
$$\mathbf{P}_0$$
, \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3 , \mathbf{P}_4 , \mathbf{P}_5
 t_0 =0, t_1 =0, t_2 =0, t_3 =1, t_4 =2, t_5 =3,
 t_6 =4, t_7 =4, t_8 =4

$$N_{2,1}(u) = \begin{cases} 1 & 0 \le u \le 1 \\ 0 & \text{otherwise} \end{cases}$$

$$N_{3,1}(u) = \begin{cases} 1 & 1 \le u \le 2 \\ 0 & \text{otherwise} \end{cases}$$

$$N_{4,1}(u) = \begin{cases} 1 & 2 \le u \le 3 \\ 0 & \text{otherwise} \end{cases}$$

$$N_{5,1}(u) = \begin{cases} 1 & 3 \le u \le 4 \\ 0 & \text{otherwise} \end{cases}$$

$$N_{1,2}(u) = \frac{(u-t_1)N_{1,1}}{t_2-t_1} + \frac{(t_3-u)N_{2,1}}{t_3-t_2} = (1-u)N_{2,1}$$

$$N_{2,2}(u) = \frac{(u-t_2)N_{2,1}}{t_3-t_2} + \frac{(t_4-u)N_{3,1}}{t_4-t_3} = u \quad N_{2,1} + (2-u)N_{3,1}$$

$$N_{3,2}(u) = \frac{(u-t_3)N_{3,1}}{t_4-t_3} + \frac{(t_5-u)N_{4,1}}{t_5-t_4} = (u-1)N_{3,1} + (3-u)N_{4,1}$$

$$N_{4,2}(u) = \frac{(u - t_4)N_{4,1}}{t_5 - t_4} + \frac{(t_6 - u)N_{5,1}}{t_6 - t_5} = (u - 2)N_{4,1} + (4 - u)N_{5,1}$$

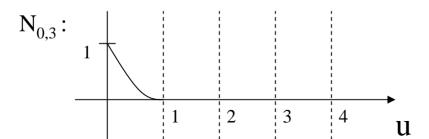
$$N_{5,2}(u) = \frac{(u - t_5)N_{5,1}}{t_6 - t_5} + \frac{(t_7 - u)N_{6,1}}{t_7 - t_6} = (u - 3)N_{5,1}$$

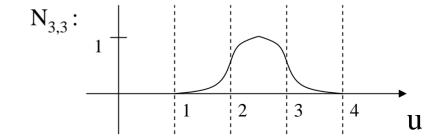
$$\begin{split} N_{0,3} \Big(u \Big) &= \frac{ \Big(u - t_0 \Big) N_{0,2}}{t_2 - t_0} + \frac{ (t_3 - u) N_{1,2}}{t_3 - t_1} = (1 - u) N_{1,2} = (1 - u)^2 \, N_{2,1} \\ N_{1,3} \Big(u \Big) &= \frac{ (u - t_1) N_{1,2}}{t_3 - t_1} + \frac{ (t_4 - u) N_{2,2}}{t_4 - t_2} = u \quad N_{1,2} + \frac{2 - u}{2} \, N_{2,2} \\ &= \Bigg[u \Big(1 - u \Big) + \frac{ (2 - u) u}{2} \Bigg] N_{2,1} + \frac{ (2 - u)^2}{2} \, N_{3,1} \\ N_{2,3} \Big(u \Big) &= \frac{ (u - t_2) N_{2,2}}{t_4 - t_2} + \frac{ (t_5 - u) N_{3,2}}{t_5 - t_3} = \frac{u}{2} \, N_{2,2} + \frac{3 - u}{2} \, N_{3,2} \\ &= \frac{u}{2} \, N_{2,1} + \Bigg[\frac{u \Big(2 - u \Big)}{2} + \frac{ (3 - u) (u - 1)}{2} \Bigg] N_{3,1} + \frac{ (3 - u)^2}{2} \, N_{4,1} \\ N_{3,3} \Big(u \Big) &= \frac{ (u - t_3) N_{3,2}}{t_5 - t_3} + \frac{ (t_6 - u) N_{4,2}}{t_6 - t_4} = \frac{u - 1}{2} \, N_{3,2} + \frac{4 - u}{2} \, N_{4,2} \\ &= \frac{ (u - 1)^2}{2} \, N_{3,1} + \Bigg[\frac{ (u - 1) (3 - u)}{2} + \frac{ (4 - u) (u - 2)}{2} \Bigg] N_{4,1} + \frac{ (4 - u)^2}{2} \, N_{5,1} \end{split}$$

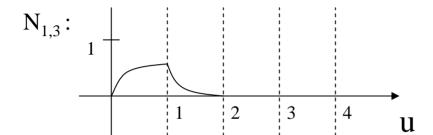
$$N_{4,3}(u) = \frac{(u-t_4)N_{4,2}}{t_6-t_4} + \frac{(t_7-u)N_{5,2}}{t_7-t_5} = \frac{u-2}{2}N_{4,2} + (4-u)N_{5,2}$$
$$= \frac{(u-2)^2}{2}N_{4,1} + \left[\frac{(u-2)(4-u)}{2} + (4-u)(u-3)\right]N_{5,1}$$

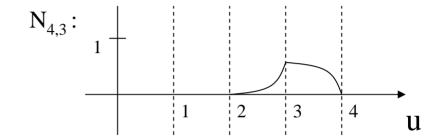
$$N_{5,3}(u) = \frac{(u-t_5)N_{5,2}}{t_7-t_5} + \frac{(t_8-u)N_{6,2}}{t_8-t_6} = (u-3)N_{5,2} = (u-3)^2 N_{5,1}$$

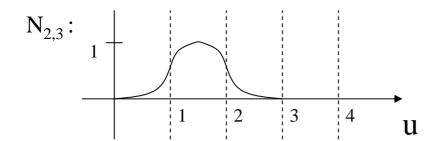
$$\therefore \mathbf{P}(\mathbf{u}) = (1-\mathbf{u})^{2} N_{2,1} \mathbf{P}_{0} + \left\{ \left[\mathbf{u}(1-\mathbf{u}) + \frac{(2-\mathbf{u})\mathbf{u}}{2} \right] N_{2,1} + \frac{(2-\mathbf{u})^{2}}{2} N_{3,1} \right\} \mathbf{P}_{1} \\
+ \left\{ \frac{\mathbf{u}^{2}}{2} N_{2,1} + \left[\frac{\mathbf{u}(2-\mathbf{u})}{2} + \frac{(3-\mathbf{u})(\mathbf{u}-1)}{2} \right] N_{3,1} + \frac{(3-\mathbf{u})^{2}}{2} N_{4,1} \right\} \mathbf{P}_{2} \\
+ \left\{ \frac{(\mathbf{u}-1)^{2}}{2} N_{3,1} + \left[\frac{(\mathbf{u}-1)(3-\mathbf{u})}{2} + \frac{(4-\mathbf{u})(\mathbf{u}-2)}{2} \right] N_{4,1} + \frac{(4-\mathbf{u})^{2}}{2} N_{5,1} \right\} \mathbf{P}_{3} \\
+ \left\{ \frac{(\mathbf{u}-2)^{2}}{2} N_{4,1} + \left[\frac{(\mathbf{u}-2)(4-\mathbf{u})}{2} + (4-\mathbf{u})(\mathbf{u}-3) \right] N_{5,1} \right\} \mathbf{P}_{4} \\
+ (\mathbf{u}-3)^{2} N_{5,1} \mathbf{P}_{5}$$

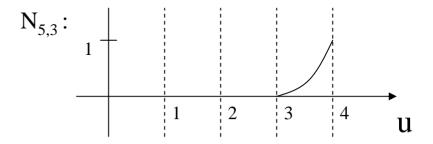












- For each knot interval, coefficients of certain control points = 0
 - -> only subset of control points has influence
- For $0 \le u \le 1$, all $N_{i,1}$ except $N_{2,1}$ are 0

$$\therefore \mathbf{P}_{1}(\mathbf{u}) = (1-\mathbf{u})^{2} \mathbf{P}_{0} + \left[\mathbf{u}(1-\mathbf{u}) + \frac{(2-\mathbf{u})\mathbf{u}}{2} \right] \mathbf{P}_{1} + \frac{\mathbf{u}^{2}}{2} \mathbf{P}_{2}$$

Similarly

 $1 \le u \le 2$

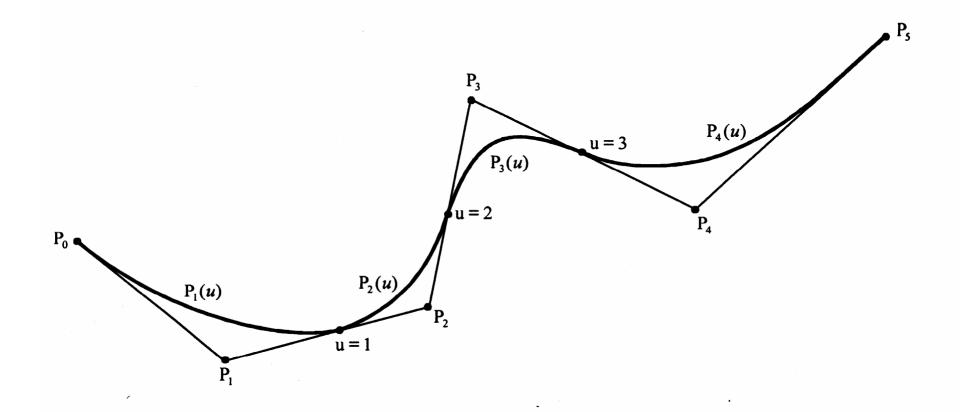
$$\mathbf{P}_{2}(\mathbf{u}) = \frac{(2-\mathbf{u})^{2}}{2}\mathbf{P}_{1} + \left[\frac{\mathbf{u}(2-\mathbf{u})}{2} + \frac{(3-\mathbf{u})(\mathbf{u}-1)}{2}\right]\mathbf{P}_{2} + \frac{(\mathbf{u}-1)^{2}}{2}\mathbf{P}_{3}$$

$$2 \le u \le 3$$

$$\mathbf{P}_{3}(\mathbf{u}) = \frac{(3-\mathbf{u})^{2}}{2}\mathbf{P}_{2} + \frac{1}{2}(-2\mathbf{u}^{2} + 10\mathbf{u} - 11)\mathbf{P}_{3} + \frac{(\mathbf{u} - 2)^{2}}{2}\mathbf{P}_{4}$$

$$3 \le u \le 4$$

$$\mathbf{P}_{4}(\mathbf{u}) = \frac{(4-\mathbf{u})^{2}}{2}\mathbf{P}_{3} + \frac{1}{2}(-3\mathbf{u}^{2} + 20\mathbf{u} - 32)\mathbf{P}_{4} + (\mathbf{u} - 3)^{2}\mathbf{P}_{5}$$



- 1. $\mathbf{P}'_1(1) = \mathbf{P}'_2(1)$, $\mathbf{P}'_2(2) = \mathbf{P}'_3(2)$, $\mathbf{P}'_3(3) = \mathbf{P}'_4(3)$ \mathbf{C}^1 continuity
 - C^2 continuity is not satisfied. (:k=3, degree 2)
 - For curve of order k, neighboring curves have same derivatives up to (k-2)-th derivative at the common knot
- 2. Each curve segment is defined by k control points.
- 3. Any one control point can influence up to maximum k curve segments.

count curve segment including P_{k-1}



Intersection between curves

- $P(\mathbf{u}) \mathbf{Q}(\mathbf{v}) = 0$
- 3 scalar equations, two unknowns

$$P_x(u) - Q_x(v) = 0$$

$$P_y(u) - Q_y(v) = 0$$

- Use Newton Raphson method
 - Derivative of P_x, Q_x, P_y, Q_y need to be calculated

$$f_{1}(x_{1},...,x_{n}) = 0$$

$$f_{2}(x_{1},...,x_{n}) = 0$$

$$\vdots$$

$$f_{n}(x_{1},...,x_{n}) = 0$$

$$f_1(x_1 + x_1, x_2 + x_2, \dots, x_n + x_n) = f_1(x_1, \dots, x_n) + \frac{\partial f_1}{\partial x_1} x_1 + \dots + \frac{\partial f_1}{\partial x_n} x_n$$

$$\vdots$$

$$f_n(x_1+\ x_1,x_2+\ x_2,\cdots,x_n+\ x_n)=f_n(x_1,\cdots,x_n)+\frac{\partial f_n}{\partial x_1}\ x_1+\cdots+\frac{\partial f_n}{\partial x_n}\ x_n$$

$$\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \dots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix} = \begin{bmatrix}
-f_1 \\
-f_2 \\
\vdots \\
x_n
\end{bmatrix}$$

Intersection between curves

- If initial values of u, v are too far from real solution, the iteration diverges.
- Hard to find all the intersection points.
- Cannot handle the case of overlapping curves.
- Two curves are regarded to intersect each other if they lie within numerical tolerance.
- Control polygons are approximated to the curve by subdivision and initial values of u,v can be provided closely by intersecting control polygons
- Better to detect special situation in advance before resorting to numerical solution.
- Tuning tolerance values is necessary

Straight line vs. curve

- $\mathbf{P}(\mathbf{u}) = \mathbf{P}_0 + \mathbf{u}(\mathbf{P}_1 \mathbf{P}_0)$
- $\mathbf{Q}(\mathbf{v}) = \mathbf{P}_0 + \mathbf{u}(\mathbf{P}_1 \mathbf{P}_0)$ (a)
- Apply dot product $(\mathbf{P}_0 \times \mathbf{P}_1)$ to both sides of eq(a) gives

$$(\mathbf{P}_0 \times \mathbf{P}_1) \cdot \mathbf{Q}(\mathbf{v}) = 0$$

non-linear equation of \mathbf{v}

Non-uniform Rational B-spline (NURBS) curve

- Use same Blending functions as B-spline
- Control points are given in homogeneous coordinates $(x_i, y_i, z_i) \Rightarrow (x_i \cdot h_i, y_i \cdot h_i, z_i \cdot h_i, h_i)$

$$x \cdot h = \sum_{i=0}^{n} (h_i \cdot x_i) \quad N_{i,k}(u)$$

$$y \cdot h = \sum_{i=0}^{n} (h_i \cdot y_i) \quad N_{i,k}(u)$$

$$z \cdot h = \sum_{i=0}^{n} (h_i \cdot z_i) \quad N_{i,k}(u)$$

$$h = \sum_{i=0}^{n} h_i \quad N_{i,k}(u)$$

Non-uniform Rational B-spline (NURBS) curve – cont'

$$P(u) = \frac{\sum_{i=0}^{n} h_i P_i N_{i, k}(u)}{\sum_{i=0}^{n} h_i N_{i, k}(u)}$$

Passes through the 1st and the last control points

(When non-periodic knots are used)

Numerator is B-spline with $h_i P_i$ as contorl points

 $\Rightarrow h_0 P_0$, $h_n P_n$ at parameter boundary values

Similarly denominator has values of h_0 , h_n at parameter boundary values

Non-uniform Rational B-spline (NURBS) curve – cont'

Directions of tangent vectors are P_1 - P_0 , P_n - P_{n-1} at starting and ending points

$$h_i = 1$$
 $\sum_{i=0}^{n} N_{i,k}(u) = 1 \Rightarrow B - spline$

B-spline curve is a special case of NURBS

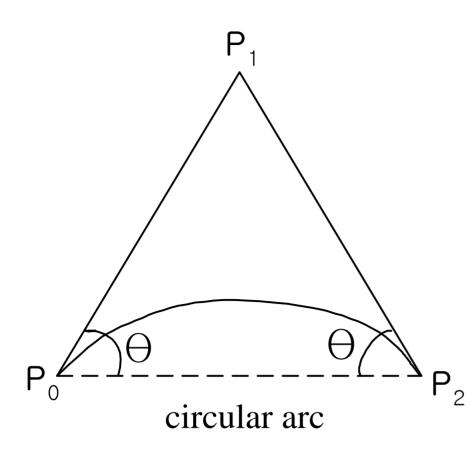
 Curve shape can be changed by changing weight(h_i)

Increasing weight has an effect of pulling curve toward associated control point

Example program

 Conic curve can be represented exactly Reducing program coding effort

Control points of NURBS curve equivalent to a circular arc



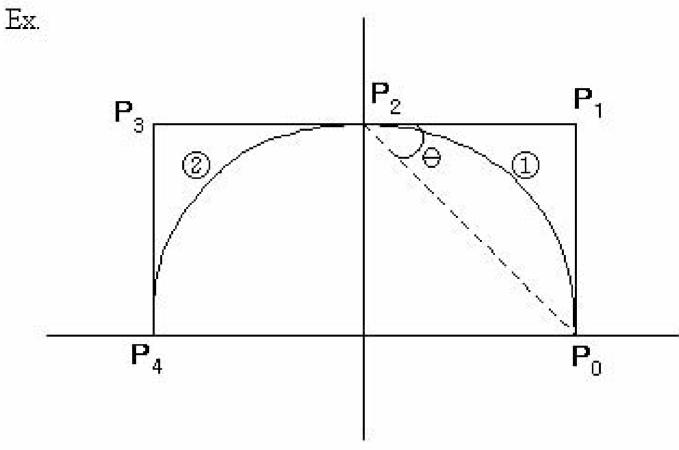
$$h_0 = h_2 = 1$$

 $h_1 = \cos \Theta$

Can be used when center angle is less than 180°.

Arc with a center angle bigger than 180° is split into two and combined later

Example



-

Example – cont'

$$P_{0} = (1, 0), P_{1} = (1, 1), P_{2} = (0, 1)$$

$$h_{0} = 0 h_{1} = \cos 45^{\circ} = \frac{1}{\sqrt{2}} h_{2} = 1$$

$$knot 0 0 1 1 1 (n = 2, k = 3)$$

$$Similarly P_{2} = (0, 1), P_{3} = (-1, 1), P_{4} = (-1, 0)$$

$$h_{2} = 1, h_{3} = \frac{1}{\sqrt{2}}, h_{4} = 1$$

$$knot 0 0 0 1 1 1 \Rightarrow 1 1 1 2 2 2$$

Composition

P₀ = (1, 0), P₁ = (1, 1), P₂ = (0, 1),
P₃ = (-1, 1), P₄ = (-1, 0)

$$h_0 = 1$$
 $h_1 = \frac{1}{\sqrt{2}}$ $h_2 = 1$
 $h_3 = \frac{1}{\sqrt{2}}$, $h_4 = 1$

knot 0 0 0 1 1 2 2 2