TIME-DEPENDENT CONDUCTION

- Lumped Thermal Capacitance Method
- Analytical Method: Separation of Variables
- Semi-Infinite Solid:
 Similarity Solution
- Numerical Method:
 Finite Difference Method

Lumped Thermal Capacitance Method

negligible spatial effect $T(x, y, z, t) \approx T(t)$

excess temperature: $\theta(t) \equiv T(t) - T_{\infty}$

$$\rho Vc \frac{dT}{dt} + hA_s \left[T(t) - T_{\infty} \right] = 0$$

$$\frac{d\theta}{dt} + \frac{hA_s}{\rho Vc} \theta = 0, \quad \theta(t) = C \exp \left[-\left(\frac{hA_s}{\rho Vc}\right)t \right]$$

initial condition: $\theta(0) = T(0) - T_{\infty} = T_i - T_{\infty} \equiv \theta_i$ $\theta(0) = \theta_i = C$

$$\frac{\theta(t)}{\theta_i} = \frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$$

thermal time constant

$$\frac{\theta(t)}{\theta_i} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$$
$$\tau_t = \frac{1}{hA_s}\rho Vc = R_t C_t$$

$$R_t = \frac{1}{hA_s}$$
: convection resistance

 $C_t = \rho V c$: lumped thermal capacitance

Thermocouple?

Transient temperature response of lumped capacitance solids for different thermal time constant τ_t

Seebeck effect and Peltier effect

total energy transfer in time t

Validation of Lumped Capacitance Method

Transient temperature distributions for different Biot numbers in a plane wall symmetrically cooled by convection

When $\text{Bi} = \frac{hL_c}{k} < 0.1$, spatial effect is negligible. L_c : characteristic length $L_c \equiv \frac{V}{A}$ $\frac{\theta(t)}{\theta} = \exp\left[-\left(\frac{hA_s}{\rho Vc}\right)t\right]$ $\frac{hA_st}{\rho Vc} = \frac{ht}{\rho cL_s} = \frac{hL_c}{k} \frac{kt}{\rho cL_s^2} = \frac{hL_c}{k} \frac{\alpha t}{L^2} = \mathbf{Bi} \cdot \mathbf{Fo}$

Fo : Fourier number (dimensionless time) $\frac{\theta(t)}{\theta_i} = \exp[-Bi \cdot Fo]$

Example 5.3

Find: Total time t_t required for the two-step process Assumption: Thermal resistance of epoxy is negligible. Biot numbers for the heating and cooling processes

Aluminum: $k = 177 \text{ W/m} \cdot \text{K}, c = 875 \text{ J/kg} \cdot \text{K}, \rho = 2770 \text{ kg/m}^3$

$$\operatorname{Bi}_{h} = \frac{h_{o}L}{k} = 3.4 \times 10^{-4}, \ \operatorname{Bi}_{c} = \frac{h_{c}L}{k} = 8.5 \times 10^{-5}$$

Thus, lumped capacitance approximation can be applied.

 $\dot{E}_{st} = \dot{E}_{in} - \dot{E}_{out} + \dot{E}_{g}$ $\rho c \left(2LA_{s}\right) \frac{dT}{dt}$

$$=-h(2A_s)[T(t)-T_{\infty}]-\varepsilon\sigma(2A_s)[T^4(t)-T_{sur}^4]$$

$$dt = \frac{\rho c L dT}{h \left[T_{\infty} - T(t) \right] + \varepsilon \sigma \left[T_{\text{sur}}^4 - T^4(t) \right]}$$

$$dt = \frac{\rho c L dT}{h [T_{\infty} - T(t)] + \varepsilon \sigma [T_{sur}^{4} - T^{4}(t)]}$$

$$T_{i,o} = 25^{\circ}C \qquad T_{c} = 150^{\circ}C \qquad T_{e} = 25^{\circ}C \qquad T_{t} = 37^{\circ}C \qquad T_{t} = 37^{\circ}C \qquad T_{t} = 150^{\circ}C \qquad T_$$

Heating process

$$\int_{0}^{t_{c}} dt = \int_{T_{i,o}}^{T_{c}} \frac{\rho c L dT}{h [T_{\infty} - T(t)] + \varepsilon \sigma [T_{sur}^{4} - T^{4}(t)]} \qquad t_{c} = 124 \text{ s}$$

Curing process

$$\int_{t_c}^{t_e} dt = \int_{T_c}^{T_e} \frac{\rho c L dT}{h [T_{\infty} - T(t)] + \varepsilon \sigma [T_{sur}^4 - T^4(t)]} \qquad T_e = 175^{\circ} C$$

Cooling process

$$\int_{t_e}^{t_t} dt = \int_{T_e}^{T_t} \frac{\rho c L dT}{h [T_{\infty} - T(t)] + \varepsilon \sigma [T_{sur}^4 - T^4(t)]} \qquad t_t = 989 \text{ s}$$

Total time for the two-step process : $t_t = 989$ s Intermediate times : $t_c = 124$ s $t_e = 424$ s

Analytical Method

Separation of Variables Plane wall with convection

 $T = T(x,t,\alpha,T_i,k,L,h,T_{\infty})$

Dimensional analysis

$$T = T(x,t,\alpha,T_i,k,L,h,T_{\infty})$$

$$T,T_i,T_{\infty}: K [D], x:m [L], t:s [T]$$

$$\alpha:m^2/s [L^2T^{-1}], L:m [L]$$

$$k: W/m \cdot K = kg \cdot m/s^3 \cdot K [LMT^{-3}D^{-1}]$$

$$h: W/m^2 \cdot K = kg/s^3 \cdot K [MT^{-3}D^{-1}]$$

dimensionless variables

$$\theta^* = \frac{T - T_{\infty}}{T_i - T_{\infty}}, \quad x^* = \frac{x}{L}, \quad t^* = \frac{\alpha t}{L^2} = \mathbf{Fo}, \quad \mathbf{Bi} = \frac{hL}{k}$$

Fo: Fourier number, Bi: Biot number $\theta^* = \theta^*(x^*, t^*; Bi)$

Equation in dimensionless form

$$\theta^* = \frac{T - T_{\infty}}{T_i - T_{\infty}}, x^* = \frac{x}{L}, t^* = \frac{\alpha t}{L^2}, \text{Bi} = \frac{hL}{k}$$

initial condition $T(x, 0) = T_i \rightarrow \theta^*(x^*, 0) = 1$
boundary conditions
$$\frac{\partial T}{\partial x}\Big|_{x=0} = \frac{T_i - T_{\infty}}{L} \frac{\partial \theta^*}{\partial x^*}\Big|_{x^*=0} = 0 \rightarrow \frac{\partial \theta^*}{\partial x^*}\Big|_{x^*=0} = 0$$

$$-k\frac{\partial T}{\partial x}\Big|_{x=L} = h\big[T(L,t) - T_{\infty}\big]$$

$$\rightarrow -\frac{k\left(T_{t} - T_{\infty}\right)}{L} \frac{\partial \theta^{*}}{\partial x^{*}} \bigg|_{x^{*}=1} = h\left(T_{t} - T_{\infty}\right) \theta^{*}(1, t^{*})$$
$$\rightarrow \frac{\partial \theta^{*}}{\partial x^{*}} \bigg|_{x^{*}=1} + \operatorname{Bi} \theta^{*}(1, t^{*}) = \mathbf{0}$$

Drop out * for convenience afterwards

$$\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}$$

$$\theta(x,0) = 1, \ \frac{\partial \theta}{\partial x}\Big|_{x=0} = 0, \ \frac{\partial \theta}{\partial x}\Big|_{x=1} + \operatorname{Bi} \theta(1,t) = 0$$

$$\theta(x,t) = X(x)\tau(t)$$

$$X\tau' = X''\tau, \quad \frac{X''}{X} = \frac{\tau'}{\tau} = -\zeta^2$$

 $X'' + \zeta^2 X = \mathbf{0}, \quad \tau' + \zeta^2 \tau = \mathbf{0}$

boundary conditions

$$\frac{\partial \theta}{\partial x}\Big|_{x=0} = \mathbf{0}, \ \frac{\partial \theta}{\partial x}\Big|_{x=1} + \mathbf{Bi}\theta(\mathbf{1},t) = \mathbf{0}$$

$$\frac{\partial \theta}{\partial x}\Big|_{x=0} = X'(0)\tau(t) = 0 \quad \to X'(0) = 0$$

$$\frac{\partial \theta}{\partial x}\Big|_{x=1} + \operatorname{Bi} \theta(1,t) = X'(1)\tau(t) + \operatorname{Bi} X(1)\tau(t)$$

 $= [X'(1) + \operatorname{Bi} X(1)]\tau(t) = 0 \to X'(1) + \operatorname{Bi} X(1) = 0$

$$X(x): X'' + \zeta^2 X = 0$$

b.c. $X'(0) = 0, X'(1) + \operatorname{Bi} X(1) = 0$
$$X(x) = C_1 \sin(\zeta x) + C_2 \cos(\zeta x)$$

$$X'(x) = C_1 \zeta \cos(\zeta x) - C_2 \zeta \sin(\zeta x)$$

$$X'(0) = C_1 = 0$$

$$X'(1) + \operatorname{Bi} X(1) = -C_2 \zeta \sin \zeta + \operatorname{Bi} C_2 \cos \zeta$$

$$= C_2 (\operatorname{Bi} \cos \zeta - \zeta \sin \zeta) = 0 \rightarrow \zeta \tan \zeta = \operatorname{Bi}$$

$$X_n(x) = a_n \cos(\zeta_n x)$$

$$\zeta_n \text{ such that } \zeta_n \tan \zeta_n = \operatorname{Bi}, n = 1, 2, 3, \cdots$$

$$\tau(t): \tau' + \zeta^2 \tau = 0 \quad \to \tau_n(t) = b_n \exp(-\zeta_n^2 t)$$
$$X_n(x) = a_n \cos(\zeta_n x)$$

$$\theta(x,t) = \sum_{n=1}^{\infty} c_n \exp(-\zeta_n^2 t) \cos(\zeta_n x)$$

initial condition

$$\theta(x,0) = 1 = \sum_{n=1}^{\infty} c_n \cos(\zeta_n x)$$

$$\rightarrow c_n = \frac{\int_0^1 \cos(\zeta_n x) dx}{\int_0^1 \cos^2(\zeta_n x) dx} = \frac{4 \sin \zeta_n}{2\zeta_n + \sin(2\zeta_n)}$$

Approximate solution

$$\theta(x,t) = \sum_{n=1}^{\infty} c_n \exp(-\zeta_n^2 t) \cos(\zeta_n x)$$

 $\theta(x,t) = c_1 \exp(-\zeta_1^2 t) \cos(\zeta_1 x)$
 $+ c_2 \exp(-\zeta_2^2 t) \cos(\zeta_2 x) + \cdots$
 $\equiv \theta_1 + \theta_2 + \cdots$
When Fo = $t \ge 0.2$, $\frac{c_2 \exp(-\zeta_2^2 t) \cos(\zeta_2 x)}{c_1 \exp(-\zeta_1^2 t) \cos(\zeta_1 x)} <<1$
at $x = 0$, Bi = 1.0
Fo = 0.1
 θ_1 fo = 0.1
 θ_2 -0.0469 -1.22 10⁻⁵
 θ_3 0.0007 4.7 10⁻²⁰

Approximate solution

When Fo =
$$t \ge 0.2$$
,
 $\theta(x,t) = c_1 \exp(-\zeta_1^2 t) \cos(\zeta_1 x)$
 $\theta(0,t) = c_1 \exp(-\zeta_1^2 t) \equiv \theta_0$
 $\frac{\theta(x,t)}{\theta_0} = \cos(\zeta_1 x)$

See Table 5.1

$$\zeta_n \tan \zeta_n = \mathbf{Bi}$$

total energy transfer (net out-going)
$$Q(t) = -\int \rho c \left[T(x,t) - T_i\right] dV$$

maximum amount of energy transfer

Radial systems with convection

$$\left. k \frac{\partial T}{\partial r} \right|_{r=r_0} = h \left[T(r_0, t) - T_{\infty} \right]$$

dimensionless variables

$$\theta^* = \frac{T - T_{\infty}}{T_i - T_{\infty}}, r^* = \frac{r}{r_0}, t^* = \frac{\alpha t}{r_0^2} = \text{Fo}, \text{Bi} = \frac{hr_0}{k}$$

Drop out * for convenience afterwards

$$\frac{\partial T}{\partial t} = \frac{\alpha}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) \rightarrow \frac{\partial \theta}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \theta}{\partial r} \right)$$

i.c.
$$\theta(r,0) = 1$$

b.c. $\frac{\partial \theta}{\partial r}\Big|_{r=0} = 0$ or $\theta(0,t) = \text{finite}$

$$\frac{\partial \theta}{\partial r}\bigg|_{r=1} + \operatorname{Bi} \theta(\mathbf{1}, t) = \mathbf{0}$$

$$\theta(r,t) = R(r)\tau(t)$$

$$\frac{\partial\theta}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\theta}{\partial r}\right)$$

$$R\tau' = \frac{1}{r}\frac{\partial}{\partial r}\left(rR'\tau\right) = \frac{1}{r}\tau\left(R'+rR''\right)$$

$$\frac{\tau'}{r} = \frac{1}{r}\left(\frac{R'}{r}+r\frac{R''}{r}\right) = -\zeta^{2}$$

$$\frac{1}{\tau} = \frac{1}{r} \left(\frac{1}{R} + r \frac{1}{R} \right) = -\zeta$$

$$r\frac{R''}{R}+\frac{R'}{R}+r\zeta^2=0, \qquad \tau'+\zeta^2\tau=0$$

$$R(r): R'' + \frac{1}{r}R' + \zeta^2 R = 0$$

$$r^2 R'' + rR' + \zeta^2 r^2 R = 0$$

$$\left[x^2 y'' + xy' + m^2 (x^2 - v^2) y = 0 \rightarrow y = AJ_v(mx) + BY_v(mx)\right]$$

$$R(r) = C_1 J_0(\zeta r) + C_2 Y_0(\zeta r)$$

$$\theta(0,t) = \text{finite} \rightarrow R(0) = \text{finite}$$

$$Y_0(0) \rightarrow -\infty, \text{ thus } C_2 = 0$$

$$\left.\frac{\partial \theta}{\partial r}\right|_{r=1} + \text{Bi}\theta(1,t) = 0 \rightarrow R'(1) + \text{Bi}R(1) = 0$$

$$C_1 \frac{dJ_0(\zeta r)}{dr}\bigg|_{r=1} + C_1 \text{Bi}J_0(\zeta) = 0$$

$$\frac{dJ_0(\zeta r)}{dr}\bigg|_{r=1} + \operatorname{Bi} J_0(\zeta) = 0$$

Since $\frac{d}{dx}\bigg[x^n J_n(x)\bigg] = x^n J_{n-1}(x)$
 $J_{n-1}(x) = \frac{2n}{x} J_n(x) - J_{n+1}(x)$
 $\frac{d}{dx} \big[J_0(x)\big] = J_{-1}(x) = -J_1(x)$
 $\frac{dJ_0(\zeta r)}{dr}\bigg|_{r=1} + \operatorname{Bi} J_0(\zeta) = -\zeta J_1(\zeta) + \operatorname{Bi} J_0(\zeta) = 0$
 $R_n(r) = a_n J_0(\zeta_n r), \quad \zeta_n \text{ such that } \zeta_n \frac{J_1(\zeta_n)}{J_0(\zeta_n)} = \operatorname{Bi}$

$$\tau(t): \tau' + \zeta^2 \tau = 0 \quad \to \tau_n(t) = b_n \exp(-\zeta_n^2 t)$$

$$R_n(r) = a_n J_0(\zeta_n r)$$

$$\theta(r,t) = \sum_{n=1}^{\infty} c_n \exp(-\zeta_n^2 t) J_0(\zeta_n r)$$

initial condition

$$\theta(r,0) = 1 = \sum_{n=1}^{\infty} c_n J_0(\zeta_n r)$$
$$\rightarrow c_n = \frac{\int_0^1 r J_0(\zeta_n r) dr}{\int_0^1 r J_0^2(\zeta_n r) dr}$$

Approximate solution

$$\theta(r,t) = c_1 \exp(-\zeta_1^2 t) J_0(\zeta_1 r)$$

$$\theta(0,t) = c_1 \exp(-\zeta_1^2 t) J_0(0) = c_1 \exp(-\zeta_1^2 t) \equiv \theta_0$$

$$\frac{\theta(x,t)}{\theta_0} = J_0(\zeta_1 x)$$

Total energy transfer (net out-going) $Q(t) = -\int \rho c \left[T(x,t) - T_i \right] dV, \quad Q_0 = \rho c V \left(T_i - T_\infty \right)$ $\frac{Q}{Q_0} = \frac{1}{V} \int \left(1 - \theta \right) dV = \frac{1}{V} \int_0^1 \left[1 - \theta_0 J_0(\zeta_1 r) \right] dV$

Since
$$V = \pi L_{1} dV = 2\pi r dr L$$

 $\frac{Q}{Q_{0}} = 2 \int_{0}^{1} [1 - \theta_{0} J_{0}(\zeta_{1} r)] r dr = 1 - \frac{2J_{1}(\zeta_{1})}{\zeta_{1}} \theta_{0}$

Find:

- 1) Biot and Fourier numbers after 8 min
- 2) Temperature of exterior pipe surface after 8 min, T(0, 8 min)
- 3) Heat flux to the wall at $8 \min, q''(8 \min)$
- 4) Energy transferred to pipe per unit length after 8 min, Q'

Assumption:

Pipe wall can be approximated as plane wall, since $L \ll D$.

AISI 1010:
$$\rho = 7823 \text{ kg/m}^3$$
, $c = 434 \text{ J/kg} \cdot \text{K}$,
 $k = 63.9 \text{ W/m} \cdot \text{K}$, $\alpha = 18.8 \times 10^{-6} \text{ m}^2/\text{s}$
1) Bi and Fo at $t = 8 \text{ min}$

$$Bi = \frac{hL}{k} = \frac{500 \times 0.04}{63.9} = 0.313$$

$$T(x, 0) = \frac{T(L,t)}{T_{i}} = -20^{\circ}C$$

$$T_{i}(x, 0) = \frac{T(L,t)}{h} = \frac{18.8 \times 10^{-6} \times 8 \times 60}{0.04^{2}} = 5.64$$

$$Fo = \frac{\alpha t}{L^{2}} = \frac{18.8 \times 10^{-6} \times 8 \times 60}{0.04^{2}} = 5.64$$

$$Fo = \frac{100}{L^{2}} = \frac{18.8 \times 10^{-6} \times 8 \times 60}{0.04^{2}} = 5.64$$

2) *T*(0, 8 min)

With Bi = 0.313, the lumped capacitance method is inappropriate. However, since Fo > 0.2, approximate solution can be applicable.

$$\theta_0^* = \frac{T_0 - T_\infty}{T_i - T_\infty} = c_1 \exp(-\zeta_1^2 F_0) = 0.214$$

from Table 5.1 $c_1 = 1.047, \ \zeta_1 = 0.531$

 $T(0, 8 \min) = T_{\infty} + \theta_0^* (T_i - T_{\infty}) = 60 + 0.214 (-20 - 60) = 42.9 \,^{\circ}\text{C}$

3)
$$q''(480 \text{ s})$$

 $q''(480 \text{ s}) = h[T(40 \text{ mm}, 480 \text{ s}) - T_{\infty}]$
 $\theta^*(x^*, t^*) = \frac{T(x,t) - T_{\infty}}{T_i - T_{\infty}} = \theta_0^*(t^*)\cos(\zeta_1 x^*)$
 $T(L,t) = T_{\infty} - (T_i - T_{\infty})\theta_0^*\cos(\zeta_1)$
 $T(40 \text{ mm}, 480 \text{ s}) = 60 - (-20 - 60) \times 0.214 \times \cos(0.531) = 45.2$

$$q'' = 500(45.2 - 60) = -7400 \text{ W/m}^2$$

4) The energy transfer to the pipe wall over the 8-min interval

$$\frac{Q}{Q_0} = 1 - \frac{\sin(\zeta_1)}{\zeta_1} \theta_0^* = 1 - \frac{\sin(0.531)}{0.531} \times 0.214 = 0.80$$
$$Q = 0.80 \rho c V (T_i - T_\infty)$$
$$Q' = 0.80 \rho c (\pi DL) (T_i - T_\infty)$$
$$= -2.73 \times 10^7 \text{ J/m}$$

$$\theta(x,t) = \frac{T(x,t) - T_i}{T_s - T_i} = \theta(\eta), \quad \eta = \frac{x}{2\sqrt{\alpha t}}$$
$$\frac{\partial T}{\partial t} = \left(T_s - T_i\right)\frac{\partial \theta}{\partial t} = \left(T_s - T_i\right)\frac{d\theta}{d\eta}\frac{\partial \eta}{\partial t}$$
$$= \left(T_s - T_i\right)\frac{x}{2\sqrt{\alpha}}\left(-\frac{1}{2t\sqrt{t}}\right)\frac{d\theta}{d\eta} = -\frac{\left(T_s - T_i\right)}{2t}\eta\frac{d\theta}{d\eta}$$

$$\frac{\partial T}{\partial x} = (T_s - T_i) \frac{\partial \theta}{\partial x} = (T_s - T_i) \frac{d\theta}{d\eta} \frac{\partial \eta}{\partial x}$$

$$= \left(T_s - T_i\right) \frac{1}{2\sqrt{\alpha t}} \frac{d\theta}{d\eta}$$

$$\eta = \frac{x}{2\sqrt{\alpha t}}, \quad \frac{\partial T}{\partial x} = (T_s - T_i) \frac{1}{2\sqrt{\alpha t}} \frac{d\theta}{d\eta}$$
$$\frac{\partial^2 T}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x} \right) = \frac{\partial}{\partial x} \left((T_s - T_i) \frac{1}{2\sqrt{\alpha t}} \frac{d\theta}{d\eta} \right)$$
$$= (T_s - T_i) \frac{1}{2\sqrt{\alpha t}} \frac{d}{d\eta} \left(\frac{d\theta}{d\eta} \right) \frac{\partial \eta}{\partial x} = (T_s - T_i) \frac{1}{4\alpha t} \frac{d^2 \theta}{d\eta^2}$$
$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$
$$\rightarrow -\frac{(T_s - T_i)}{2t} \eta \frac{d\theta}{d\eta} = \alpha (T_s - T_i) \frac{1}{4\alpha t} \frac{d^2 \theta}{d\eta^2}$$

$$\theta'' + 2\eta \theta' = 0$$

i.c. $T(x,0) = T_i$:
 $\eta \to \infty, \ \theta(\infty) = 0$
b.c. $T(0,t) = T_s$
 $\eta = 0, \ \theta(0) \neq 1$
 $T(\infty,t) = T_i$
 $\eta \to \infty, \ \theta(\infty) = 0$
merge into one

$$\theta(x,t) = \frac{T(x,t) - T_i}{T_s - T_i}$$
$$\eta = \frac{x}{2\sqrt{\alpha t}}$$
$$T_s$$

 $x = \delta(t)$

X

 T_i

Similarity solution

 $\theta'' + 2\eta \theta' = 0$: $\theta(0) = 1$, $\theta(\infty) = 0$ integrating factor e^{η^2}

$$\frac{d}{d\eta} \left(e^{\eta^2} \theta' \right) = 0 \rightarrow \theta' = \frac{d\theta}{d\eta} = C_1 e^{-\eta^2} \rightarrow d\theta = C_1 e^{-\eta^2} d\eta$$

$$\int_0^{\eta} d\theta = \int_0^{\eta} C_1 e^{-u^2} du \quad \rightarrow \theta(\eta) - \theta(0) = C_1 \int_0^{\eta} e^{-u^2} du$$

or
$$\theta(\eta) = 1 + C_1 \int_0^{\eta} e^{-u^2} du$$

$$\theta(\infty) = \mathbf{0} = \mathbf{1} + C_1 \int_0^\infty e^{-u^2} du$$

error function: $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du$, $\operatorname{erf}(\infty) = 1$

$$\theta(\infty) = \mathbf{0} = \mathbf{1} + C_1 \int_0^\infty e^{-u^2} du$$

$$\int_0^\infty e^{-u^2} du = \frac{\sqrt{\pi}}{2} \to C_1 = -\frac{2}{\sqrt{\pi}}$$

$$\theta(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\eta} e^{-u^2} du = 1 - \operatorname{erf}(\eta)$$

$$\theta(x,t) = \frac{T(x,t) - T_i}{T_s - T_i} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{\alpha t}}\right) = \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

erfc: complimentary error function

$$\theta(x,t) = \frac{T(x,t) - T_i}{T_s - T_i} = \frac{T(x,t) - T_s + T_s - T_i}{T_s - T_i}$$
$$= 1 - \frac{T(x,t) - T_s}{T_i - T_s}$$
$$\frac{T(x,t) - T_s}{T_i - T_s} = 1 - \theta(x,t)$$
$$= 1 - [1 - \operatorname{erf}(\eta)]$$
$$= \operatorname{erf}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$
$$T_s = \delta(t_1) \quad x_2 = \delta(t_2)$$

Heat flux through the wall

$$q_{s}'' = -k \frac{\partial T}{\partial x} \bigg|_{x=0} = -k \left(T_{s} - T_{i}\right) \frac{d\theta}{d\eta} \frac{\partial \eta}{\partial x} \bigg|_{x=0}$$
$$= -\frac{k \left(T_{s} - T_{i}\right)}{2\sqrt{\alpha t}} \theta'(0)$$
$$\theta(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-u^{2}} du$$
$$\theta(\eta) = \frac{1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\eta} e^{-u^{2}} du}{\sqrt{\pi t}}$$

$$\rightarrow \frac{d\theta}{d\eta} = -\frac{2}{\sqrt{\pi}} e^{-\eta^2} \rightarrow \theta'(0) = -\frac{2}{\sqrt{\pi}}$$
$$q_s'' = -\frac{k\left(T_s - T_i\right)}{2\sqrt{\alpha t}} \left(-\frac{2}{\sqrt{\pi}}\right) = \frac{k\left(T_s - T_i\right)}{\sqrt{\pi \alpha t}}$$

Interfacial contact between two semi-infinite solids

$$T_{A}: T_{A}(x,t) = A_{1} + A_{2} \operatorname{erf}(\eta)$$

$$T_B: T_B(x,t) = B_1 + B_2 \operatorname{erf}(\eta)$$

Boundary and interfacial conditions

$$T_{A}(-\infty,t) = T_{A,i}, T_{B}(\infty,t) = T_{B,i}, T_{S} = T_{A}(0,t) = T_{B}(0,t)$$
$$q_{S}'' = -k_{A} \frac{\partial T_{A}}{\partial x} \bigg|_{x=0} = -k_{B} \frac{\partial T_{B}}{\partial x} \bigg|_{x=0}$$

$$T_{s} = \frac{\left(k\,\rho c\,\right)_{A}^{1/2}T_{A,i} + \left(k\,\rho c\,\right)_{B}^{1/2}T_{B,i}}{\left(k\,\rho c\,\right)_{A}^{1/2} + \left(k\,\rho c\,\right)_{B}^{1/2}}$$

 $T_{\rm s} = 35.9^{\circ}{\rm C}$

The interface temperature is not function of time.

Ex) A: man, B: wood (pine) or steel (AISI 1302)

Assume
$$T_A = 36^{\circ}$$
C, $T_B = 10^{\circ}$ C
 $k_A = 628$ W/m · K , $\rho_A = 993$ kg/m³, $c_A = 4718$ J/kg · K
wood: $k_B = 0.12$ W/m · K , $\rho_B = 510$ kg/m³, $c_B = 1380$ J/kg · K

steel: $k_B = 15.1 \text{ W/m} \cdot \text{K}$, $\rho_B = 8055 \text{ kg/m}^3$, $c_B = 480 \text{ J/kg} \cdot \text{K}$ $T_s = 33.9^{\circ}\text{C}$

Objects with Constant Surface Temperatures Utilization of solution to convection boundary condition

Semi-Infinite Solid

$$q_{s}''=\frac{k\left(T_{s}-T_{i}\right)}{\sqrt{\pi\alpha t}}$$

In dimensionless form

$$q^* = \frac{q_s''L_c}{k(T_s - T_i)} = \frac{k(T_s - T_i)}{\sqrt{\pi\alpha t}} \frac{L_c}{k(T_s - T_i)} = \frac{L_c}{\sqrt{\pi\alpha t}}$$
$$Fo = \frac{\alpha t}{L_c^2} \to \alpha t = L_c^2 Fo \qquad q^* = \frac{1}{\sqrt{\pi Fo}}$$

• Plane wall, Cylinder, and Sphere for $Bi \to \infty$

Summary of transient heat transfer results for constant surface temperature cases

		$q^{*}(Fo)$			
Geometry	Length Scale, L_c L (arbitrary)	Fyact	Approxim	Maximum	
		Solutions	<i>Fo</i> < 0.2	$Fo \ge 0.2$	Error (%)
Semi-infinite		$\frac{1}{\sqrt{\pi Fo}}$	Use exa	none	
Interior Cases					
Plane wall of thickness 2L	L	$2\sum_{n=1}^{\infty} \exp(-\zeta_n^2 Fo) \zeta_n = (n - \frac{1}{2})\pi$	$\frac{1}{\sqrt{\pi Fo}}$	$2 \exp(-\zeta_1^2 Fo) \zeta_1 = \pi/2$	1.7
Infinite cylinder	r_o	$2\sum_{n=1}^{\infty} \exp(-\zeta_n^2 Fo) J_0(\zeta_n) = 0$	$\frac{1}{\sqrt{\pi Fo}} = 0.50 - 0.65 \ Fo$	$2 \exp(-\zeta_1^2 Fo)$ $\zeta_1 = 2.4050$	0.8
Sphere	r _o	$2\sum_{n=1}^{\infty} \exp(-\zeta_n^2 Fo) \zeta_n = n\pi$	$\frac{1}{\sqrt{\pi Fo}} - 1$	$2 \exp(-\zeta_1^2 Fo) \zeta_1 = \pi$	6.3
Exterior Cases					
Sphere	r _o	$\frac{1}{\sqrt{\pi E_0}} + 1$	Use exact solution.		none
Various shapes (Table 4.1, cases 12–15)	$(A_s/4\pi)^{1/2}$	none	$\frac{1}{\sqrt{\pi Fo}} + q_s^*,$	q_s^* from Table 4.1	7.1

 ${}^{a}q^{*} \equiv q_{s}^{"}L_{c}/k(T_{s}-T_{i})$ and $Fo \equiv \alpha t/L_{o}^{2}$ where L_{c} is the length scale given in the table, T_{s} is the object surface temperature, and T_{i} is (a) the initial object temperature for the interior cases and (b) the temperature of the infinite medium for the exterior cases.

Objects with Constant Surface Heat Fluxes

Summary of transient heat transfer results for constant surface heat flux cases

		$q^{*}(Fo)$				
			Approximate Solutions			
Geometry	Length Scale, <i>L_c</i>	Exact Solutions	Fo < 0.2	$Fo \ge 0.2$	Maximum Error (%)	
Semi-infinite	L (arbitrary)	$\frac{1}{2}\sqrt{\frac{\pi}{Fo}}$	Use exact solution.		none	
Interior Cases Plane wall of thickness 2L	L	$\left[Fo + \frac{1}{3} - 2\sum_{n=1}^{\infty} \frac{\exp(-\zeta_n^2 Fo)}{\zeta_n^2}\right]^{-1} \zeta_n = n\pi$	$\frac{1}{2}\sqrt{\frac{\pi}{Fo}}$	$\left[Fo + \frac{1}{3}\right]^{-1}$	5.3	
Infinite cylinder	r _o	$\left[2Fo + \frac{1}{4} - 2\sum_{n=1}^{\infty} \frac{\exp(-\zeta_n^2 Fo)}{\zeta_n^2}\right]^{-1} J_1(\zeta_n) = 0$	$\frac{1}{2}\sqrt{\frac{\pi}{Fo}} - \frac{\pi}{8}$	$\left[2Fo + \frac{1}{4}\right]^{-1}$	2.1	
Sphere	r _o	$\left[3Fo + \frac{1}{5} - 2\sum_{n=1}^{\infty} \frac{\exp(-\zeta_n^2 Fo)}{\zeta_n^2}\right]^{-1} \tan(\zeta_n) = \zeta_n$	$\frac{1}{2}\sqrt{\frac{\pi}{Fo}} - \frac{\pi}{4}$	$\left[3Fo + \frac{1}{5}\right]^{-1}$	4.5	
Exterior Cases						
Sphere	r _o	$[1 - \exp(Fo)\operatorname{erfc}(Fo^{1/2})]^{-1}$	$\frac{1}{2}\sqrt{\frac{\pi}{Fo}} + \frac{\pi}{4}$	$\frac{0.77}{\sqrt{Fo}} + 1$	3.2	
Various shapes (Table 4.1, cases 12–15)	$(A_s/4\pi)^{1/2}$	none	$\frac{1}{2}\sqrt{\frac{\pi}{Fo}} + \frac{\pi}{4}$	$\frac{0.77}{\sqrt{Fo}} + q_{\rm ss}^*$	unknown	

 ${}^{a}q^{*} \equiv q_{s}^{"}L_{c}/k(T_{s}-T_{i})$ and $Fo \equiv \alpha t/L_{c}^{2}$ where L_{c} is the length scale given in the table, T_{s} is the object surface temperature, and T_{i} is (a) the initial object temperature for the interior cases and (b) the temperature of the infinite medium for the exterior cases.

Cancer treatment by laser heating using nanoshells

- 1) Prior to treatment, antibodies are attached to the nanoscale particles.
- 2) Doped particles are then injected into the patient's bloodstream and distributed throughout the body.
- 3) The antibodies are attracted to malignant sites, and therefore carry and adhere the nanoshells only to cancerous tissue.
- 4) A laser beam penetrates through the tissue between the skin and the cancer, is absorbed by the nanoshells, and, in turn, heats and destroys the cancerous tissues.

Known:

- 1) Size of a small sphere
- 2) Thermal conductivity, reflectivity, and extinction coefficient of tissue
- 3) Depth of sphere below the surface of the skin

- 1) Heat transfer rate from the tumor to the surrounding healthy tissue for a steady-state treatment temperature of $T_{t,ss} = 55^{\circ}$ C at the surface of the tumor.
- 2) Laser power needed to sustain the tumor surface temperature at $T_{tss} = 55^{\circ}$ C.
- 3) Time for the tumor to reach $T_t = 52^{\circ}$ C when heat transfer to the surrounding tissue is neglected. Water property can be used.
- 4) Time for the tumor to reach $T_t = 52^{\circ}$ C when heat transfer to the surrounding is considered and the thermal mass of the tumor is neglected.

Assumptions:

- 1) 1D conduction in the radial direction.
- 2) Constant properties.
- 3) Healthy tissue can be treated as an infinite medium.
- 4) The treated tumor absorbs all irradiation incident from the laser.
- 5) Lumped capacitance behavior for the tumor.
- 6) Neglect potential nanoscale heat transfer effects.
- 7) Neglect the effect of perfusion.

1. Steady-state heat loss q from the tumor (Case 12 of Table 4.1)

(b) Dimensionless conduction heat rates $[q = q_{ss}^* kA_s(T_1 - T_2)/L_c; L_c \equiv (A_s/4\pi)^{1/2}]$

System	Schematic	Active Area, A_s	$q_{ m ss}^{st}$			
Case 12 Isothermal sphere of diameter D and temperature T_1 in an infinite medium of temperature T_2		πD^2	1			
$\boldsymbol{q} = 2\pi k D_t \left(T_{t,ss} - T_b \right) = 2\pi \times 0.5 \mathrm{W/m} \cdot \mathrm{K} \times 3 \times 10^{-3} \mathrm{m} \times \left(55 - 37 \right)^{\circ} \mathrm{C}$						
$= 0.170 \mathrm{W}$						

laser heat flux

$$q_l''(x) = q_{l,o}''(1-\rho)e^{-\kappa x}$$

projected area of the tumor:

$$A_p = \frac{\pi D_t^2}{4}$$

2. Laser power P_l , $P_l = q_{l,o}'' \frac{\pi D_l^2}{4}$

Energy balance : heat transfer rate from tumor = absorbed laser energy

$$q = 0.170 \text{ W} \approx q_l''(x = d) \frac{\pi D_l^2}{4} = q_{l,o}''(1 - \rho) e^{-\kappa d} \frac{\pi D_l^2}{4}$$
$$P_l = q_{l,o}'' \frac{\pi D_l^2}{4} = \frac{q}{(1 - \rho)} e^{-\kappa d} \frac{\pi D_l^2}{\pi D_l^2} + \frac{\pi D_l^2}{4} = \frac{q D_l^2 e^{\kappa d}}{(1 - \rho) D_l^2}$$
$$= \frac{0.170 \text{ W} \times (5 \times 10^{-3} \text{ m})^2 \times e^{(0.02 \text{ mm}^{-1} \times 20 \text{ mm})}}{(1 - 0.05) \times (3 \times 10^{-3} \text{ m})^2} = 0.74 \text{ W}$$

3. Time for the tumor to reach $T_t = 52^{\circ}$ C when heat transfer to the surrounding tissue is neglected.

$$\frac{q_l''(x=d)\pi D_t^2}{4} = q = \rho V c \frac{dT}{dt}, \qquad \frac{q}{\rho V c} \int_{t=0}^t dt = \int_{T_b}^{T_t} dT$$
$$t = \frac{\rho V c}{q} (T_t - T_b)$$
$$= \frac{989.1 \text{ kg/m}^3 \times (\pi/6) \times (3 \times 10^{-3} \text{ m})^3 \times 4180 \text{ J/kg} \cdot \text{K}}{0.170 \text{ W}} \times (55^\circ \text{C} - 37^\circ \text{C})$$
$$= 5.16 \text{ s}$$

4. Time for the tumor to reach $T_t = 52^{\circ}$ C when heat transfer to the surrounding is considered and thermal mass of the tumor is neglected.

Heat transfer between a sphere and an exterior infinite medium subjected to constant heat flux

$$q^{*} = \frac{1}{1 - \exp(\text{Fo}) \operatorname{erfc}(\text{Fo}^{1/2})}, \qquad q^{*} = \frac{q_{s}^{"}L_{c}}{k(T_{s} - T_{i})}$$

$$q^{*} = \frac{q_{s}^{"}L_{c}}{k(T_{t} - T_{b})} = \frac{q_{s}^{"}A_{s}L_{c}}{A_{s}k(T_{t} - T_{b})} = \frac{q}{\pi D_{i}^{2}k(T_{t} - T_{b})} \frac{D_{t}}{2} = \frac{q}{2\pi k D_{t}(T_{t} - T_{b})}$$

$$\frac{q}{2\pi k D_{t}(T_{t} - T_{b})} = \frac{1}{1 - \exp(\text{Fo})\operatorname{erfc}(\text{Fo}^{1/2})}$$
By trial and error, $\text{Fo} = 10.3 = \frac{\alpha t}{L_{c}^{2}} = \frac{\alpha t}{(D_{t}/2)^{2}} = \frac{4\alpha t}{D_{t}^{2}} \rightarrow t = \frac{D_{t}^{2}}{4\alpha} \text{Fo}$

$$t = \frac{D_{t}^{2}}{4\alpha} \text{Fo} = \frac{\rho c_{p} D_{t}^{2}}{4k} \text{Fo}$$

$$= \frac{989.1 \text{ kg/m}^{3} \times 4180 \text{ J/kg} \cdot \text{K} \times (0.003 \text{ m})^{2}}{4 \times 0.50 \text{ W/m} \cdot \text{K}} \times 10.3 = 192 \text{ s}$$

Periodic Heating

Oscillating surface temperature

thermal penetration depth

(reduction of temperature amplitude by 90% relative to that of surface)

$$\delta_p \equiv 4\sqrt{\frac{\alpha}{\omega}}$$

Quasi-steady state temperature distribution

$$\frac{T(x,y) - T_i}{\Delta T} = \exp\left[-x\sqrt{\frac{\omega}{2\alpha}}\right] \sin\left[\omega t - x\sqrt{\frac{\omega}{2\alpha}}\right]$$

Surface heat flux $q''_s(t) = k\Delta T\sqrt{\frac{\omega}{\alpha}} \sin\left(\omega t + \frac{\pi}{4}\right)$

C₁: depends on thermal contact resistance at interface between heater strip and underlying material

Numerical Method

Finite Difference Method

Explicit Method (Euler Method) : forward difference

$$\frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\left(\Delta x\right)^2} + \frac{T_{m,n+1} + T_{m,n-1} - 2T_{m,n}}{\left(\Delta y\right)^2} = \frac{T_{m,n}^{p+1} - T_{m,n}^p}{\alpha \Delta t}$$

$$\frac{T_{m+1,n}^{p} + T_{m-1,n}^{p} - 2T_{m,n}^{p}}{\left(\Delta x\right)^{2}} + \frac{T_{m,n+1}^{p} + T_{m,n-1}^{p} - 2T_{m,n}^{p}}{\left(\Delta y\right)^{2}} = \frac{T_{m,n}^{p+1} - T_{m,n}^{p}}{\alpha\Delta t}$$

If
$$\Delta x = \Delta y$$
, $T_{m,n}^{p+1} = \operatorname{Fo}\left(T_{m+1,n}^{p} + T_{m-1,n}^{p} + T_{m,n+1}^{p} + T_{m,n-1}^{p}\right) + (1 - 4\operatorname{Fo})T_{m,n}^{p}$

stability criterion:
$$(1-4Fo) \ge 0$$
 or $Fo = \frac{\alpha \Delta t}{(\Delta x)^2} \le \frac{1}{4}$ or $\Delta t \le \frac{(\Delta x)^2}{4\alpha}$

If the system is one-dimensional in x_i ,

$$T_m^{p+1} = \mathbf{Fo} \left(T_{m+1}^p + T_{m-1}^p \right) + \left(1 - 2\mathbf{Fo} \right) T_m^p$$

stability criterion:
$$(1-2Fo) \ge 0$$
 or $Fo = \frac{\alpha \Delta t}{(\Delta x)^2} \le \frac{1}{2}$ or $\Delta t \le \frac{(\Delta x)^2}{2\alpha}$

Boundary node subjected to convection

Find:

Temperature distribution at 1.5 s after a change in operating power by using the explicit finite difference method

$$\dot{E}_{in} - \dot{E}_{out} + \dot{E}_{g} = \dot{E}_{st}$$

$$m \cdot 1$$

$$kA \frac{T_{m-1}^{p} - T_{m}^{p}}{\Delta x} - kA \frac{T_{m}^{p} - T_{m+1}^{p}}{\Delta x} + \dot{q}A\Delta x$$

$$= \rho A \Delta xc \frac{T_{m}^{p+1} - T_{m}^{p}}{\Delta t}$$
Thus, $T_{m}^{p+1} = Fo\left[T_{m-1}^{p} - T_{m+1}^{p} + \frac{\dot{q}(\Delta x)^{2}}{k}\right] + (1 - 2Fo)T_{m}^{p}, m = 1, 2, 3, 4$
For node 0, set $T_{m-1}^{p} = T_{m+1}^{p}, T_{0}^{p+1} = Fo\left[\frac{\dot{q}(\Delta x)^{2}}{k}\right] + (1 - 2Fo)T_{0}^{p}$
For node 5, $kA \frac{T_{4}^{p} - T_{5}^{p}}{\Delta x} - hA(T_{5}^{p} - T_{\infty}) + \dot{q}A \frac{\Delta x}{2}$

$$= \rho A \frac{\Delta x}{2}c \frac{T_{5}^{p+1} - T_{5}^{p}}{\Delta t}$$
or $T_{5}^{p+1} = 2Fo\left[T_{4}^{p} + BiT_{\infty} + \frac{\dot{q}(\Delta x)^{2}}{2k}\right] + (1 - 2Fo - 2BiFo)T_{5}^{p}$

 Δt : stability criterion

1-2Fo≥0, 1-2Fo-2BiFo≥0
or Fo≤0.5, Fo(1+Bi)≤0.5
Bi =
$$\frac{h\Delta x}{k} = \frac{1100 \text{ W/m}^2 \cdot \text{K}(0.002 \text{ m})}{30 \text{ W/m} \cdot \text{K}} = 0.0733$$

Thus, $Fo \leq 0.466$

$$\Delta t = \frac{\mathrm{Fo}(\Delta x)^2}{\alpha} \le \frac{0.466(2 \times 10^{-3} \mathrm{m})^2}{5 \times 10^{-6} \mathrm{m}^2 \mathrm{/s}} \le 0.373 \mathrm{s}$$

choose $\Delta t = 0.3$ s

Then,
$$Fo = \frac{5 \times 10^{-6} \text{ m}^2 / \text{s}(0.3 \text{ s})}{(2 \times 10^{-3} \text{ m})^2} = 0.375$$

nodal equations

$$\begin{split} T_0^{p+1} &= 0.375(2T_1^p + 2.67) + 0.250T_0^p \\ T_1^{p+1} &= 0.375(T_0^p + T_2^p + 2.67) + 0.250T_1^p \\ T_2^{p+1} &= 0.375(T_1^p + T_3^p + 2.67) + 0.250T_2^p \\ T_3^{p+1} &= 0.375(T_2^p + T_4^p + 2.67) + 0.250T_3^p \\ T_4^{p+1} &= 0.375(T_3^p + T_5^p + 2.67) + 0.250T_4^p \\ T_5^{p+1} &= 0.750(T_4^p + 19.67) + 0.250T_5^p \end{split}$$

Initial distribution: steady-state solution with $\dot{q} = \dot{q}_1 = 1 \times 10^7 \, \text{W/m}^3$

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2}\right) + T_s, \ T_s = T_\infty + \frac{\dot{q}L}{h}$$
$$T_s = T_5 = T_\infty + \frac{\dot{q}L}{h} = 250 + \frac{10^7 \times 0.01}{1100} = 340.91^\circ \text{C}$$
$$T(x) = \frac{10^7 \times 0.01}{2 \times 30} \left(1 - \frac{x^2}{L^2}\right) + 340.91 = 16.67 \left(1 - \frac{x^2}{L^2}\right) + 340.91^\circ \text{C}$$

$$T(x) = 16.67 \left(1 - \frac{x^2}{L^2}\right) + 340.91^{\circ} \text{C}$$

Calculated nodal temperatures

p	t(s)	T_0	T_1	T_2	T_3	T_4	T_5
0	0	357.58	356.91	354.91	351.58	346.91	340.91
1	0.3	358.08	357.41	355.41	352.08	347.41	341.41
2	0.6	358.58	357.91	355.91	352.58	347.91	341.88
3	0.9	359.08	358.41	356.41	353.08	348.41	342.35
4	1.2	359.58	358.91	356.91	353.58	348.89	342.82
5	1.5	360.08	359.41	357.41	354.07	349.37	343.27
8	x	465.15	463.82	459.82	453.15	443.82	431.82

Tabulated Nodal Temperatures

Comments:

Expanding the finite difference solution, the new steady-state condition may be determined.

Implicit Method (fully) : backward difference

$$\frac{T_{m+1,n} + T_{m-1,n} - 2T_{m,n}}{\left(\Delta x\right)^2} + \frac{T_{m,n+1} + T_{m,n-1} - 2T_{m,n}}{\left(\Delta y\right)^2} = \frac{T_{m,n}^{p+1} - T_{m,n}^p}{\alpha \Delta t}$$

$$\frac{T_{m+1,n}^{p+1} + T_{m-1,n}^{p+1} - 2T_{m,n}^{p+1}}{\left(\Delta x\right)^2} + \frac{T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1} - 2T_{m,n}^{p+1}}{\left(\Delta y\right)^2} = \frac{T_{m,n}^{p+1} - T_{m,n}^{p}}{\alpha\Delta t}$$

If
$$\Delta x = \Delta y$$
, $(1+4Fo)T_{m,n}^{p+1} - Fo(T_{m+1,n}^{p+1} + T_{m-1,n}^{p+1} + T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1}) = T_{m,n}^{p}$

stability criterion : no restriction

If the system is one-dimensional in x,

$$(1+2\mathrm{Fo})T_m^{p+1} - \mathrm{Fo}(T_{m+1}^{p+1}+T_{m-1}^{p+1}) = T_m^p$$

Boundary node subjected to convection

$$(1+2Fo+2FoBi)T_0^{p+1}-2FoT_1^{p+1}=2FoBiT_{\infty}+T_0^p$$

Explicit Method

Crank – Nicolson Method

$$T(x,t+\Delta t) = T(x,t) + \frac{\partial T}{\partial t}\Big|_{x,t} (\Delta t) + \frac{1}{2} \frac{\partial^2 T}{\partial t^2}\Big|_{x,t} (\Delta t)^2 + O\left[(\Delta t)^3\right]$$
$$T(x,t-\Delta t) = T(x,t) - \frac{\partial T}{\partial t}\Big|_{x,t} (\Delta t) + \frac{1}{2} \frac{\partial^2 T}{\partial t^2}\Big|_{x,t} (\Delta t)^2 + O\left[(\Delta t)^3\right]$$
$$\frac{\partial T}{\partial t}\Big|_{x,t} = C = 2 T$$

$$T(x,t+\Delta t) - T(x,t-\Delta t) = 2\frac{\partial T}{\partial t}\Big|_{x,t} (\Delta t) + O\left[(\Delta t)^3\right]$$

$$\frac{\partial T}{\partial t} = \frac{T(x,t+\Delta t) - T(x,t-\Delta t)}{2\Delta t} + O\left[\left(\Delta t\right)^2\right]$$

Second order accuracy in time, but serious stability problem

backward difference :
$$\frac{T_{m}^{p+1} - T_{m}^{p}}{\alpha \Delta t} = \frac{T_{m+1}^{p+1} - 2T_{m}^{p+1} + T_{m-1}^{p+1}}{(\Delta x)^{2}}$$

forward difference:
$$\frac{T_m^{p+1} - T_m^p}{\alpha(\Delta t)} = \frac{T_{m+1}^p - 2T_m^p + T_{m-1}^p}{(\Delta x)^2}$$

averaging:
$$\frac{T_m^{p+1} - T_m^p}{\alpha \Delta t} = \frac{1}{2} \left\{ \frac{T_{m+1}^{p+1} - 2T_m^{p+1} + T_{m-1}^{p+1}}{(\Delta x)^2} + \frac{T_{m+1}^p - 2T_m^p + T_{m-1}^p}{(\Delta x)^2} \right\}$$

$$-\frac{\mathrm{Fo}}{2}T_{m-1}^{p+1} + (1+\mathrm{Fo})T_m^{p+1} - \frac{\mathrm{Fo}}{2}T_{m+1}^{p+1} = \frac{\mathrm{Fo}}{2}T_{m-1}^p + (1-\mathrm{Fo})T_m^p + \frac{\mathrm{Fo}}{2}T_{m+1}^p$$

stability criterion: $1 - Fo \ge 0$ or $Fo \le 1$

explicit method:
$$\mathbf{Fo} = \frac{\alpha \Delta t}{\left(\Delta x\right)^2} \le \frac{1}{2}$$

Find:

- Using the explicit FDM, determine temperature at the surface and 150 mm from the surface after 2 min, T(0, 2 min), T(150 mm, 2 min)
- 2. Repeat the calculations using the implicit FDM.
- 3. Determine the same temperatures analytically.

Determination of nodal points

 $\delta(t) \sim \sqrt{\alpha t} = \sqrt{117 \times 10^{-6} \times 120} = 0.118 = 118 \text{ mm}$

Table A.1, copper (300 K) : $k = 401 \text{W/m} \cdot \text{K}$, $\alpha = 117 \times 10^{-6} \text{m}^2/\text{s}$

$$\delta$$
 : 500 ~ 1000 mm

Explicit FDM

node 0:
$$\dot{E}_{in} - \dot{E}_{out} + \dot{E}_{g} = \dot{E}_{st}$$

 $q_{0}''A - kA \frac{T_{0}^{p} - T_{1}^{p}}{\Delta x} = \rho A \frac{\Delta x}{2} c \frac{T_{0}^{p+1} - T_{0}^{p}}{\Delta t}$
or $T_{0}^{p+1} = 2Fo\left(\frac{q_{0}''\Delta x}{k} + T_{1}^{p}\right) + (1 - 2Fo)T_{0}^{p}$
interior nodes: $T_{m}^{p+1} = Fo\left(T_{m+1}^{p} + T_{m-1}^{p}\right) + (1 - 2Fo)T_{m}^{p}$
time step: stability criterion. $Fo = \frac{\alpha \Delta t}{\Delta t} < \frac{1}{2}$

- I - I

time step: stability criterion $\mathbf{Fo} = \frac{\Delta \Delta x}{\left(\Delta x\right)^2} \le \frac{1}{2}$

Table A.1, copper (300 K) : $k = 401 \text{W/m} \cdot \text{K}, \ \alpha = 117 \times 10^{-6} \text{m}^2/\text{s}$

$$\Delta t = \frac{\text{Fo}(\Delta x)^2}{\alpha} \le \frac{1}{2} \frac{(0.075 \text{ m})^2}{117 \times 10^{-6} \text{ m}^2/\text{s}} = 24 \text{ s} \to \text{Fo} = \frac{1}{2}$$

 $2 \min \rightarrow p = 5$

$$T_0^{p+1} = 2\text{Fo}\left(\frac{q_0''\Delta x}{k} + T_1^p\right) + (1 - 2\text{Fo})T_0^p, \quad T_m^{p+1} = \text{Fo}\left(T_{m+1}^p + T_{m-1}^p\right) + (1 - 2\text{Fo})T_m^p$$

Fo = 0.5,
$$\frac{q_0''\Delta x}{k} = \frac{3 \times 10^5 \text{ W/m}^2(0.075 \text{ m})}{401 \text{ W/m} \cdot \text{K}} = 56.1^{\circ}\text{C}$$

finite-difference equations

$$T_0^{p+1} = 56.1^{\circ}\text{C} + T_1^{p}$$
 and $T_m^{p+1} = \frac{T_{m+1}^{p} + T_{m-1}^{p}}{2}$, $m = 1, 2, 3, 4$
 $T_5 = 20^{\circ}\text{C}$

<i>t</i> (s)	T_0	T_1	T_2	T ₃	T_4
0	20	20	20	20	20
24	76.1	20	20	20	20
48	76.1	48.1	20	20	20
72	104.2	48.1	34.1	20	20
96	104.2	69.1	34.1	27.1	20
120	125.3	69.1	48.1	27.1	20
	t(s) 0 24 48 72 96 120	t(s) T ₀ 0 20 24 76.1 48 76.1 72 104.2 96 104.2 120 125.3	$t(s)$ T_0 T_1 020202476.1204876.148.172104.248.196104.269.1120125.369.1	$t(s)$ T_0 T_1 T_2 02020202476.120204876.148.12072104.248.134.196104.269.134.1120125.369.148.1	$t(s)$ T_0 T_1 T_2 T_3 0202020202476.12020204876.148.1202072104.248.134.12096104.269.134.127.1120125.369.148.127.1

Explicit Finite-Difference Solution for $Fo = \frac{1}{2}$

After 2 min, $T_0 = 125.3^{\circ}$ C and $T_2 = 48.1^{\circ}$ C

Improvement of the accuracy

Fo =
$$\frac{1}{4}$$
 (Δt = 12 s), domain length: 600 mm
 $T_0^{p+1} = \frac{1}{2}(56.1^{\circ}\text{C} + T_1^p) + \frac{1}{2}T_0^p$, $T_m^{p+1} = \frac{1}{4}(T_{m+1}^p + T_{m-1}^p) + \frac{1}{2}T_m^p$

Explicit Finite-Difference Solution for $Fo = \frac{1}{4}$

р	t(s)	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
0	0	20	20	20	20	20	20	20	20	20
1	12	48.1	20	20	20	20	20	20	20	20
2	24	62.1	27.0	20	20	20	20	20	20	20
3	36	72.6	34.0	21.8	20	20	20	20	20	20
4	48	81.4	40.6	24.4	20.4	20	20	20	20	20
5	60	89.0	46.7	27.5	21.3	20.1	20	20	20	20
6	72	95.9	52.5	30.7	22.6	20.4	20.0	- 20	20	20
7	84	102.3	57.9	34.1	24.1	20.8	20.1	20.0	20	20
8	96	108.1	63.1	37.6	25.8	21.5	20.3	20.0	20.0	20
9	108	113.7	68.0	41.0	27.6	22.2	20.5	20.1	20.0	20.0
10	120	118.9	72.6	44.4	29.6	23.2	20.8	20.2	20.0	20.0

After 2 min, $T_0 = 118.9^{\circ}$ C and $T_2 = 44.4^{\circ}$ C

When $\Delta t = 24 \text{ s}$, $T_0 = 125.3^{\circ}\text{C}$ and $T_2 = 48.1^{\circ}\text{C}$

Implicit FDM node 0: $q_0'' + k \frac{T_1^{p+1} - T_0^{p+1}}{\Lambda m} = \rho \frac{\Delta x}{2} c \frac{T_0^{p+1} - T_0^p}{\Lambda m}$ or $(1+2Fo)T_0^{p+1} - 2FoT_1^{p+1} = \frac{2\alpha q_0''\Delta t}{k\Lambda r} + T_0^p$ Arbitrarily choosing, $F_0 = \frac{1}{2} (\Delta t = 24 \text{ s})$ $2T_0^{p+1} - T_1^{p+1} = 56.1^{\circ}\text{C} + T_0^{p}$ interior nodes: $-T_{m-1}^{p+1} + 4T_m^{p+1} - T_{m+1}^{p+1} = 2T_m^p$, $m = 1, 2, 3, \dots, 8$

A set of nine equations must be solved simultaneously for each time increment.

The equations are in the form [A][T]=[C].

[A][T] = [C]

2	-1	0	0	0	0	0	0	0	$\left\lceil T_{0}^{p+1} ight ceil$	$\begin{bmatrix} 56.1 + T_0^p \end{bmatrix}$		[76.1]
-1	4	-1	0	0	0	0	0	0	T_{1}^{p+1}	$2T_1^{p}$		40
0	-1	4	-1	0	0	0	0	0	T_{2}^{p+1}	$2T_{2}^{p}$		40
0	0	-1	4	-1	0	0	0	0	T_{3}^{p+1}	$2T_{3}^{p}$		40
0	0	0	-1	4	-1	0	0	0	$\left T_{4}^{p+1} \right =$	$=$ $2T_4^p$	$[C]_{p=0} =$	40
0	0	0	0	-1	4	-1	0	0	T_{5}^{p+1}	$2T_{5}^{p}$		40
0	0	0	0	0	-1	4	-1	0	T_{6}^{p+1}	$2T_{6}^{p}$		40
0	0	0	0	0	0	-1	4	-1	T_{7}^{p+1}	$2T_{7}^{p}$		40
0	0	0	0	0	0	1	-1	4	$\left\lfloor T_{8}^{p+1} \right\rfloor$	$2T_8^{p} + T_9^{p+1}$		60

p	t(s)	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
0	0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
1	24	52.4	28.7	22.3	20.6	20.2	20.0	20.0	20.0	20.0
2	48	74.0	39.5	26.6	22.1	20.7	20.2	20.1	20.0	20.0
3	72	90.2	50.3	32.0	24.4	21.6	20.6	20.2	20.1	20.0
4	96	103.4	60.5	38.0	27.4	22.9	21.1	20.4	20.2	20.1
5	120	114.7	70.0	44.2	30.9	24.7	21.9	20.8	20.3	20.1

Implicit Finite-Difference Solution for $Fo = \frac{1}{2}$

After 2 min, $T_0 = 114.7^{\circ}$ C and $T_2 = 44.2^{\circ}$ C

Analytical Solution

$$T(x,t) - T_{i} = \frac{2q_{0}''(\alpha t/\pi)^{1/2}}{k} \exp\left(-\frac{x^{2}}{4\alpha t}\right) - \frac{q_{0}''x}{k} \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$
$$T(0,120 \text{ s}) = 120.0^{\circ} \text{ C}$$

 $T(0.15 \text{ m}, 120 \text{ s}) = 45.4^{\circ} \text{C}$

Comparison

Method	$T_0 = T(0, 120 \text{ s})$	$T_2 = T(0.15 \text{ m}, 120 \text{ s})$
Explicit ($Fo = \frac{1}{2}$)	125.3	48.1
Explicit ($Fo = \frac{1}{4}$)	118.9	44.4
Implicit $(Fo = \frac{1}{2})$	114.7	44.2
Exact	120.0	45.4

Implicit method with $\Delta x = 18.75 \text{ mm}$ (37 nodalpoints) and $\Delta t = 6 \text{ s}$ (Fo = 2.0)

 $T(0,120 \text{ s}) = 119.2^{\circ}\text{C}, T(0.15 \text{ m}, 120 \text{ s}) = 45.3^{\circ}\text{C}$

exact: $T(0,120 \text{ s}) = 120.0^{\circ}\text{C}$, $T(0.15 \text{ m}, 120 \text{ s}) = 45.4^{\circ}\text{C}$