
Tokamak Transport

• Resistive plasma diffusion

• Pfirsch-Schluter current

• Pfirsch-Schluter diffusion

• Banana regime transport

• Plateau transport

• Ware pinch effect

• Bootstrap current

• Neoclassical resistivity

• Ripple transport



Resistive Plasma Diffusion

Resistive diffusion of plasma across a magnetic field
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Diffusion in a Cylinder
Diffusion velocity in a circular cylinder
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Pfirsch-Schluter Current : heuristic approach
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Pfirsch-Schluter Current : formal calculation
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Pfirsch-Schluter Current : 
for circular cross section/large aspect-ratio case
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Pfirsch-Schluter Diffusion

Diffusion in a torus for a low temperature, collisional  plasma

With parallel component of Ohm‟s law 
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Banana Regime Transport : heuristic approach

In the absence of collisions, those particles with                           are trapped 

and these trapped particles dominate the transport. --> banana regime

Collisions cause scattering out of the trapped region of velocity space with 

collisional diffusion in velocity space through an angle

Effective collision frequency for detrapping

From the random walk model, banana width as a step length with the effective 

collision frequency for trapped particles alone gives diffusion coefficient D
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Banana Regime Transport : kinetic approach

Fundamental kinetic equation in a steady state

To solve DKE, two expansions are used

- small Larmor radius and inductive electric field

- small ratio of collision frequency to trapped particle bounce frequency

Particle flux across a magnetic surface
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Banana Regime Transport : flux

To obtain an equation for the flux in terms of f(1)0,  
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Banana Regime Transport : F-P solution

low collisionality expansion

integrating
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Plateau Transport

Due to magnetic drift, particle drifts a radial distance

in a transit time
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Ware Pinch Effect

Toroidal equation of motion in the banana regime,
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Bootstrap Current
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Neoclassical Resistivity

In a cylindrical plasma, the resistivity along the field line is the Spitzer resistivity
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Ripple and Ripple Well Region

The finite number of toroidal field coils produce a short wavelength „ripple‟ in the 

magnetic field strength as a field line is followed around the torus
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Ripple Transport

• Ripple well transport : in the ripple well region, banana trapped particles 
with tip positions at the edge of the ripple well region becoming trapped in the 
local toroidal wells and subsequently being lost via grad-B drifts vertically

• Ripple banana transport :ripple modifies the orbits of the banana 
trapped particles, leading to transport

• for thermal particles : collisional ripple well transport and collisional 
ripple diffusion

• for fast particles :
collisionless ripple well transport and collisionless stochastic diffusion

for a reactor
• loss of fast - particles and the associated heat losses to the first wall
• loss of neutral beam injected fast particles, in particular near perpendicular 
beamlines
• the ripple amplitude at the plasma edge typically less than 1 to 2 percents in 
order to avoid excessive ripple well losses, while at the plasma center less than 
0.01 percent to avoid stochastic diffusion --> need larger number of TF coils     
--> limit the accessibility of the tokamak



Ripple Transport

• Collisional ripple well trapping transport : particles are trapped into 
and de-trapped out of ripple well trapping by collisional processes, in particular 
by pitch-angle scattering

• Collisionless ripple trapping : for fast particles the ripple well trapping 
processes represents a loss cone since trapped particles do not suffer a collision 
before being lost, i.e.
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Ripple Transport
• Collisional Ripple diffusion :
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For large , the step itself leads to de-correlation of the orbits when the change 

in toroidal bounce angle becomes Nz /2)/(  
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For large gamma, full de-correlation leads to stochastic motion and to fast transport
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Tokamak Energy Confinement

• Global energy confinement time

• Definition and significance

• Various operation modes

• Confinement scaling laws

• Transport and Energy loss mechanisms

• Fluctuations and turbulence

• Radiation losses

Tokamaks do not behave as predicted by neoclassical theory. The energy 

confinement, as measured by the confinement time, is found to be much 

shorter than the neoclassical value. As a result, an empirical representation 

of the confinement time has been widely used.



Global Energy Confinement Time

Definition 
intotaltotalintotalE PEdtdEPE /)//( 

• To predict the performance of future devices, the energy 

confinement time is one of the most important parameter

• Since tokamak transport is anomalous, empirical scaling 

laws for energy confinement are necessary

• Empirical scaling laws : regression analysis from available 

experimental database. 

 inapE PTqIBRan



Tokamak Operation Modes

• Ohmically heated plasmas

• Ohmic energy confinement scaling

• Auxilliary heated plasma operation modes

• L-mode

• H-, VH-, CH-, CDH-modes

• Super-shot, high-li mode, hot ion mode, PEP

• ERS, NCS



Ohmic Energy Confinement Scaling

• Linear dependency on density

• Alcator (or INTOR) scaling : 

E[sec]=0.5 a2 (n/1020 )

• neo-Alcator (or Goldston)

E[sec]=0.071 a1.04 R2.04 (n/1020 )q0.5

• very promising, but conflict with neoclassical theory

• Saturation at higher density range

• nsat=0.06x 1020 IpR A0.5 a-2.5 -1 

• partly due to increased radiative losses.

• Improved confinement w/o density saturation 

observed at ASDEX (peaked density profile)



Ohmic Energy Confinement Scaling

• Improved confinement w/o 

density saturation observed at 

ASDEX (peaked density 

profile)

• New scaling law from C-Mod

• Similar scaling to L-mode : 

EM0.3Ip Ptot
-0.5

• neo-Alcator scaling at low 

density

( n< 1.5x 1020 , k< 1.35)

E =0.07 aqR2 (n/1020 )k0.5



Auxilliary-heated Plasmas : L-mode

• During the early phase of tokamak heating experiments, the plasma
confinement was found to degrade very rapidly from the ohmic
value with application of auxiliary heating. The typical observation
is that the E increases with the plasma current(note that it is
opposite to the ohmic), decreases with the applied power, increases
with R and a little dependence with density and minor radius.

• Goldston scaling : G[sec]=0.037 I R1.75 a-0.37 P-0.5

• ITER89-P scaling: 

E[sec]=0.048 I0.85 R1.2 a0.3 0.5 (n/1020 )0.1 B0.2 A0.5 /P0.5

• Confinement scaling valid from ohmic to strongly additionally 

heated plasmas

• Goldston : E,G 
-2 = OH 

-2 + AUX,G 
-2

• linear offset: E=EOH + EAUX or E, = EOH / Ptot + inc 

• transport model for anomalous electron (Rebut, Lallia and Watkins)



L-mode Confinement

ITER89-P scaling: 

E[sec]=0.048 I0.85 R1.2 a0.3 0.5 (n/1020 )0.1 B0.2 A0.5 /P0.5 

Using the power balance relation, 

Goldston confinement time takes 

the approximate form
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Auxilliary-heated Plasmas : H-mode
• In 1982 IAEA meeting,a new improved confinement regime in diverted

ASDEX plasmas was reported (F. Wagner et al.) which was termed H-

mode(high mode). Compared to the L-mode, the energy confinement

similar to that of ohmic plasma was recovered. The reported H-mode

confinement time typically had the twice that of the L-mode.

The improvement in the energy 

confinement comes about 

mainly due to the increased 

density while keeping the 

central temperature relatively 

unchanged (note that since the 

L-mode has little density 

dependence, this is considered 

to be a breakthrough). The 

density and electron 

temperature profile during H-

mode are broader and are 

characterized of having 

“pedestal” at the plasma edge.



H-mode Characteristics

• H-mode has a similar scaling law, but with 1-2 times 

improvement over L-mode : H= H E 
ITER 89-P or

Th 
ITER H93-P[sec]=0.053 I1.06 R1.9 a-0.11 0.66 (n/1020 )0.17 B0.32 A0.41 /P0.67 

• Reduced edge recycling and often with ELM (edge localized 

mode) activities.

• Broader density and temperature profiles give a larger stored 

energy and high beta discharges.

• However, not much central temperature and density increase 

shows less favorable for producing neutrons.

• H-mode transition seems to be strongly related to the formation 

of radial electric field (or poloidal rotation).

• Power threshold for H-mode increases with the product of 

density(0.5-1.0) , magnetic field, and surface area(0.5-1.0) .

• Various H-modes : VH (DIIID), CH(PBX-M), CDH(ASDEX-U)





Other Improved Confinement Modes

• Super-Shot(TFTR): neutral beam injection into a low density plasma, two 

oppositely injected balanced beams, low edge recycling, peaked density profile, 

H=3

• Hot Ion Mode(JET) : similar mode to TFTR super shot, high power NBI 

in low density target plasmas, beryllium-conditioned wall, centrally peaked 

density and temperature profiles, highest fusion triple product in JET, QDT~1

• High-li Mode : peaked current density profile 

• PEP(Pellet Enhanced Performance) or „High p‟ H-mode : 

H=3.8, peaked pressure profiles by the injection of hydrogen pellets(JET, JT60-

U)

• VH Mode : H=3.6, boronized wall(DIII-D), beryllium surfaces(JET), edge 

temperature pedestal and a high edge bootstrap current

• Enhanced Reversed Shear or Negative Central Shear :

TFTR (PRL 75(1995)4417)  and DIII-D (PRL 75(1995)4421) 

 iE l 8.067.0 



Enhanced Reversed Shear(ERS:TFTR)

Negative Central Shear(NCS:DIII-D)
• Current density profile can be optimized to be desirable for 

confinement, stability, and bootstrap current. 

-->  reversed magnetic shear i.e. hollow current density profile

reversed shear

micro-instabilities : 

trapped electron modes

MHD instabilities : 

short-wavelength ballooning modes and resistive tearing modes

current density profile 

hollow profile

core confinement

stabilize

high 

pressure gradient

strong off-axis

bootstrap current



TFTR DIII-D



Scaling Laws

• Theory

• scale invariance technique 

(Connor-Taylor or Kadomtsev constraints)

• exploits the invariance of the governing equations under 

scale transformations

• no information on geometrical ratios and the safety factor

• Experimental scaling relations

• Bohm diffusion

• gyro-Bohm scaling

• ITER89-P scaling law gives Bohm scaling with

• Simple physics model

• beam fueling profile
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Scaling Laws Based on Theory
Vlasov (or F-P) equation with quasi-neutrality  condition (or Poisson‟s eqn)
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Experimental Scaling Relations

Bohm diffusion time
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• Gyro-Bohm scaling : confinement governed by small scale turbulence on the 

scale of Larmor radius, the collisionless skin depth, or the layer width of 

resistive instabilities

• Bohm scaling : turbulence on the scale of a

• ITER89-P scaling law gives Bohm scaling with 



Scaling Law Based on Physics Model



Transport and Energy Loss Mechanisms

• Anomalous transport

• Transport coefficients

• Fluctuations

• Turbulence-induced transport

• Candidate modes for anomalous transport

• Radiation losses

• Impurity transport

• Radiation losses

• Impurity radiation

Energy confinement <-- particle diffusion and convection, radiation losses



Transport Coefficients

Equations for fluxes
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Other expression for the particle flux
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For transient perturbations from pellet injection or gas puff

Transport coefficients :
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• D, Dz and i can approach neoclassical levels in the plasma core and in high 

confinement regime, but e almost always anomalous.

• Neoclassical value in the core and very anomalous in the outer region

• various confinement regimes show different characteristics of i and e



Anomalous Transport



Fluctuations
Anomalous transport is believed to arise from turbulent diffusion 

caused by fluctuations in the plasma either electrostatic or electromagnetic.

ExB drift velocity produced by turbulent fluctuations,
B

E
v 
 




Convective particle flow combined with density fluctuations   nv 

Heat flux combined with temperature fluctuations   jjj Tvnq 
2

3

Flux induced by magnetic fluctuations  rj Bv
B

n
 //

• Measured by FIR scattering, HIBP

BES, and microwave reflectometry

• density fluctuations ~ 1%

• Measured by Langmuir probe

• electrostatic fluctuations ~ 50%

• B/B ~ 10-4



Fluctuations: Correlations with Transport

Comparison of the radial dependence of the fluctuation amplitude and ( r).

Globally, the correlation between the level 

of fluctuations and the confinement time

Clear correlation found in ohmic, ICRF, 

NBI heated plasmas in TFR

Correlation between fluctuations and 

L-H transition in DIII-D and ASDEX



Turbulence-Induced Transport
Theoretical picture : Free energy released by an instability drives a steady 

level of fluctuations in the associated perturbed quantities, resulting in a 

radial transport of particles and energy.

• level 1: assume the behavior of the underlying instability as given

• calculate the transport arising from the electrostatic and electromagnetic 

fluctuations, E and B, by random walk estimates for turbulent transport

arising from the fluctuating ExB drift velocity and from the parallel motion

along stochastic magnetic field lines

• quasi-linear theory : turbulent fluxes such as particle flux are calculated 

using the linear plasma response to E and B

• level 2: attempt to calculate the nonlinear saturated state of the micro-instability

• scale invariance approach to discuss local rather than global transport

• strong turbulence theory : saturation is taken to occur when the perturbed 

gradient   n is comparable with the equilibrium gradient  n

• weak turbulence theory : the linear growth of a particular wavelength 

fluctuation is balanced against its decay due to nonlinear scattering to other 

wavelengths



Candidate Modes for Anomalous Transport

• Several micro-instabilities have been invoked to explain the observed 

fluctuations and the associated transport, especially for anomalous transport

• A commonly used model for ohmic and L-mode plasmas assumes electrostatic 

trapped electron drift waves and ion temperature gradient modes with a 

contribution from resistive ballooning modes near the plasma edge

• Electron drift wave instabilities : 
diffusivities have gyro-Bohm form

• Ion temperature gradient modes(i modes):

i =d lnTi/ d ln n, the i mode with ks<1 become unstable

possible explanation of the confinement scalings for both the saturated 

ohmic and the L-mode confinements

• Resistive ballooning modes: 
driven by the pressure gradient at bad curvature region

• Micro-tearing modes



Effect of Zonal Flow :gyrokinetic simulation



3-D Imaging of Turbulence 
: microwave imaging reflectometry



Impurity Transport 

• Neoclassical impurity transport
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Impurity Transport 

• Anomalous impurity transport

• simple universal empirical formula

• experiments in JET

25.0 S)2(
2 Z

Z
ZZ n

a

r
S

dr

dn
D  12625.0  smDZ

121.0  smDZ

• 2-10 times of neoclassical value

• rapid transition near s = 0.5
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Radiation Losses 

• Bremsstrahlung 2
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• Cyclotron radiations
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• power loss: 1MW/m3 --> 10-2 MW/m3



Impurity Radiation 
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