Chapter 4-1. Design of Nanomaterials based on OCNDL Vapor Processing

1. Introduction

- 1.1. Nanophase Processing Technique
- 1.2. Classification of Vapor Processing Techniques

2. Physical Vapor Deposition

- 2.1. Process Principle
- 2.2. Advantages & Disadvantages
- 2.3. Evaporation
- 2.4. Sputtering
- 3. Chemical Vapor Deposition
 - 3.1. Process Principle
 - 3.2. Advantages & Disadvantages
 - 3.3. Atomic Layer Deposition

Reference:

Handbook of nanostructured materials and nanotechnology, volume 1, Chapter 4, Academic press (2000)

1.

1.1. Nanophase Processing Technique

Processing route	Processing methods	Product materials
Solid-liquid	Mechanical milling	Powder
Liquid	Sol-gel Sonochemistry Hydrothermal Electrodeposition Gas atomization Laser beam melting Melt spinning	Powder/film Powder Powder Powder/film Powder Film Continuous ribbon
Vapor	Chemical vapor deposition Physical vapor deposition Aerosol processes Flame-assisted deposition	Powder/film Powder/film Powder

1.1. Nanophase Processing Technique

Processing route	Processing methods	Disadvantages
Solid-liquid	Mechanical milling	 Tedious and time consuming process (Mixing, frinding, calcination, sintering, etc) Prone to contamination from milling media Suffering from chemical and phase inhomogeneities Expensive and limited to the processing of ultrafine powder
Liquid	Sol-gel Sonochemistry Hydrothermal Electrodeposition Gas atomization Laser beam melting Melt spinning	 Require a high number of processing steps (Pretreatment, mixing, chemical reactions, filtration, purification, drying, etc) Tedious ad can cause contamination Waste treatment is difficult

1.2. Classification of Vapor Processing Techniques

Carbon Nanomaterials Design Laboratory (CNDL)

2.

Evaporation rates

Heinrich Hertz equation (empirical eqn.)

*P** is the equilibrium vapor pressure of the evaporant at T. *P* is the ambient hydrostatic pressure acting upon the evaporant in the condensed phase.

Experimentally, that the evaporation rate was proportional to $(P^* - P)$

- Also, the evaporation rate could not be increased by supplying more heat unless the equilibrium vapor pressure was also increased by this action.

- maximum evaporation rate when is only achieved in a vacuum, where P = 0.

The net evaporation flux is the difference between the collision rates for the two fluxes

$$\frac{dN_e}{A_e dt} = \left(2\pi m k_B T\right)^{-1/2} \left(P^* - P\right)$$

Evaporation rates

• Solid angle
$$d\omega = \frac{dA}{r^2}$$
, Max. $\omega = \frac{4\pi r^2}{r^2} = 4\pi$

Knudsen Cell

2.

The evaporant flux into a solid angle of dw from a source area of dA_e $d^4N_e = N \frac{v \, dt \cos \varphi \, dA_e}{V} \frac{d\omega}{4\pi} \Phi(v^2) \, dv$ Maxwell distribution of velocity Fraction of molecules within striking distance in time dt Fraction of molecules entering the solid angle dw is dw/4π $\frac{d\omega}{2} = \frac{\text{Target solid angle, dw}}{2}$

After simple mathematical operation, Total impingement rate is $\overline{4\pi}^{-} \text{ Maximum solid angle}$ $\frac{d^2 N_e}{dA_e dt} = (2\pi m k_B T)^{-1/2} P$

Mass evaporation rate through the orifice and the total mass of evaporated material are,

$$\Gamma = m \frac{d^2 N_e}{dA_e dt} = \left(\frac{m}{2\pi k_B T}\right)^{1/2} P \qquad \qquad M_e = \int_0^t \int_0^{A_e} \Gamma dA_e dt$$

2.1. Process Principle

Condensation

2.

The deposited evaporant mass per unit area of condensation surface is Solid angle, dw, is

$$d\omega = \frac{dA_c \times \cos\psi}{r^2} , \quad dA_c = \frac{r^2 d\omega}{\cos\psi}$$
$$M_c = M_e \cos\varphi \frac{d\omega}{\pi} \left(\int \cos\varphi d\omega = \int_0^{2\pi} \int_0^{\pi/2} \cos\varphi \sin\varphi d\varphi d\phi = \pi \right)$$
By Lambert's cosine law

$$\Rightarrow \frac{dM_c}{dA_c} = \frac{M_e}{\pi r^2} \cos\varphi \cos\psi$$

Lambert's cosine law

the radiant intensity observed from a "Lambertian" surface is directly proportional to the cosine of the angle

 r_w

Condensation

Uniform coating on sphere

 r_o

K-cell

2.

 $\cos \varphi = \cos \psi = \frac{r}{2r_e}, \qquad \frac{dM_e}{dA} = \frac{M_e}{4\pi r^2}$ Uniform coating

CNDL

Uniformity of an evaporated film across a flat surface substrate wafer

K-cell

Reduction factor for edge thickness:

$$\frac{d_{edge}}{d_{center}} = \frac{r_0^2}{r_0^2 + r_w^2} \cos\varphi \cos\psi = \left[\frac{r_0^2}{r_0^2 + r_w^2}\right]^2$$

Ex) for a 3-inch diameter wafer suspended 18 inches above a Knudsen cell: $d_{edge}/d_{center} = 0.986$, or a non-uniformity of 1.4 %

2.2. Advantages & Disadvantages

Advantages	Disadvantages
 ultrapure, fine film or powder can be	 deposition process needs to operate in
produced	the low vapor pressure range
 good structure control by care monitoring of the processing conditions 	• the synthesis of multi-component materials is difficult, except for the laser ablation method
 as-deposited materials are already	 Line of sight deposition process, which
nanocrystalline in nature and do not	causes difficulty in producing
require any further work to reduce the	nanocrystalline films on complex-
particle size or heat treatment to burn	shaped components, and has poor
out the precursor complexes	surface coverage

2.3. Evaporation

2.

Feature of Evaporation Method

- The material to be vaporized can be in any form and purity
- The residual gases and vapors in the vacuum environment are easily monitored
- The rate of vaporization is high
- The line-of-sight trajectories and point sources allow the use of deposition onto defined areas
- The cost of thermally vaporizing a given quantity of material is much less than that of sputtering the same amount of material
- However, limitations of utilization of material, non-stoichiometric deposits

2.3. Evaporation

2.

Shadowing or step coverage

- Shadowing and Step Coverage Problems Can Occur in Low Pressure Vacuum Deposition in which the Mean Free Path is Large
- When evaporation is performed in poor vacuum or close to atmospheric pressure, the resulting deposition is generally non-uniform and tends not to be a continuous or smooth film. Rather, the deposition will appear fuzzy or cloudy.

2.

- Producing multi-component materials with well-controlled stoichometry by accurate transfer of the target composition to the coating
- High production cost

2.

2.

- Sputtering is a term used to describe the mechanism in which atoms are ejected from the surface of a material when that surface is struck by sufficiency energetic particles.
- Alternative to evaporation.
- First discovered in 1852, and developed as a thin film deposition technique by Langmuir in 1920.
- □ Metallic films: Al-alloys, Ti, TiW, TiN, Tantalum, Nickel, Cobalt, Gold, etc.

Advantages

- Use large-area-targets which gives uniform thickness over the wafer.
- Control the thickness by Dep. time and other parameters.
- Control film properties such as step coverage (negative bias), grain structure (wafer temp), etc.
- Sputter-cleaned the surface in vacuum prior to deposition.

2.

Ref. www.vacgen.com/catalogue/section-16/intro.htm

Glow discharge to produce energetic particles (ions)

Momentum transfer from an indirect energetic projectile to a solid or molten target,

resulting in the ejection of surface atoms or molecules to produce the sputtered species

2.

Application of Sputtering

- Thin film deposition: ٠
 - **Microelectronics** _
 - Decorative coating
 - Protective coating
- Etching of targets: ٠
 - Microelectronics patterning _
 - Depth profiling microanalysis
- Surface treatment: ٠
 - Hardening ____
 - Corrosion treatment

2.

Parameters influencing to sputtering yield

 The ejected atoms have much more energy and velocity than atoms that have been thermally evaporated

- Sputtering yield , S
 - The number of atoms ejected per incident particle (ion)

Carbon Nanomaterials Design Laboratory (CNDL)

CND

- CVD is a more complex method than PVD
- Involves mass transport, heat transfer, and chemical reactions under non-equilibrium conditions

•However, the process modeling or simulation is mostly based on thermodynamic database, thermo-chemical equilibrium modeling and transport phenomena modeling, which assumed the CVD system is in equilibrium

Carbon Nanomaterials Design Laboratory (CNDL)

3.

At high temp., decomposition and homogeneous gas phase reaction intermediate species \rightarrow decomposition and/or chemical reaction \rightarrow

→ forming powder and volatile byproduct

Carbon Nanomaterials Design Laboratory (CNDL)

3.

The effect of the temperature on the deposition rate

• Main CVD parameters : T, P, input gas ratio, and flow rate [temp. is the dominant parameter]

3.

Thermodynamic aspects I

 $A + B = C_{solid} + D$

Where A and B are supplied gas, C is solid product (deposition) Gas D diffuses away from the substrate during process

Molar Gibbs free energy change is $\Delta G_m = G_m^f - G_m^i$ $\left(G_m = \sum X_n \mu_n\right)$

f is final equilibriu m state

$$G_{m}^{i} = X_{A}^{i} \mu_{A}^{i} + X_{B}^{i} \mu_{B}^{i}, \quad G_{m}^{i} = X_{A}^{f} \mu_{A}^{f} + X_{B}^{f} \mu_{B}^{f} + X_{C}^{f} \mu_{C}^{f} + X_{D}^{f} \mu_{D}^{f}$$
$$\left(\mu_{j} = \mu_{j}^{0} + RT \ln P_{j}\right)$$

As CVD reaction is proceed $\rightarrow P_{C}$, P_{D} is increased $\rightarrow \Delta G_{m}$ is increased \rightarrow reaching equilibrium P_{A} , P_{B} is decreased

Driving Force for Deposition in the CVD Process, Journal of Materials Science Letters, 13, 1437-1439 (1994)

i is initial state

Thermodynamic aspects I

 $A + B = C_{solid} + D$

Where A and B are supplied gas, C is solid product (deposition) Gas D diffuses away from the substrate during process

Molar Gibbs free energy change is $\Delta G_m = G_m^f - G_m^i$ $(G_m = \sum X_n \mu_n)$

i is initial state

f is final equilibriu m state

Example

3.

3.

Thermodynamic aspects II

 $A + B = C_{solid} + D$

Where A and B are supplied gas, C is solid product (deposition) Gas D diffuses away from the substrate during process

So, the gas phase reaction on the growing surface is sufficiently fast \rightarrow CVD is proceeded

Driving Force for Deposition in the CVD Process, Journal of Materials Science Letters, 13, 1437-1439 (1994)

3.

Efficient contact between the gas phase and the growing surface

- The simplest ones are **fixed bed and flat hearth**, whose particles do not move relative to each other
 - If the gas flow rate is sufficiently low, • the gas merely percolates through the void species between the stationary particles
 - Often used for CVD processes devoted mainly to catalyst preparation and CNT synthesis

Gas flows over powders

CND

Fixed bed

Flat hearth

Gas flows through powders

In both cases, particles do not move relative to each other

Principles and applications of CVD powder technology, Vahlas et al, Materials Science and Engineering R 53 (2006) 1–72

3.

Efficient contact between the gas phase and the growing surface

drawbacks of simple fixed bed and flat hearth

- (i) diffusion limitations in the case of chemical vapor infiltration
 - inefficient contact between the gas reactants and the inner particles;
- (ii) impossible to perform deposition on the entire surface of each particle due to contact points among them and with the reactor walls
- (iii) when high growth rates and/or high thickness is aimed, clogging phenomena can occur;
 (iv) due to all above drawbacks

(iv) due to all above drawbacks, the scale-up of these processes is problematic.

Principles and applications of CVD powder technology, Vahlas et al, Materials Science and Engineering R 53 (2006) 1–72

3.2. Advantages & Disadvantages

Advantages	Disadvantages
 Capability of producing highly dense and pure materials 	Include the chemical and safety hazards
 Non line-of-sight process. Can be used to coat complex-shaped components uniformly 	 Toxic, corrosive, flammable, and/or explosive precursor gases Difficult to deposit multi-component materials with well-controlled stoichiometry because different precursors have different vaporization rates

Definition of ALD

3.

- ALD is a method of applying thin films to various substrates with atomic scale precision.
- Similar in chemistry to chemical vapor deposition (CVD), except that the ALD reaction breaks the CVD reaction into two half-reactions, keeping the precursor materials separated during the reaction.
- ALD film growth is self-limited and based on surface reactions, which makes achieving atomic scale deposition control possible.
- By keeping the precursors separated throughout the coating process, atomic layer thickness control of film grown can be obtained as fine as atomic/molecular scale per monolayer.
- Introduced in 1974 by Dr. Tuomo Suntola and co-workers in Finland to improve the quality of ZnS films used in electroluminescent displays.
- Recently, it turned out that ALD also produces outstanding dielectric layers and attracts semiconductor industries for making High-K dielectric materials.

Ref: "Atomic Layer Deposition," Wikipedia: The Free Encyclopedia, Wikimedia Foundation, 24 April 06.

Definition of ALD

3.

- Releases sequential precursor gas pulses to deposit a film one layer at a time on the substrate.
- The precursor gas is introduced into the process chamber and produces a monolayer of gas on the wafer surface. A second precursor of gas is then introduced into the chamber reacting with the first precursor to produce a monolayer of film on the wafer surface. *Two fundamental mechanisms:*
 - Chemisorption saturation process
 - Sequential surface chemical reaction process
- Example: ALD cycle for Al₂O₃ deposition
- Since each pair of gas pulses (one cycle) produces exactly one monolayer of film, the thickness of the resulting film may be precisely controlled by the number of deposition cycles.

3.

Example: ALD cycle for Al₂O₃ deposition

Trimethyl Aluminum (TMA) reacts with the adsorbed -OH groups, Producing methane $AI(CH_3)_{3 (g)} + :Si-O-H_{(s)} \rightarrow :Si-O-AI(CH_3)_{2 (s)} + CH_4$

Ref: "Atomic Layer Deposition," Cambridge NanoTech Inc., 24 April 06. < http://www.cambridgenanotech.com/>.

CND

3.

Example: ALD cycle for Al₂O₃ deposition

Trimethyl Aluminum (TMA) reacts with the adsorbed -OH groups, TMA does not react with itself, terminating the reaction to one later. This causes the perfect uniformity of ALD. The excess TMA is pumped away with the methane reaction product.

After the TMA and methane reaction product is pumped away, water vapor (H_2O) is pulsed into the reaction chamber.

Ref: "Atomic Layer Deposition," Cambridge NanoTech Inc., 24 April 06. < http://www.cambridgenanotech.com/>.

3.

Example: ALD cycle for Al₂O₃ deposition

H₂O reacts with the dangling methyl groups on the new surface forming aluminum oxygen (AI-O) bridges and hydroxyl surface groups, waiting for a new TMA pulse. Again methane is the reaction product 2H₂O _(g)+ :Si-O-AI(CH₃)_{2 (s)}→ :Si-O-AI(OH)_{2 (s)} + 2CH₄ The reaction product methane is pumped away, Excess H_2O vapor does not react with the hydroxyl surface groups, again causing perfect passivation to one atomic layer

CND

Ref: "Atomic Layer Deposition," Cambridge NanoTech Inc., 24 April 06. < http://www.cambridgenanotech.com/>.

ALD reactors

3.

- Closed system chambers (most common)
 - The reaction chamber walls are designed to effect the transport of the precursors.

Ref: "Technology Backgrounder: Atomic Layer Deposition," IC Knowledge LLC, 24 April 06.

CND

Introduction 1.

- 1.1. Carbon allotropes
- 1.2. What are CNTs?
- 1.3. Discovery of CNT: misunderstanding and truth
- 1.4. Classification of CNT
- Structures of CNTs 2

Properties of CNTs 3.

- 3.1. Electronic properties of CNTs
- 3.2. Mechanical properties of CNTs
- 3.3. Magnetic properties of CNTs

4. Synthesis of CNTs

- 4.1. Arc discharge
- 4.2. Laser ablation
- 4.3. Chemical vapor deposition
- 4.4. Vapor phase growth
- 4.5. Other methods
- 4.6. Issues in the synthesis

5. Applications of CNTs

- 5.1. Electronic devices
- 5.2. Energy applications
- 5.3. Mechanical applications
- 5.4. Field emission display

CNDL

Introduction

1.2. What are CNTs?

- Carbon nanotube (CNT) is a new form of carbon, configurationally equivalent to two dimensional graphene sheet rolled into a tube.
- Molecular-scale tubes of graphitic carbon with outstanding properties
- They are among the stiffest and strongest fibers known, and have remarkable electronic properties and many other unique characteristics.
- For these reasons they have attracted huge academic and industrial interest, with thousands of papers on nanotubes being published every year.
- Commercial applications have been rather slow to develop, however, primarily because of the high production costs of the best quality nanotubes.

1.3. Discovery of CNT: misunderstanding and truth

Single-Walled Carbon Nanotubes (SWCNTs)의 발견

1976년 일본의 Endo 그룹에 의해 최초로 발견. Ref: M. Endo et al, J Cryst Growth 32 (1976) 335-349.

1993년 2편이 동시에 발표 (nature 지 6월 17번째 이슈). Submitting 날짜 : 일본 NEC연구소의 lijima group (4월 23일). 미국 IBM 연구소의 Bethune group (5월 242) Ref: S. Iijima et al., Nature 363 (1993) 603-605., D.S. Bethune et al., Nature 363 (1993) 605-607.

J Cryst Growth 32 (1976) 335-349

Nature 363 (1993) 603-605

Nature 363 (1993) 605-607

Multi-Walled Carbon Nanotubes (MWCNTs)의 발견

1952년 러시아의 Radushkevich 그룹에 의해 MWCNTs와 흡사한 carbon filament가 발견됨. Ref: L.V. Radushkevich et al., Zurn Fisic Chim 26 (1952) 88-95. 1973년 독일의 Boehm과 영국의 Baker 그룹에 의해 여러가지 금속촉매를 이용한 carbon filament 제조에 관한 논문이 발표 되었음, Ref: H.P. Boehm, Carbon 11 (1973), pp. 583-590., R.T.K. Baker et al., J Catal 30 (1973) 86-95.

1991년 일본의 lijima에 의해 MWCNTs에 대한 논문 발표됨. Ref: S. Iijima, Nature 354 (1991) 56-58.

Zurn Fisic Chim 26 (1952) 88-95.

J Catal 30 (1973) 86-95.

Carbon 11 (1973) 583-590.

Nature 354 (1991) 56-58.

1.4. Classification of CNT

- Single-wall Carbon nanotubes (SWCNTs)
 - one graphite sheet seamlessly wrapped-up to form a cylinder
 - typical radius 1nm, length up to mm

(From Dresselhaus et al., Physics World 1998)

(From R. Smalley's web image gallery)

1.4. Classification of CNT

- Ropes: bundles of SWNTs
 - triangular array of individual SWNTs
 - ten to several hundreds tubes
 - typically, in a rope tubes of different diameters and chiralities

(From R. Smalley's web image gallery)

(From Delaney et al., Science 1998)

1.4. Classification of CNT

- Multiwall nanotubes (MWCNTs)
 - russian doll structure, several inner shells
 - typical radius of outermost shell > 10 nm

(Copyright: A. Rochefort, Nano-CERCA, Univ. Montreal)

Chiral Vector, C_h

2.

Three Types of Nanotubes

2.

armchair nanotube (n,n) θ =30 ° * metallic

zigzag nanotube (n,0) θ=0 °

all others are semiconductors
 with a band gap that inversely
 depends on the diameter

chiral nanotube (n,m) 0°<0<30 °

n-m=3k , semiconductors with a tiny band gap

S. G. Louie, Top. Appl. Phys., 80 (2001) 113

Structural Properties of CNTs

2.

Symbol	Description	Formula	Symbol	Description	Formula
а	length of unit vectors	$a = \sqrt{3}a_{C-C} = 2.49$ Å $a_{C-C} = 1.42$ Å	θ	chiral angle	$\tan(\theta) = \frac{\sqrt{3}}{2n+m}$
a ₁ a ₂	unit vectors	$\left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)a, \left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)a$	d	gcd (n,m)	
- b	reciprocal lattice	$(1)2\pi (1)2\pi$	d _R	gcd (2n+m,2m+n)	
b ₁ b ₂	vectors	$\left(\frac{1}{\sqrt{3}},1\right)\frac{2n}{a}, \left(\frac{1}{\sqrt{3}},-1\right)\frac{2n}{a}$		translational vector	$T = t_1 a_1 + t_2 a_2 \equiv (t_1, t_2)$
C _h	chiral vector	$C_h = na_1 + ma_2 \equiv (n, m)$ $(0 \le m \le n)$	т		$t_1 = \frac{2m+n}{d_R}, t_2 = -\frac{2n+m}{d_R}$
L	length of C _h	$L = \left C_h \right = a\sqrt{n^2 + m^2 + nm}$	Т	length of T	$T = \left T\right = \frac{\sqrt{3}L}{d_R}$
d _{CNT}	diameter	$d_{CNT} = \frac{L}{\pi}$	N	number of hexagons in the unit-cell	$N = \frac{2(n^2 + m^2 + mn)}{d_R}$

R. Saito, G. Dresselhaus, and M. Dresselhaus, "*Physical Properties of Carbon Nanotubes*." London: Imperial College Press, 1998

3.1. Electronic properties of CNTs

The electronic properties of nanotubes derived from the dispersion relation of a graphite sheet with the wave vectors (k_x, k_y)

$$E(k_x, k_y) = \pm \gamma \{1 + 4\cos(\frac{\sqrt{3}k_x a}{2})\cos(\frac{k_y a}{2}) + 4\cos^2(\frac{k_y a}{2})\}^{1/2}$$

 γ : the nearest neighbor-hopping parameter, 2.5 – 3.2 eV a: lattice constant, 0.246nm

One third of the tubes are metallic and two thirds are semiconducting. The band gap for a semiconducting tube is give by

$$E_g = 2d_{cc}\gamma/D$$

3.

ex) 1 nm wide semiconducting tube \rightarrow 0.7 - 0.9 eV

The curvature effect of $\sigma - \pi$ rehydbridization has been investigated using *ab-initio* calculation.

 $\rightarrow \sigma - \pi$ rehydbridization can open up a small band gap (~0.02 eV) for nonarmchair metallic tubes.

 \rightarrow This effect is found to be very rapidlly disappearing with the tube diameter.

Intertube coupling (SNWT rope, MWNT)

- → The intertube coupling induces a small band gap for certain metallic tubes but a reduced band gap by 40 % for semiconducting tubes in SWNT
- \rightarrow In case of MWNT, the intertube coupling is relatively smaller because of bigger diameter.
- → All semi-conducting tubes in a MWNT tend to be semi-metallic just like graphite

Carbon Nanomaterials Design Laboratory (CNDL)

3.1. Electronic properties of CNTs

A Single SWNT, a SWNT rope, or MWNT behave like a quantum wire

- \rightarrow The confinement effect on the tube circumference
- \rightarrow The conductance for a SWNT, a SWNT rope, or MWNT is given by
 - $G = G_0 M = (2e^2 / h)M$

3.

 $G_0= (2e^2/h) = (12.9 \text{ k}\Omega)^{-1}$, quantized conductance M: an apparent number of conducting channels ex) perfect SWNT, M=2

→ M is determined not only by the intrinsic properties of a nanotube itself, but also by the intertube coupling and the scatters such as defects, impurities, structural disotortions, coupling with substrate, and contacts.

Resistivity & Conductivity

- \rightarrow The resistivity of graphite varies remarkably depending on sample quality.
- → The highest quality graphite ; At RT in-plane resistivity is 0.4 μ Ωm. SWNT ropes and MWNTs ; The resistivity if found to decrease with temperature, and the RT value are much higher than 0.4 μ Ωm because nanotubes are randomly oriented in the sample.
- \rightarrow The π electron is more delocalized in a defect-free nanotube and thus should give rise to higher conductivity than that of graphite.

3.1. Electronic properties of CNTs

3.

Electronic properties of heterogeneous nanotubes (bent and branched structures)

- → These structures are molecular mimics of 2- or 3-terminal heterojunctions that connect two or three different nanotubes in the form of A-B or A-B-C in which A, B, and C can be a metallic or semiconducting tube.
- \rightarrow Localized states appear in the junction interface containing pentagons and heptagons, they also observed in capped SWNT and MWNT ends
- → The interface may or may not be conducting, depending on how tubes are connected. ex) (9,0)-(6,3) tube junction is not conducting for symmetric match but conducting for asymmetric match

The electronic properties have been correlated with mechanical, chemical, biological, thermal, and magnetic interactions with nanotubes, so the extended electromechanical, electrochemical, thermal electronic, and electromagnetic properties are associated with applications of CNTs in sensors, actuators, field emission, batteries, fuel cell, capacitors, and many others.

3.2. Mechanical properties of CNTs

3.

TABLE 1.1 Mechanical Properties of Nanotubes

	Young's modulus (GPa)	Tensile Strength (GPa)	Density (g/cm³)
MWNT	1200	~150	2.6
SWNT	1054	75	1.3
SWNT bundle	563	~150	1.3
Graphite (in-plane)	350	2.5	2.6
Steel	208	0.4	7.8

Source: J. Lu and J. Han, Int. J. High Speed Electron. Sys. 9, 101 (1998). With permission.

In general, various types of defect-free nanotubes are stronger than graphite.

- \rightarrow The axial component of σ bonding is greatly increased when a graphite sheet is rolled over to form seamless cylinderical structure or a SWNT.
- \rightarrow Young's modulus is independent of tube chirality, but dependent on tube diameter.
- → The Young's modulus for MWNT is higher than a SWNT, typically 1.1 to 1.3 TPa. (coaxial intertube coupling or van der Waals force)
- → Many SWNTs are held together in a bundle or a rope, the weak van der Waals force induces a strong shearing among the packed SWNTs. (decrease of Young's modulus)

The elastic response of a nanotube to deformation is also very remarkable.

- \rightarrow CNTs can sustain up to 15 % tensile strain before fracture.
- \rightarrow A high strain is attributed to an elastic buckling through which high stress is released. (Elastic buckling also exists in twisting and bending deformation)
- \rightarrow A high elastic strain for several deformation mode is oriented from sp² rehybridization in nanotubes through which the high strain gets released.

Properties of CNTs

3.2. Mechanical properties of CNTs

sp² rehybridization will lead to change in electronic properties of a nanotube.

$$E_g = Eg_0 + \operatorname{sgn}(2P + 1)3\gamma[(1 + \upsilon)(\cos 3\theta)\varepsilon_l + (\sin g 3\theta)\varepsilon_r]$$

- $\rightarrow E_g$, zero strain band gap
 - θ , nanotube chiral angle
 - ϵ_{I} , tensile strain ϵ_{r} , torsion strain
 - u, Poisson's ratio

3.

- p = 0 (metallic tube), 1 (type I semiconductor),
 - -1 (type II semiconductor)
- → This equation predicts that all chiral or asymmetric tubes ($0 < \theta < 30^{\circ}$) will experience change in electronic properties for either tensile or torsional strain whereas symmetric armchair or zigzag tubes may or may not change their electronic change in electronic properties.
- \rightarrow In asymmetric tubes, either strain will cause asymmetric σ - π rehybridization and therefore change in electronic properties.
- → Effect of strain on a symmetric tube is not so straightforward.

3.3. Magnetic properties of CNTs

3.

Magnetic properties such as anisotropic g-factor and susceptibility of nanotubes are expected to be similar to those for graphite while some unusual properties may exist for nanotube.

- → The average observed g-value of 2.012 and spin susceptibility of 7 X 10^{-9} emu/g in MWNTs are only slightly lower than 2.018 and 2 X 10^{-8} emu/g in graphite.
- \rightarrow The measured susceptibility gives the density of state at the Fermi level of 1.5 X 10⁻³ states/eV/atom, also comparable with that for in-plane graphite.

The band gap of nanotube under uniform magnetic filed parallel to the tube axis is given by:

(metallic nanotubes)		(semiconducti	(semiconducting nanotubes)	
$E_g = E_{g0}\beta$, 0<β<3/2	$E_{g} = E_{g0} \left 1 - \beta \right $, 0<β<3/2	
$E_g = E_{g0} 3 - \beta $, 3/2<β<3	$E_g = E_{g0} 2 - \beta $, 3/2<β<3	

→ A metal-insulator transition and band gap change for semiconductor tubes under magnetic field parallel to tube axis.

(similar to electrical response of nanotubes to mechanical deformation)

- → Driven by magnetic or strain field, the Fermi level will move away from the original position, and this results in the band gap change pattern in Figure 1.15.
- → Similar response can also be observed when magnetic field or strain field is perpendicular to tube axis.

3.3. Magnetic properties of CNTs

3.

FIGURE 1.15 Driven by magnetic or strain field, the Fermi wave-vector K_F moves away from K_v at zero field, with the band gap measured by a distance between K_F and q line measure the bang gap. The band gap increases for p = -1but increases for p = 0 and +1 tubes. The K_F move across q line for p = -1 but q+1 line to reach zero gap. This moving pattern results in the band gap change pattern shown in Figure 1.14 [65].

a

4.1. Arc discharge

4.

- First introduced by S. lijima in NEC (Nature 354 (1991) 56)
- Further developed by Ebbesen and Ajayan in NEC (Nature 358 (1992) 220)
- Usually used in synthesis of carbon nanotubes in the early stage
- Carbon clusters from the anodic graphite rod caused by the collision are cooled to low temperature and condensed on the surface of the cathode
- Excellent Method for the production of both MWNT and SWNT
- CNTs are obtained by controlling growth conditions
- Low CNT purity and yield
 - \rightarrow For high purity: Higher chamber temperature, introduction of H₂ gas, sulfur compound

Synthesis of CNTs

4.1. Arc discharge

4.

Helical microtubules of graphitic carbon S. Iijima, *Nature* **354** (1991) 56

Single-shell carbon nanotubes of 1-nm diameter S. Iijima, *Nature* **363** (1993) 603

* Nd/YAG : neodymium-doped yttrium aluminium garnet (Nd:Y₃Al₅O₁₂)

- First introduced by R.E. Smalley in Rice University (*Science* **273** (1996) 483)
- Carbon clusters from the graphite target are cooled, adsorbed, and condensed on the Cu collector at a low temperature
- High quality SWCNT

4.

- CNTs are obtained by controlling diameters
- High cost: requirement of specific equipments and large amount of energy consuming

4.2. Laser ablation

4.

Crystalline ropes of metallic carbon nanotuebes R.E. Smalley et.al., *Science* **273** (1996) 483

- Involves heating a catalyst material to high temperatures in a tube furnace and flowing hydrocarbon gas through the tube reactor
- The materials are grown over the catalyst and are collected when the system is cooled to room temperature
- Key parameters are:

4.

Hydrocarbons - C_2H_2 , C_2H_4 , CH_4 , ... Substrate of catalysts - Ni, Co, Fe,... Growth Temperature

- CVD process involves the dissociation of hydrocarbon molecules catalyzed by the transition metal, and the dissolution and saturation of carbon atoms in the metal nanoparticles
- Both MWNT and SWNT can be grown by CVD methods
 - MWNTs use acetylene gas for the carbon source and a growth temperature between $600 \sim 800^{\circ}C$
 - SWNTs use carbon monoxide or methane for a carbon source and a much higher growth temperature (900 ~ 1200°C)

Kinds of CVD

4.

- Supply method of activation energy
 - Thermal CVD
 - PECVD (plasma enhanced CVD)
 - PhCVD (photo assisted CVD)
 - LCVD (laser assisted CVD)
- Reaction temperature
 - High temperature CVD
 - Low temperature CVD
- Reaction gas
 - Conventional CVD : organic source
 - MOCVD (Metal organic CVD) : organometallic source
- Reaction pressure
 - LPCVD (Low pressure CVD) : several tens mTorr ~ several tens Torr
 - APCVD (Atmospheric Pressure CVD) : atmospheric

Plasma enhanced CVD

4.

- The low temperature operation is possible (~ 500°C) because the precursor dissociation is enabled by the high energy electrons in a plasma.
- High deposition rate
- Well aligned CNTs on the large area substrate
- Difficult to obtain the uniform products
- Low crystallinity

Plasma enhanced CVD

4.

Synthesis of large arrays of well-aligned carbon nanotubes on glass Z.F. Ren et.al., *Science* **282** (1998) 1105

Thermal CVD

4.

Silicon oxide or AI substrates The substrate is covered by few nanometers metal film (Fe/Ni/Co) 700 ~ 950 °C NH₃ gas Metal nanoparticle C_2H_2 , CH_4 , C_2H_4 , CO Carbon nanotube

- Various sources can be used
- High purity CNT
- Controllability of microscopic structures
- Not good in homogeneity on substrate as change in the flow of the reaction gas leads to unstable gas supply

Thermal CVD

4.

Synthesis of individual single walled carbon nanotubes on patterned silicon wafers H. Dai et.al., *Nature* **395** (1998) 878

Commercial MWCNT by IIJin Nanotech Co.

4.4. Vapor phase growth

4.

Modified method of VGCF (Vapor Grown Carbon Fiber)

- VPG method does not use substrate, but makes reaction in the chamber supporting both reaction gas and metal catalyst in chamber
- Advantage of large scale CNT synthesizing
- Consuming the large amount of gas and low yield

4.4. Vapor phase growth

4.

Controlled production of aligned-nanotube bundles H.W. Kroto et.al., *Nature* **388** (1997) 52

4.5. Other methods

4.

- Developed by R.E. Smalley in Rice University (1999)
- Preparation method of SWCNTs using high pressure CO as the carbon source
- The gas phase catalysts from a volatile organometallic precursor → decompose → forming metal clusters → CNT growth
- The only process that can make SWCNTs on a kilogram per day scale

4.5. Other methods

4.

HiPCO (The High Pressure Carbon Monoxide Process)

Commercial SWCNTs by CNI

Synthesis of CNTs

Method	Arc-discharge	Laser ablation	CVD	
Who	lijima, Ebbesen, Ajayan, NEC, Japan	Smalley, Rice Univ. USA	Endo, Shinshu Univ. Japan	
How	graphite	Graphite Laser Copper Collector	Hydrocarbon p o s e	
Yield	30 – 90 %	Up to 70 %	20 – 100 %	
SWNT	Short tubes with diameter of 0.6-1.4 nm	Long bundles of tubes $(5 - 20 \mu m)$ with diameter of $1 - 2 nm$	Long tubes with diameters of 0.6 – 4 nm	
MWNT	Short tubes with inner diameter of 1-3 nm and outer diameter of 10 nm	Not very much interest Too expensive	Long tubes with diameters of 10 – 240 nm	
Pro	Can easily produce Few structural defects W/O catalyst, cheap, open air synthesis	Good diameter control and few defects Quite pure	Easiest to scale up to industrial production Long length, simple process Diameter controllable, pure	
Con	Short tubes with random sizes and directions Need a lot of purification	Costly technique due to lasers and high power	Usually MWNTs Are riddled with defects	

Growth Mechanism of CNTs

- 4.6. Issues in the synthesis
- Low cost mass production
- High quality and high purity
- Chirality control
- Investigation of growth mechanism

Potential applications and limitations

- The last couple of decades of work in fullerenes and nanotubes promised an amazing range of applications. (in electronics, energy, composites, sensors and biologies)
- However, these new concepts and ideas for applications of carbon nanomaterials have had a limited success in the marketplace, mainly due to issues in processing, scale-up and due to the inability to properly assess the time frame that is needed to take new products to market.
- There are a few applications of nanotubes that are indeed commercialized today.

The success of the potential applications of CNTs depends on the large-scale synthesis and the stable supply of CNTs

5.1. Electronic devices

5.

FET (Field-effect transistors)

- In hot pursuit of Moore's law, semiconductor giants like Intel, IBM and AMD are commercially manufacturing silicon-based transistors at the 65-nm technology node (Q1, 2007). Intel intends to commercialize transistors at the 45-nm technology node.
- By an evolutionary process, a conservative estimate for the smallest conceivable silicon transistor at this point is 16 nm, expected to hit markets not prior to 2018. A revolutionary speedup of this process can be realistically envisioned only if nanotechnology can be controlled on a large scale.
- SWCNTs have been demonstrated to operate as field-effect transistors almost a decade ago, and since then, the FETs have steadily grown in versatility and promise for future nanometerscale electronics.

(The earliest works on room-temperature CNT transistors: C.Dekker, *Nature* **393** (1998) 49) \rightarrow very similar performance to a MOSFET (metal-oxide-semiconductor FET)

5.1. Electronic devices

5.

FET (Field-effect transistors): MOSFET

Ref. DoITPoMS, Department of Materials Science and Metallurgy, University of Cambridge

5.

FET (Field-effect transistors): CNT-FET

- CNTs as the conduction channel
- Advantages
 - : 200 times more current-handling capability and 1000 times faster clock rate

Carbon Nanomaterials Design Laboratory (CNDL)

Ref. IBM Research

TFT (Thin film transistors) for flexible display

Roadmap of the flexible display

Ref. Flexible Display Technology and Market (2007~2017), Displaybank Report (2007)

TFT (Thin film transistors) for flexible display

5.1. Electronic devices

5.

TFT (Thin film transistors) for flexible display

Ref. Veritas et Visus, "Touch Panel", 1 (2006) 34

TFT (Thin film transistors) for flexible display

Invisicon® Flexible, Transparent Circuits from Eikos

SEM Micrograph of CNT-TFT

Ref. www.eikos.com

5.

Onchip thermal management

5.2. Energy applications

5.

Lithium-ion batteries

Components

5.2. Energy applications

5.

Lithium-ion batteries

Ref. M. Endo, et.al., *Carbon* **39** (2001) 1287

5.2. Energy applications

Fuell cells

5.

5.3. Mechanical applications

5.

CNT-filled polymer composites

Carbon Nanomaterials Design Laboratory (CNDL)

5.4. Field emission display

5.

- Mechanism of the electron emission is basically similar to that of a lightning rod: the sharp tips center the electrons and make the possible of electron emission.
- When the Gate and the Emitter are supplied with voltage electrons are released, and when intense electric field is applied into the space between the two glasses electrons are accelerated and retain high kinetic energy.
- The accelerated electrons hit the phosphors inside the anode plate and emit light.

Ref. http://www.samsungsdi.co.kr

5.4. Field emission display

5.

- Low threshold voltage good emission stability → preferred field emitters long emitter lifetime
- Electron relaxation process (SWNTs)
 - : fabrication of cathode-ray lighting elements and flat panel displays
 - : 4.5" diodetype flat panel display using arc-based SWNTs
 - : simply degraded at high emission current
- DWNTs or thin MWNTs

5.

- : best field emitting materials
- : low threshold voltage comparable to SWNTs
- : better structural stability compared to SWNTs, almost comparable to MWNTs
- Doping of nanotubes
 - : B-doped MWNTs enhanced field emission compared to pure carbon MWNTs
 - : presence of B atoms at the nanotube tips
 - ightarrow increase density of state close to the Fermi level
 - : N-doped MWNTs emit electrons at relatively low turn-on voltages high current density excellent field emission properties
 - Carbon Nanomaterials Design Laboratory (CNDL)

5.

- Research is moving forward in the field of fabrication methods, but there are still several remaining issues. For example, we still cannot control the chirality of the tube, which determines the electrical property of CNT.
- In the future, we will see the establishment of large-scale synthesis of carbon nanotubes as well as an acceleration in research targeting their applications.
- Without doubt, carbon nanotubes represent a material that offers great potential, bringing with it the possibility of breakthroughs in a new generation of devices, electric equipment and bio fields.

