# Materials To Remedy Environmental Pollutions

Graduate Course (445.686) Seoul National University, 2008/1

### Part 0. Environmental Pollutions

## Chapter 1. Environmental Chemistry: a global perspectives

- **1.1 Environmental composition: Aqueous solutions** 
  - **Complications in** the use of **units** for the concentration of the composition
  - **ppm** (parts per million)(cf. ppt, ppb): g of solutes per million milliliters of solution =  $\mu g \ mL^{-1}$  or  $mgL^{-1}$

E.g. 10 ppm aq. NH<sub>4</sub>OH

=10 mgNH<sub>4</sub>+L<sup>-1</sup> = 10 x 10<sup>-3</sup> gNH<sub>4</sub>+L<sup>-1</sup>

 $=10 \times 10^{-3}/18.0 \text{ molNH}_4^+\text{L}^{-1}$ 

 $= 5.56 \times 10^{-4} \text{ mol NH}_4^+\text{L}^{-1}$ 

**1.1 Environmental composition: Aqueous solutions** 

E.g. 10 ppm aq. NH<sub>4</sub>OH

- = 5.56 x 10<sup>-4</sup> mol NH<sub>4</sub><sup>+</sup>L<sup>-1</sup>
- = 5.56 x 10<sup>-4</sup> mol  $NO_3^{-L^{-1}}$  (1:1 conversion)
- $= 5.56 \times 10^{-4} \times 62 \times 10^{3} \text{ mg NO}_{3}^{-1} \text{L}^{-1}$
- $= 34 \text{ ppm NO}_3^-$
- ( $\Delta$  is due to molar mass difference between NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>)
- $= 34 \text{ mgNO}_3^-\text{L}^{-1} = 34 \text{ x } 14/62 \text{ mgNL}^{-1}$
- $= 7.7 \text{ mgNL}^{-1} = 7.7 \text{ ppm}$

(this is one way of avoiding complication abovementioned)

#### **1.1 Environmental composition: Aqueous solutions**

- If molar concentration units are used, there will never be any confusion.
- Another limitation of 'parts per...':

they give no indication of the concentration of the reactive groups E.g. Assumption : TOC in a forest stream =  $9.0 \text{ mgCL}^{-1}$ COOH/g of humic material in water =  $4 \text{ mmolg}^{-1}$ Carbon contents in humic material = 50 %

Then,

TOC =  $9 \times 10^{-3} \times 100/50$  g humic material/ L water

= 9 x 10<sup>-6</sup> x 100/50 g humic material/L

x 4 x 10<sup>-3</sup> mol COOH/g humic material

= 8 x 10<sup>-3</sup> mol COOH/L water

### **1.1 Environmental composition: Solids**

• Mass fraction of various kinds are used for solids without any ambiguity.

```
E.g. global avg. conc. of Fe: 4.1 wt% V: 160 \mug/g = 160 ppm.
```

### **1.1 Environmental composition: Gases**

- •<u>Molar fraction or percentage conc</u>. (usu. mixing ratio) are used for gases. $\infty$  vol. fraction  $\infty$  partial pressure
- •For gases at low conc., 'parts per...' family of units is frequently used. E.g. ppmv (parts per million by volume)
- •Mass/vol, moles/vol, molecules/vol. are frequently used.

E.g.  $O_2$  in air, mixing ratio = 20.95% = 9.35 x 10<sup>-3</sup> mol/L = 0.299 g/L

#### **1.1 Environmental composition: Species distribution**

- In many cases, the species distribution of the species, particularly existing in more than one form is more important.
- E.g. carbonate species and mercury in water



[all species].



**Fig. 1.3** Distribution of mercury chloro species in water as a function of chloride ion concentration,  $C_{\text{Cl}}$ -(mol L<sup>-1</sup>). The  $\alpha$  value is the fraction of mercury in the form of a particular complex.

a: oceans with 0.56 mol/L CI<sup>-</sup> content b: well water with 2.7 x  $10^{-4}$  mol/L CI<sup>-</sup>

#### **1.2 Chemical Processes**

- Four principal compartments of the environments
- -The atmosphere (the gaseous environment)
- -The hydrosphere (the liquid, essentially aqueous environment)
- -The terrestrial (solid) environment
- -The biosphere (the living environment) E.g. Water cycle

Since all processes are at steady state, the residence time of water in the atmosphere can then be determined by

 $\tau$  = residence time

 $= \frac{\text{steady state amount in the atmosphere}}{\text{flux (in or out)}}$  $= \frac{1.3 \times 10^{16} \text{ kg}}{4.96 \times 10^{17} \text{ kgy}^{-1}}$ = 0.0262 y = 9.6 days



**Fig. 1.4** The water cycle. Boxed values in kg are total amounts in the given compartment. Values in kg y<sup>-1</sup> are fluxes or movement from one compartment to another. (Values taken from a number of sources and reported in Berner, E. K. and R. A. Berner, *The Global Water Cycle*, Prentice Hall, Inc., NJ; 1987.)

### **1.3 Anthropogenic (human) effects**

Human activity effects on the natural processes

E.g. The Bhopal disaster in India (3 December, 1984)

- massive release of methyl isocyanate (CH<sub>3</sub>-N=C=O) gas from the storage tank
- killed 3,000 persons, 300,000 persons affected by exposure
- MIC is a starting material for carbaryl that is carbamate pesticide
- Usu. stored under refrigeration in an underground
- Causes: technological problems (T) + human activity factors (H)
- T: failure of cooling unit, leakage of water into the tank, loss of nitrogen pressure above the MIC, failure of safety device, etc.
- H: political, organizational, and human factors, etc.

### Part 1. The Earth's Atmosphere

### **Chapter 2. The Earth's Atmosphere**

#### 2.1 Regions of the atmosphere: General Introduction

 Major components: following mixing ratios are const. up to an altitude of ab. 80 km due to the kinetic energy of gas molecules, being sufficiently big enough to overcome any gravitational forces

| <b>Table 2.1</b> Major components of the atmosphere near           the surface of the Earth   |                                                                         |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Component                                                                                     | Mixing ratio                                                            |
| Nitrogen                                                                                      | 78.08%                                                                  |
| Oxygen                                                                                        | 20.95%                                                                  |
| Argon                                                                                         | 0.93%                                                                   |
| Carbon dioxide                                                                                | 0.0365%                                                                 |
| Mixing ratios are calculated on a content is a fifth major componen ranging from 0.5 to 3.5%. | ry atmosphere basis. The water<br>t, but its concentration is variable, |

Avg. molar mass of the atmosphere,  $\overline{M}_a$  $\overline{M}_a = M_{N_2} \times f_{N_2} + M_{O_2} \times f_{O_2} + M_{Ar} \times f_{Ar} + M_{CO_2} \times f_{CO_2}$  $= 28.96 \text{ gmol}^{-1}$ 

#### Total mass of the atmosphere

$$M_{atm} = \frac{P^{0} 4\pi r^{2}}{g} \text{ [in kg]}$$
  
= 5.27×10<sup>18</sup> kg  
 $P^{0} = 101325 \text{ Pa}, g = 9.81 \text{ ms}^{-2}$   
 $r = 6.37 \times 10^{6} \text{ m} \text{ (radius of the Earth)}$ 

#### 2.1 Regions of the atmosphere: General Introduction

• Four sections of the atmosphere: depending on the T change direction, troposphere (대류권), stratosphere (성층권), mesosphere (중간층), thermosphere (열권)



Pressure changes with altitude

$$P_h = P^0 e^{-\overline{M}_a gh/RT}$$

h=altitude in meter

 $P_h$ =pressure at given altitude in Pa

#### 2.1 Regions of the atmosphere: Chemical composition

- In thermosphere (열권) : nearly vacuum at ab. the altitude of 100 km
- For one photon,  $E = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \text{ Js} \times 3.0 \times 10^8 \text{ ms}^{-1}}{100 \times 10^{-9} \text{ m}}$ = 2.0×10<sup>-18</sup> J/photon
- For 1 mol of photons,  $E = 2.0 \times 10^{-18} \times 6.0 \times 10^{23} = 1200 \text{ kJ/mol}$

$$N_{2} + hv (\lambda < 126 \text{ nm}) \rightarrow 2N \qquad \Delta H^{0} = 945 \text{ kJ/mol}$$

$$O_{2} + hv (\lambda < 240 \text{ nm}) \rightarrow 2O \qquad \Delta H^{0} = 498 \text{ kJ/mol}$$

$$N_{2} + hv (\lambda < 80 \text{ nm}) \rightarrow N_{2}^{+} + e^{-} \qquad \Delta H^{0} = 1500 \text{ kJ/mol}$$

$$O + hv (\lambda < 91 \text{ nm}) \rightarrow O^{+} + e^{-} \qquad \Delta H^{0} = 1310 \text{ kJ/mol}$$

• In mesosphere (중간층): some amount of O<sub>3</sub> that absorbs solar radiation  $O_3 + hv (\lambda \approx 230 - 320 \text{ nm}) \rightarrow O_2^* + O^*$ 

#### 2.1 Regions of the atmosphere: The troposphere

• Convection currents and winds cause constant movement of the air

| Table 2.2         Comparison of tropospheric atmospheres from various regions |                                                                                                        |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Location                                                                      | Atmospheric characteristic                                                                             |
| Oceans                                                                        | Sea salt aerosol (sodium, calcium, magnesium, chloride, sulfate)                                       |
| Land (dry)                                                                    | Airborne dust (soil related, plant pollens, etc.)                                                      |
| Urban                                                                         | High levels of pollutants (smoke, dust, primary and secondary<br>smog chemicals)                       |
| Arid tropics                                                                  | Low humidity, intense solar radiation                                                                  |
| Humid tropi                                                                   | cs High humidity, natural volatile organics, intense solar radiation                                   |
| Arctic                                                                        | Sunlight period variable on a yearly cycle, Arctic haze (including sulfate aerosols, soot, and metals) |

#### 2.2 Reactions and calculations in atmospheric chemistry: Thermodynamic calculations

- For  $N_2(g) + O_2(g) \rightarrow 2NO(g)$
- At 25 °C,  $\Delta G^0 = 2\Delta G_f^0 = 2 \times (+86.55) = +173.1 \text{ kJ/mol}$  uneasy reaction at R.T.
- At 1500 °C (I.e. in a cylinder of an internal combustion engine at the time of ignition),  $\Delta G_{2773}^0 = 2\Delta H_{f(NO)}^0 T(2S_{NO}^0 S_{N_2}^0 S_{O_2}^0) = 111.2 \text{ kJ/mol}$
- Then the equilibrium constant is

$$\ln K_{P} = \frac{-\Delta G_{T}^{0}}{RT} = \frac{-111200J / mol}{8.314J / mol / K \times 2773K} = -4.82 \therefore K_{P} = 0.0080$$

- Since  $K_P = \frac{(P_{NO} / P^0)^2}{(P_{N_2} / P^0)(P_{O_2} / P^0)}$  if after complete burning,  $P_{N_2} = 650$  kPa,  $P_{O_2} = 1.0$  kPa in the compressed cylinder gas at 2500 °C, then after some reaction between O<sub>2</sub> and N<sub>2</sub> (meaning the loss of partial pressure, x, of each)
- $\frac{4x^2}{(650-x)(1.0-x)} = 0.0080$  if x<<650 kPa, then  $4x^2 + 5.2x 5.2 = 0$ . x = 0.66
- Therefore,  $P_{\text{NO}}=2x=1.4$  kPa I.e. NO ratio in hot cylinder  $=\frac{1.4 \text{ kPa}}{650 \text{ kPa}} \times 10^6 \text{ ppmv} = 2200 \text{ ppmv}$

#### 2.2 Reactions and calculations in atmospheric chemistry: Kinetic calculations

- For the reverse reaction of  $N_2(g) + O_2(g) \rightarrow 2NO(g) k_2 = 2.6 \times 10^6 e^{-3.21 \times 10^4/T} \text{ m}^3/\text{mol/s}$
- At 25 °C,  $k_2 = 4.3 \times 10^{-41} \text{ m}^3 / \text{ mol/s}$  if atmospheric conc. of NO=100 ppbv
- Then the initial rate of decomposition of NO at R.T. is  $k_2[NO]_i^2 = 7.2 \times 10^{-52} \text{ mol/m}^3 / s$
- The half-life,  $t_{1/2} = \frac{1}{k_2[NO]_i} = 1.8 \times 10^{38} y$ : 10<sup>28</sup> times longer than the age of the Earth
- This means there should be other reactions must be involved in controlling the atmospheric conc. of NO -> Think what?

#### 2.2 Reactions and calculations in atmospheric chemistry: Photochemical reactions

- For  $NO_2 + hv \rightarrow NO + Q$  reaction rate =  $f_1[NO_2]$
- Since the production rxn=consumption rxn,  $k_2[ROO \cdot][NO] = f_1[NO_2]$
- Therefore  $\frac{[NO_2]}{[NO]} = \frac{k_2[ROO \cdot]}{f_1}$

#### 2.2 Reactions and calculations in atmospheric chemistry: Reactions involving free radicals

 $NO_{2} + h\nu \rightarrow NO + O$  $O + O_{2} + M \rightarrow O_{3} + M$  $O_{3} + h\nu \rightarrow O_{2}^{*} + O^{*}$  $O^{3} + H_{2}O \rightarrow 2 \cdot OH$