Part 1. The Earth's Atmosphere

Chapter 5. Tropospheric Chemistry: Precipitation

5.1 The Composition of rain

Precipitation:

-wet deposition: rain, snow, sleet, hail, etc.

-dry deposition: SO₂, dust, etc.

Composition of rain (table 5.1 and table 5.2)

	Urban Guiyang, Guizhou, PRC ^a	Birkenes, Southern Norway ^b	Katherine, Northern Territiories, Australia ^c	Pune, Maharashtra State, India ^d	St Georges Bermuda ^c				
Concentration/µmol L ^{−1}									
H ⁺	112 (pH = 3.95)	57 (pH=4.2)	16.6 (pH = 4.8)	0.04 (pH = 7.4)	16.2 (pH = 4.8)				
Cl-		58	11.8	155	175				
NO_3^-	10.3	38	4.3	18	5.5				
SO ₄ ²⁻	222	68	6.3	11	36.3				
Ca ²⁺	128	9	2.5	55	9.7				
Mg^{2+}		13	2.0	35	34.5				
Na ⁺		56	7.0	150	147				
K ⁺		4	0.9	36	4.3				
NH ₄ ⁺	57	38	2.4	28	3.8				

The sites in China and Norway are considered to contain anthropogenic-source chemical species. The others are influenced to a smaller or negligible extent by human activity.

^dKhemani, L. T., G. A. Momin, M. S. Naik, P. W. Prakasa Rao, P. D. Safai, and A. S. R. Murty, Influence of alkaline particulates on pH of cloud and rain water in India. Atmospheric Environment, **24** (1987), 1137–45.

- 12 2	Approximate atmospheric mixing ratio/ppbv ^a	Approximate residence time/days	Source
Nitrogen species			
Nitrogen oxides, NO _x	1->10 (urban) 0.1-1 (remote)	0.2 (urban, summer) to 10 (remote, winter)	Fossil fuel, biomass, combustion; lightning; microbiological release
Ammonia, NH ₃	0.1-1	2–70	Animal excreta, fertilizers, microbiological release
Sulfur species			
Sulfur dioxide, SO ₂	0.01-0.3	3–5	Fossil fuel, biomass combustion; sulfide ore smelting
Hydrogen sulfide, H ₂ S	0.05-0.3	1-2	Submerged soils, wetlands
Carbon disulfide, CS ₂	0.02-0.5	50	Submerged soils, wetlands
Dimethyl sulfide, (CH ₃) ₂ S	0.01-0.07	1	Oceans
Carbonyl sulfide, COS	0.3-0.5	200-400	Oceans, soils
Methyl mercaptan, CH ₃ SH			Oceans, soils
Dimethyl disulfide, CH ₃ SSCH ₃			Oceans, soils

^a Mixing ratios are for unpolluted areas unless otherwise noted. Data are from various sources.

^aDianwu, Z. and X. Jiling, Acidification in southwestern China, in ref. 4. No data are provided for Cl, Mg, Na, and K.

^bOverrein, L. N., H. M. Seip, and A. Tollan, Acid precipitation—effects on forest and fish. Final report of the SNSF project, Norwegian Ministry of the Environment, 1972–1980, Oslo, 1980.

^cLegge, Á. H. and S. V. Krupa, *Acid Deposition*, *Sulfur and Nitrogen Oxides*, Lewis Publishers, Chelsea MI; 1990.

5.2 Atmospheric production of nitric acid

■ Daytime chemistry: NO is oxidized by O_2 , O_3 , or ROO• to produce HNO₃ NO + $O_3 \rightarrow NO_2 + O_2$

•NO₂ + •OH + M
$$\rightarrow$$
 HNO₃ + M : $k = 1.2 \times 10^{-11} (T/298)^{-1.6} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Night-time chemistry

■ Removal of HNO_3 $NH_3 + HNO_3 \rightarrow NH_4NO_3$ (5.12)

5.3 Atmospheric production of sulfuric acid

■ Oxidation of reduced sulfur species: HS, COS, CS₂, H₂S, CH₃SH, etc.

5.3 Atmospheric production of sulfuric acid

Oxidation of SO₂ by homogeneous rxns

$$SO_2 + \bullet OH + M \rightarrow HOS \bullet O_2 + M$$
 (5.21)

$$HOS \cdot O_2 + O_2 + M \rightarrow HOO \cdot + SO_3 + M$$
 (5.22)

$$SO_3 + H_2O \rightarrow H_2SO_4 \tag{5.23}$$

$$\bullet NO_2 + \bullet OH + M \rightarrow HNO_3 + M \tag{5.25}$$

Kinetic constant changes-see Fig. 5.1

5.3 Atmospheric production of sulfuric acid

Fig. 5.1 Variation in the second order rate constant for the production of HOSO₂ as a function of altitude in the troposphere and stratosphere. (Redrawn from J. G. Calvert, and W. R. Stockwell, Mechanisms and rates of the gas-phase oxidations of sulfur dioxide and nitrogen oxides in the atmosphere, in ref. 2.)

5.3 Atmospheric production of sulfuric acid

Oxidation of SO₂ by heterogeneous rxns

$$SO_{2}(g) \leftrightarrow SO_{2}(aq) \qquad K_{H} = 1.81 \text{ x } 10^{-5} \text{ mol L}^{-1} \text{ Pa}^{-1} \qquad (5.25)$$

$$SO_{2}(aq) + 2H_{2}O \leftrightarrow HSO_{3}^{-}(aq) + H_{3}O^{+}(aq) K_{a1} = 1.27 \text{x} 10^{-2} \text{ mol L}^{-1} (5.26)$$

$$HSO_{3}^{-}(aq) + H_{2}O \leftrightarrow SO_{3}^{-}(aq) + H_{3}O^{+}(aq) K_{a2} = 6.43 \text{x} 10^{-8} \text{ mol L}^{-1} (5.27)$$

aqueous solubility of SO₂

```
E.g. if atmospheric mixing ratio of SO<sub>2</sub>=10 ppbv at P<sup>0</sup>, solubility(at pH=4) = 2.2x10<sup>-6</sup> mol L<sup>-1</sup> solubility(at pH=7) = 2.2x10<sup>-3</sup> mol L<sup>-1</sup>
```

■ $HSO_3^-(aq) + H_2O_2(aq) \leftrightarrow HOOSO_2^-(aq) + H_2O(aq) (\rightarrow k_1, \leftarrow k_2)$ (5.28) atmospheric mixing ratio of $H_2O_2=1\sim2$ ppbv, readily soluble in water with $K_H = 7.0 \times 10^{-1}$ mol L^{-1} Pa⁻¹

$$HOOSO_{2}^{-}(aq) + H_{3}O^{+}(aq) \rightarrow H_{2}SO_{4}(aq) + H_{2}O (\rightarrow k_{3})$$

$$\frac{d[H_{2}SO_{4}]}{dt} = k_{3}[HOOSO_{2}^{-}][H_{3}O^{+}]$$
(5.29)

5.3 Atmospheric production of sulfuric acid

Assuming a steady state conc. of HSO₄-

$$\frac{d[HOOSO_{2}^{-}]}{dt} = 0 = k_{1}[HSO_{3}^{-}][H_{2}O_{2}] - k_{2}[HOOSO_{2}^{-}] - k_{3}[HOOSO_{2}^{-}][H_{3}O^{+}]$$
 (5.32)

Here,
$$k_2 = k_2[H_2O]$$
 since $[H_2O] >> [HOOSO_2]$

$$[HOOSO_{2}^{-}] = \frac{k_{1}[HSO_{3}^{-}][H_{2}O_{2}]}{k_{2}^{'} + k_{3}[H_{3}O^{+}]}$$
(5.33)

rate =
$$\frac{d[H_2SO_4]}{dt} = \frac{k_1k_3[HSO_3^-][H_2O_2][H_3O^+]}{k_2^- + k_3[H_3O^+]}$$
 (5.34)

rate =
$$\frac{k_1 k_3 [\text{HSO}_3^-] [\text{H}_2\text{O}_2] [\text{H}_3\text{O}^+]}{k_2^-}$$
 $k_1 = 5.2 \text{ x } 10^6 \text{ L/mol/s and } k_2^- / k_3 = 10^{-1} \text{ When pH>2}, k_3 [\text{H}_3\text{O}^+] << k_2^-$

$$[H_{3}O^{+}][HSO_{3}^{-}] = K_{H}K_{a1}P_{SO_{2}}$$

$$rate = \frac{k_{1}k_{3}K_{H}K_{a1}}{k_{2}^{'}}[H_{2}O_{2}]P_{SO_{2}}$$

$$= k^{'}[H_{2}O_{2}]P_{SO_{2}}$$

5.3 Atmospheric production of sulfuric acid

A second heterogeneous pathway involves ozones as the oxidant

■
$$HSO_3^-(aq) + O_3 \rightarrow SO_4^{2-}(aq) + H_3O^+(aq) + O_2$$
 (5.39)

$$SO_3^{-}(aq) + O_3 \rightarrow SO_4^{2-}(aq) + O_2$$
 (5.40)

5.4 Acidifying agents in rain

- Refer to Table 5.1
- Cations: Na+, K+, Ca²⁺, Mg²⁺ ions of strong bases
- Anions: Cl⁻, NO₃, SO₄²⁻ ions of strong acids
- These are all balanced in water, so the only major ions perturbing the acid-base balance of the water are NH₄+ and H₃O+
- NH₄+ is an important contributor to the soil acidification.

$$NH_4^+(aq) + 2O_2 + H_2O \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow NO_3^-(aq) + 2H_3O^+(aq)$$

microorganisms

5.5 Sources and sinks of N and S emissions

$N/10^{12} g y^{-1}$		S/10 ¹² g y ⁻¹ Sulfur compounds		
Nitrogen compounds NH ₃				
Biogenic volatilization	122	Solid species, mostly SO ₄ ²⁻		
NO _x		Sea salt	44	
From stratosphere	1	Dust	20	
Atmospheric oxidation of NH ₃	1	Reduced sulfur		
Lightning	5	Biogenic (oceans and land)	98	
Biogenic	8	Partially oxidized sulfur		
Biomass combustion	12	Volcanoes (average)	5	
Fossil fuel combustion	20	Fossil fuel combustion/smelting	104	

Nitrogen data based on Jaffe, D.A., The nitrogen cycle. In *Global Biogeochemical Cycles*, ed. S. S. Butcher, R. J. Charlson, G. H. Orians, and G. V. Wolfe, Academic Press, London; 1991. Sulfur data based on Scriven, R., What are the sources of acid rain? In *Report of the Acid Rain Inquiry*, Scottish Wildlife Trust, Edinburgh; 1985.

5.6 Control of anthropogenic N and S emissions

- Four approaches to reduce N and S emissions:
 - 1. Decrease energy use by various efficiency measures
 - 2. Produce energy via non-combustion processes
 - 3. Prevent emissions of the problem gases
 - 4. Remove gases after they have been generated
- Fluidized-bed combustion: to enhance the efficiency of coal combustion and of heat transfer and therefore to minimize fuel use

Fig. 5.3 A fluidized-bed combustion unit with a cyclone device for removal of particulate material in the flue gases.

5.6 Control of anthropogenic N and S emissions

 Retrofitted flue gas desulfurization: combustion gas passes through an aq. slurry, then the following rxns will produce CaSO₃.

with hydrated lime slurry
$$Ca(OH)_2 + SO_2 \rightarrow CaSO_3 + H_2O$$
 (5.45)

with limestone slurry
$$CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2$$
 (5.46)

$$CaSO_3 + \frac{1}{2}O_2 + 2H_2O \rightarrow CaSO_4 \cdot 2H_2O$$
 (5.47)

The SONOX process:

$$CaCO_3$$
 (aq. slurry) $\rightarrow \rightarrow \rightarrow \rightarrow CaO + CO_2$ (5.43)
900~1350 °C

$$CaO + SO_2 + \frac{1}{2}O_2 \rightarrow CaSO_4 \tag{5.44}$$

$$NH_2CONH_2 + 2NO + \frac{1}{2}O_2 \rightarrow 2N_2 + CO_2 + 2H_2O$$
 (5.48)

Conversion of coal to gaseous and liquid forms: