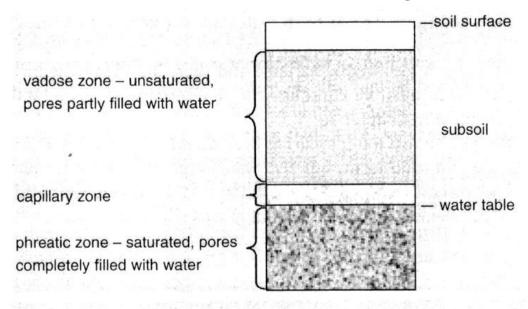

Part 2. The Hydrosphere

Chapter 9. The Hydrosphere

Chapter 9. The hydrosphere 9.0 The hydrosphere: generals

Distribution of Hydrosphere

Fig. 9.1 Distribution of global water resources. (G. Lean, D. Hinrichsen, and A. Markham, *Atlas of the Environment*, Prentice Hall, New York; 1990.)


	Table 9.1	Composition of constituents	sea	water-major	inorganic
١	chemical o	constituents			

Component	Concentration		
Sodium	10 760 mg kg ⁻¹		
Magnesium	1294		
Calcium	413		
Potassium	387		
Strontium	8		
Chloride	19 353		
Sulfate	2712		
Hydrogen carbonate	142		
Bromide	67		
Boron	4		
Fluoride	1		

Data from Martin, D., Marine Chemistry, Vol. 1 Analytical Methods, Marcel Dekker, New York; 1968.

Chapter 9. The hydrosphere 9.0 The hydrosphere: generals

Fresh water Distribution in the ground

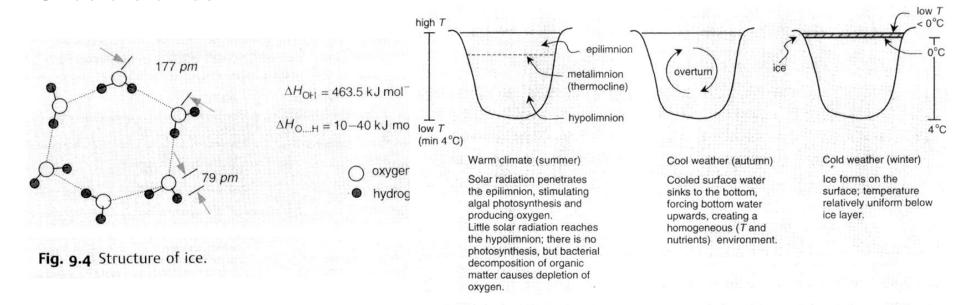


Fig. 9.2 Nomenclature for zones in soil/permeable rock depth profiles.

Only 1% of all fresh water (=0.03% of Earth's total water supply): dominates studies in environmental chemistry, because it is readily available and essential requirement for the survival and growth of many forms of animal and plant life on the planet.

9.1 Physical and chemical properties of water: Ice and liquid water

Structure of Ice

Density of Ice = 0.917 kgL^{-1}

Fig. 9.5 Seasonal changes in the vertical profile of a water body in parts of the world with temperate climate.

Enthalpy of fusion = 6.02 kJmol⁻¹

On melting, $$\rm 0\,^{0}C$ retains a considerable component of the ice structure.

9.1 Physical and chemical properties of water: Hydration

Water has one of the largest for

- constants, meaning good solvent
- : water molecules orient themselves around ions
- Degree of hydration (Hydration number) depends on:
 - -the charge to radius ratio (see Tab. 9.2): most influential factor

	Li ⁺	Na^+	K^+	Rb^+	Cs^+
Ionic radius/pm	60	95	133	148	169
Charge density/C pm ⁻¹	0.0167	0.0105	0.0075	0.0068	0.0059
Hydrated radius/pm	340	276	232	228	228
Hydration number	23.3	16.6	10.5	10	9.9

9.1 Physical and chemical properties of water: Complexation

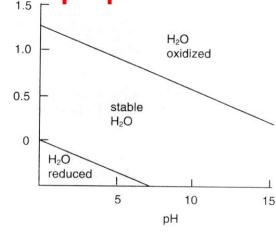
- 'Aquo' complexes: hydrated ions
- Stability of complexes: expressed by stability constants (or formation constants)

$$\begin{split} \mathsf{M} + \mathsf{L} & \iff \mathsf{ML} & K_{f1} = \big[\mathsf{ML}\big]/\big[\mathsf{M}\big]\big[\mathsf{L}\big] \\ \mathsf{ML} + \mathsf{L} & \iff \mathsf{ML}_2 & K_{f2} = \big[\mathsf{ML}_2\big]/\big[\mathsf{ML}\big]\big[\mathsf{L}\big] \\ \mathsf{ML}_2 + \mathsf{L} & \iff \mathsf{ML}_3 & K_{f3} = \big[\mathsf{ML}_3\big]/\big[\mathsf{ML}_2\big]\big[\mathsf{L}\big] \\ \mathsf{ML}_3 + \mathsf{L} & \iff \mathsf{ML}_4 & K_{f4} = \big[\mathsf{ML}_4\big]/\big[\mathsf{ML}_3\big]\big[\mathsf{L}\big] \end{split}$$

Overall rxn M + 4L
$$\Leftrightarrow$$
ML₄ $\beta_4 = \left[\text{ML}_4 \right] / \left[\text{M} \right] \left[\text{L} \right]^4$ $\beta_4 = K_{f1} \times K_{f2} \times K_{f3} \times K_{f4}$ If no. of ligands bound to the metal ion=n, then $\beta_n = K_{f1} \times K_{f2} \times K_{f3} \times \cdots \times K_{fn}$ E.g. in the ocean, $Hg(H_2O)_6^{2+}(aq) + 4Cl^-(aq) \leftrightarrow Hg(H_2O)_2Cl_4^{2-}(aq) + 4H_2O$

9.1 Physical and chemical properties of water: Acid-base properties

Water: substance, undergoing autoprotolysis to form H₃O+ and OH- ions


$$2H_2O \leftrightarrow H_3O^+(aq) + OH^-(aq)$$
 $K_w = 1.01 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$

■ E.g. acidification of water, by e.g. oxalic acid, being the degradation products of natural organic matter (NOM)

$$(COOH)_2 + H_2O \Leftrightarrow COOHCOO^-(aq) + H_3O^+(aq)$$
 $K_{a1} = 5.6 \times 10^{-2}$
 $COOHCOO^-(aq) = H_2O \Leftrightarrow (COO^-)_2(aq) + H_3O^+(aq)$ $K_{a2} = 5.2 \times 10^{-5}$

9.1 Physical and chemical properties of water: Redox properties

$$6H_2O \rightarrow O_2 + 4H_3O^+(aq) + 4e^- E = 1.23 - 0.051 \ pH \ at \ 25^{\circ}C$$

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^- E = -0.0591 \ pH \ at \ 25^{\circ}C$

Fig. 9.6 Stability of water as depicted by an *E*/pH diagram.