
Chapter 2-3: CPUs

Soo-Ik ChaeSoo Ik Chae

High Performance Embedded Computing 1

Topicsp

Bus encoding.

Security-oriented architectures.y

CPU simulation.

C fi blConfigurable processors.

High Performance Embedded Computing 2

Bus encodingg

fEncode information on bus
to reduce toggles and
dynamic energydynamic energy
consumption.

Count energy consumption
b t l t mem CPUenc dec

encoded
bus

by toggle counts.

Bus encoding is invisible to
rest of architecture

mem CPUenc dec

side
informationrest of architecture.

Some schemes transmit
side information about
encoding.

High Performance Embedded Computing 3

Bus-invert codingg

SStan and Burleson: take
advantage of correlation
between successive busbetween successive bus
values.

Choose sending true or
complement form of bus
values to minimize toggles.

Can break bus into fieldsCan break bus into fields
and apply bus-invert coding
to each field.

High Performance Embedded Computing 4

Working zone encodingg g

Mussoll et al.: working-zone encoding divides
address bus into working zones.

Address in a working zone is sent as an offset from
the base in a one-hot code.

To reduce the energy in microprocessorTo reduce the energy in microprocessor
address bus

High Performance Embedded Computing 5

Working zone encodingg g

High Performance Embedded Computing 6

Working zone encodingg g

High Performance Embedded Computing 7

Working zone encodingg g

High Performance Embedded Computing 8

Working zone encodingg g

encoder decoderencoder decoder

[Mus98] © 1998 IEEE

High Performance Embedded Computing 9

[]

Security-oriented architecturesy

A variety of attacks:
Typical desktop/server attacks, such as Trojan y j
horses and viruses.

Physical access allows side channel attacks.y

Cryptographic instruction sets have been
developed for several architecturesdeveloped for several architectures.

Embedded systems architecture must add
t ti f id ff t idprotection for side effects, consider energy

consumption.

High Performance Embedded Computing 10

Side channel attack

Side channels
Power dissipation

EM radiation

Operating timesOperating times

Side channel attack
R i t ti ti l l i f f (Requires a statistical analysis of waveforms (e.g.
power traces)

High Performance Embedded Computing 11

Smart cards

Used to identify holder, carry money, etc.

Self-programmable one-chip microcomputer p g p p
(SPOM) architecture:

Allows processor to change code or dataAllows processor to change code or data.

Memory is divided into two sections.

Registers allo program in one section to modifRegisters allow program in one section to modify
the other section without interfering with the
executing programexecuting program.

High Performance Embedded Computing 12

Secure architectures

S tMIPS (MIPS) S C (ARM) ffSmartMIPS (MIPS), SecurCore (ARM) offer
security extensions, including encryption
i t ti t tinstructions, memory management, etc.
SAFE-OPS embeds a watermark (a verifiable
identifier) into code using register assignment.

If each register is assigned a symbol, then the
f i t d i ti f dsequence of register used in a section of code

represents the watermark for that code.
FPGA accelerator checks the validity of theFPGA accelerator checks the validity of the
watermark during execution.

High Performance Embedded Computing 13

CPU simulation
A CPU’s simulator means any method of analyzing
th b h i f th CPUthe behavior of programs on the CPU.

Performance vs. energy/power simulation.
Performance: less detailed but reasonably accurate

Power/energy: more accurate

T lTemporal accuracy.
More detailed -> more accurate timing, slow

Trace vs. execution.

Simulation vs. direct execution.

High Performance Embedded Computing 14

Engblom embedded vs. SPEC comparisong p

Embedded software has
very differentvery different
characteristics than the
SPECInt benchmark set.

SpecInt95

More dynamic data
structurest uctu e

More 32-bit variables

Embedded programs

[E 99b]

Different!
Mostly smaller data

More unsigned variables

More static and global [Eng99b]
© 1999 ACM Press

More static and global
variables

High Performance Embedded Computing 15

Benchmarks for embedded applicationspp

MediaBench
JPEG, MPEGS, GSM speech encoding, G.721 voice
compression, PGP cryptography package, Ghostscript

EEMBC DenBenchEEMBC DenBench
Embedded microprocessor benchmark consortium

Denbench includesDenbench includes
MPEG EncodeMark

MPEG DecodeMark

CrytoMark

ImageMark

The final score is the geometric mean of four minisuites.

High Performance Embedded Computing 16

Trace-based analysisy

InstrumentationInstrumentation
generates side
information.
PC-sampling checks
PC value during

tiexecution.
Can measure

t l flcontrol flow,
memory accesses.

UNIX prof GNU gprofUNIX prof, GNU gprof
Logic analyzer

High Performance Embedded Computing 17

How to generate a traceg
Hardware: logic analyzer

Trace buffer is limited and need to store at executionTrace buffer is limited and need to store at execution
speed
Cannot see internal memory references due to on-chip

hcache

A processor emulator
Able to observe internal behaviorAble to observe internal behavior
Too slow to generate long traces

Some CPU has hardware facilities for automaticallySome CPU has hardware facilities for automatically
generating trace information

A branch trace: source and/or target address of a branch.
We can reconstruct the instructions executed within the
basic blocks while greatly reducing the trace information.

High Performance Embedded Computing 18

How to generate a trace by softwareg y
PC sampling

I t t ti i t tiInstrumentation instructions
The program can be instrumented with additional code
that writes trace information to memory or a filethat writes trace information to memory or a file.

Direct execution: emulating architecture
Emulate the target machine on the hostEmulate the target machine on the host

Used primarily for functional and cache simulation, not for
detailed timing.g

Very fast because much of the simulation runs as native
code on the host machine.

High Performance Embedded Computing 19

Microarchitecture-modeling simulatorsg

Varying levels of detail:
Instruction scheduler is not cycle-accurate.y

Cycle timers are cycle-accurate.

Can simulate for performance orCan simulate for performance or
energy/power.

T i ll itt i lTypically written in general-purpose
programming language (C), not hardware
description language (VHDL, Verilog).

High Performance Embedded Computing 20

PC samplingp g

Example: Unix prof.

Interrupts are used to sample PC periodically.p p p y
Must run on the platform.

Doesn’t provide complete traceDoesn t provide complete trace.

Subject to sampling problems: undersampling,
periodicity problemsperiodicity problems.

High Performance Embedded Computing 21

Call graph reportg p p

Main 100%Main 100%
f1
f2

f1 37%

g1
2

Cumulative execution time
g2

f2 23%

3g3
g4

High Performance Embedded Computing 22

Cycle-accurate simulatory

Models the microarchitecture.
Simulating one instruction
requires executing routines for

IRI-box
requires executing routines for
each pipeline stage.

Models pipeline state

PC

Models pipeline state.
Microarchitectural registers are
exposed to the simulator. re

g

p

Somewhat slow

High Performance Embedded Computing 23

Trace-based vs. execution-based

E ti b dTrace-based:
Gather trace first, then
generate timing information.

Execution-based:
Simulator fully executes the
instruction.generate timing information.

Basic timing information is
simpler to generate.

Requires a more complex
simulator.
Requires explicit

Full timing information may
require regenerating
information from the

Requires explicit
knowledge of the
microarchitecture, not just
instruction execution times.

original execution.

High Performance Embedded Computing 24

Sources of timing informationg

Data book tables:
Time of individual
instructions

Microarchitecture:
Depends from the
structure of machineinstructions.

Penalties for various
hazards.

structure of machine.

Derived from execution
of the instruction in thehazards. of the instruction in the
microarchitecture.

High Performance Embedded Computing 25

Levels of detail in simulation

I t ti h d lInstruction schedulers:
Models availability of microarchitectural resources.
May not capture all interactions.

Cycle timers:
Models full microarchitecture.
Most accurate, requires exact model of the q
microarchitecture.

High Performance Embedded Computing 26

SimpleScalarp

High Performance Embedded Computing 27

Early approaches to power modelingy pp p g

Instruction macromodels:
ADD = 1 μw, JMP = 2 μw, etc.μ μ

Data-dependent models:
Based on data value statisticsBased on data value statistics.

Transition-based models.

High Performance Embedded Computing 28

Power simulation

Model capacitance in the processor.

Keep track of activity in the processor.p y p
Requires full simulation.

Activity determines capacitiveActivity determines capacitive
charge/discharge, which determines power

ticonsumption.

High Performance Embedded Computing 29

SimplePower simulatorp

Cycle-accurate simulator.
SimpleScalar-style cycle-accurate simulator.y y

Transition-based power analysis.
Estimates energy of data path memory andEstimates energy of data path, memory, and
busses on every clock cycle.

High Performance Embedded Computing 30

RTL power estimation interfacep

A power estimator is required for each
functional unit modeled in the simulator.

Functional interface makes the simulator more
modular.

Power estimator takes same arguments as
the performance simulation modulethe performance simulation module.

High Performance Embedded Computing 31

Switch capacitance tablesp

M d l f ti l it h ALU i t fil lti lModel functional units such as ALU, register files, multiplexers,
etc.
Capture technology-dependent capacitance of the unit.
Two types of model:

Bit-independent: each bit is independent, model is one bit wide.
Bit dependent: bits interact (as in adder) model must be multipleBit-dependent: bits interact (as in adder), model must be multiple
bits.

Analytical models used for memories.
Adder model is built from sub-model for adder slice.

High Performance Embedded Computing 32

Wattch power simulatorp

Built on top of SimpleScalar.

Adds parameterized power models for the p p
functional units.

High Performance Embedded Computing 33

Array modely

A l ti l d lAnalytical model:
Decoder.
Wordline drive.
Bitline discharge.
Sense amp output.

Register file word line capacitance:g p
Cdiff (word line driver) + Cgate(cell access)*nbit_lines
+ Cmetal * Word_line_length

High Performance Embedded Computing 34

Bus, function unit models,

Bus model based upon length of bus,
capacitance of bus lines.

Models for ALUs, etc. based upon transition
modelsmodels.

High Performance Embedded Computing 35

Clock network power modelp

Clock is a major power sink in modern
designs.

Major elements of the clock power model:
Global clock linesGlobal clock lines.

Global drivers.

Loads on the clock net orkLoads on the clock network.

Must handle gated clocks.

High Performance Embedded Computing 36

Instruction Set Simulator (ISS)

Native code execution ISS
Target application code is compiledTarget application code is compiled
for the host and executed on the host.
FastestFastest
Inaccurate

Interpretive ISS int Reg[32];
ISS code

Interpretive ISS
Slow
Flexible and accurate

…

while(1) {

F t h()Fetch();

Decode();

Execute();…
original assembly code

Execute();

Interrupt handler();

}

add r1, r2, r3
sub r3, r4, r1
…

Interpretive

High Performance Embedded Computing 37

Instruction Set Simulator (ISS)

Compiled ISS
(Binary translation) translated the(Binary translation) translated the
target binary to the host binary
(C intermediate code) generate the C(C intermediate code) generate the C
code from the target binary and
compile it for the host
F tFast
Accurate

…
add r1, r2, r3

original assembly code …
Add(r1, r2, r3);
Sub(r3, r4, r1);, ,

sub r3, r4, r1
…

Compiled
Sub(r3, r4, r1);
…

High Performance Embedded Computing 38

Automated CPU designg

Customize aspects of CPU for application:
Instruction set.

Memory system.

Busses and I/O.

T l h l d i d i l t t CPUTools help design and implement custom CPUs.

FPGAs make it easier to implement custom CPUs.

Application-specific instruction processor (ASIP) has
custom instruction set.

Configurable processor is generated by a tool set.

High Performance Embedded Computing 39

Types of customizationyp

New instructions: operations, operands,
remove unused instructions.

Specialized pipelines.

Specialized memory hierarchySpecialized memory hierarchy.

Busses and peripherals.

High Performance Embedded Computing 40

Techniquesq

Architecture optimization tools help choose
the instruction set and microarchitecture.

Configuration tools implement the
microarchitecture (and perhaps compiler)microarchitecture (and perhaps compiler).

Early example: MIMOLA analyzed programs,
created microarchitect re and instr ctionscreated microarchitecture and instructions,
synthesized logic.

High Performance Embedded Computing 41

CPU configuration processg p

High Performance Embedded Computing 42

Configurable Processorsg

ARC

Tenslica Xtensa

ASIP Meister

T hib M PToshiba MeP core

High Performance Embedded Computing 43

Tensilica LX2 configuration options

High Performance Embedded Computing 44© 2004 Tensilica

High Performance Embedded Computing 45

Toshiba MePcore

Optimized for media p
processing and
streaming
applicationapplication

MeP core +
Extension units

UCI unit (1 cycle)

DSP unit (multi-
cycle)cycle)

Co-processor
(VLIW)

DMA controller for
streaming

High Performance Embedded Computing 46

LISA EDGE

A tool platform for embedded processor design fromA tool platform for embedded processor design from
Coware

LISA 2 0 architecture description language (ADL)LISA 2.0 architecture description language (ADL)

Employs the CoSy system from ACE on compiler side.

CGD (code generator description) in CoSCGD (code generator description) in CoSy
A specification of target processor resources like registers
and functional unitsand functional units

A description of mapping rules, specifying how C/C++
language constructs map to a block of assembly instructionsg g p y

A scheduler table that captures instruction latencies as well
as instruction resource occupation on a cycle-by-cycle basis.

High Performance Embedded Computing 47

LISATek EDGE

High Performance Embedded Computing 48

CoSy y
Requires a CGD as well as some further information like
function calling conventions or the C data type sizes andfunction calling conventions, or the C data type sizes and
memory alignment.
LISA based C compiler generator can be coarsely viewedLISA based C compiler generator can be coarsely viewed
as a LISA-to-CGD translator.
This translation is difficult because of the semantic gap
b h il ’ hi h l l d l f hbetween the compiler’s high-level model of the target
machine and the detailed ADL model that captures cycle
and bit-true behavior of the machine operation.and bit true behavior of the machine operation.

High Performance Embedded Computing 49

LISATek EDGE

High Performance Embedded Computing 50

LISA languageg g

[Hof01] © 2001 IEEE

High Performance Embedded Computing 51

[Hof01] © 2001 IEEE

PEAS-III

Synthesis driven by:
1. Architectural parameters such as number of pipeline

stages.
2 Declaration of function units2. Declaration of function units.
3. Instruction format definitions.
4. Interrupt conditions and timing.p g
5. Micro-operations for instructions and interrupts.
Generates both simulation and synthesis models in
VHDLVHDL.

A single pipeline stage

High Performance Embedded Computing 52

Instruction set synthesisy

Generate a set of
candidate instructions
f li tifrom application
program, other
requirementsrequirements.

Sun et al. analyzed
design space for simpledesign space for simple
BYTESWAP() program.

[Sun04] © 2004 IEEE

High Performance Embedded Computing 53

Holmer and Despainp

Vi i i t ti t d i ti i tiViewing instruction set design as an optimization
problem
1% rule don’t add instruction unless it improves1% rule---don t add instruction unless it improves
performance by 1%.
Objective function (C = # cycles I = # instructionObjective function (C = # cycles, I = # instruction
types, S = # instructions in program):

100 ln C + I : optimizing execution timep g
100 ln C + 20 ln S + I : optimizing execution time and code
size

Th d i d ti l ith t fi dThey used microcode compaction algorithms to find
instructions.

High Performance Embedded Computing 54

