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Topicsp

Bus encoding.

Security-oriented architectures.y

CPU simulation.

C fi blConfigurable processors.
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Bus encodingg

fEncode information on bus 
to reduce toggles and 
dynamic energydynamic energy 
consumption.

Count energy consumption 
b t l t mem CPUenc dec

encoded
bus

by toggle counts.

Bus encoding is invisible to 
rest of architecture

mem CPUenc dec

side
informationrest of architecture.

Some schemes transmit 
side information about 
encoding.
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Bus-invert codingg

SStan and Burleson: take 
advantage of correlation 
between successive busbetween successive bus 
values.

Choose sending true or 
complement form of bus 
values to minimize toggles.

Can break bus into fieldsCan break bus into fields 
and apply bus-invert coding 
to each field.
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Working zone encodingg g

Mussoll et al.: working-zone encoding divides 
address bus into working zones.

Address in a working zone is sent as an offset from 
the base in a one-hot code.

To reduce the energy in microprocessorTo reduce the energy in microprocessor 
address bus
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Working zone encodingg g
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Working zone encodingg g
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Working zone encodingg g
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Working zone encodingg g

encoder decoderencoder decoder

[Mus98] © 1998 IEEE
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Security-oriented architecturesy

A variety of attacks:
Typical desktop/server attacks, such as Trojan y j
horses and viruses.

Physical access allows side channel attacks.y

Cryptographic instruction sets have been 
developed for several architecturesdeveloped for several architectures.

Embedded systems architecture must add 
t ti f id ff t idprotection for side effects, consider energy 

consumption.
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Side channel attack

Side channels
Power dissipation

EM radiation

Operating timesOperating times

Side channel attack
R i t ti ti l l i f f (Requires a statistical analysis of waveforms (e.g. 
power traces)
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Smart cards

Used to identify holder, carry money, etc.

Self-programmable one-chip microcomputer p g p p
(SPOM) architecture:

Allows processor to change code or dataAllows processor to change code or data.

Memory is divided into two sections.

Registers allo program in one section to modifRegisters allow program in one section to modify 
the other section without interfering with the 
executing programexecuting program.
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Secure architectures

S tMIPS (MIPS) S C (ARM) ffSmartMIPS (MIPS), SecurCore (ARM) offer 
security extensions, including encryption 
i t ti t tinstructions, memory management, etc.
SAFE-OPS embeds a watermark (a verifiable 
identifier) into code using register assignment. 

If each register is assigned a symbol, then the 
f i t d i ti f dsequence of register used in a section of code 

represents the watermark for that code.
FPGA accelerator checks the validity of theFPGA accelerator checks the validity of the 
watermark during execution.
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CPU simulation
A CPU’s simulator means any method of analyzing 
th b h i f th CPUthe behavior of programs on the CPU.

Performance vs. energy/power simulation.
Performance: less detailed but reasonably accurate

Power/energy: more accurate

T lTemporal accuracy.
More detailed -> more accurate timing, slow

Trace vs. execution.

Simulation vs. direct execution.
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Engblom embedded vs. SPEC comparisong p

Embedded software has 
very differentvery different 
characteristics than the 
SPECInt benchmark set.

SpecInt95

More dynamic data 
structurest uctu e

More 32-bit variables

Embedded programs

[E 99b]

Different!
Mostly smaller data

More unsigned variables

More static and global [Eng99b]
© 1999 ACM Press

More static and global 
variables
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Benchmarks for embedded applicationspp

MediaBench
JPEG, MPEGS, GSM speech encoding, G.721 voice 
compression, PGP cryptography package, Ghostscript

EEMBC DenBenchEEMBC DenBench
Embedded microprocessor benchmark consortium

Denbench includesDenbench includes
MPEG EncodeMark

MPEG DecodeMark

CrytoMark

ImageMark

The final score is the geometric mean of four minisuites.
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Trace-based analysisy

InstrumentationInstrumentation 
generates side 
information.
PC-sampling checks 
PC value during 

tiexecution.
Can measure 

t l flcontrol flow,
memory accesses.

UNIX prof GNU gprofUNIX prof, GNU gprof
Logic analyzer
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How to generate a traceg
Hardware: logic analyzer

Trace buffer is limited and need to store at executionTrace buffer is limited and need to store at execution 
speed
Cannot see internal memory references  due to on-chip 

hcache

A processor emulator
Able to observe internal behaviorAble to observe internal behavior
Too slow to generate long traces

Some CPU has hardware facilities for automaticallySome CPU has hardware facilities for automatically 
generating trace information

A branch trace: source and/or target address of a branch. 
We can reconstruct the instructions executed within the 
basic blocks while greatly reducing the trace information.
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How to generate a trace by softwareg y
PC sampling

I t t ti i t tiInstrumentation instructions
The program can be instrumented with additional code 
that writes trace information to memory or a filethat writes trace information to memory or a file.

Direct execution: emulating architecture
Emulate the target machine on the hostEmulate the target machine on the host

Used primarily for functional and cache simulation, not for 
detailed timing.g

Very fast because much of the simulation runs as native 
code on the host machine.
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Microarchitecture-modeling simulatorsg

Varying levels of detail:
Instruction scheduler is not cycle-accurate.y

Cycle timers are cycle-accurate.

Can simulate for performance orCan simulate for performance or 
energy/power.

T i ll itt i lTypically written in general-purpose 
programming language (C), not hardware 
description language (VHDL, Verilog).
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PC samplingp g

Example: Unix prof.

Interrupts are used to sample PC periodically.p p p y
Must run on the platform.

Doesn’t provide complete traceDoesn t provide complete trace.

Subject to sampling problems: undersampling, 
periodicity problemsperiodicity problems.
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Call graph reportg p p

Main 100%Main 100%
f1
f2

---
f1 37%

g1
2

Cumulative execution time
g2

---
f2 23%

3g3
g4
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Cycle-accurate simulatory

Models the microarchitecture.
Simulating one instruction 
requires executing routines for

IRI-box
requires executing routines for 
each pipeline stage.

Models pipeline state

PC

Models pipeline state.
Microarchitectural registers are 
exposed to the simulator. re

g

p

Somewhat slow 
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Trace-based vs. execution-based

E ti b dTrace-based:
Gather trace first, then 
generate timing information.

Execution-based:
Simulator fully executes the 
instruction.generate timing information.

Basic timing information is 
simpler to generate.

Requires a more complex 
simulator.
Requires explicit

Full timing information may 
require regenerating 
information from the 

Requires explicit 
knowledge of the 
microarchitecture, not just 
instruction execution times.

original execution.
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Sources of timing informationg

Data book tables:
Time of individual 
instructions

Microarchitecture:
Depends from the 
structure of machineinstructions.

Penalties for various 
hazards.

structure of machine.

Derived from execution 
of the instruction in thehazards. of the instruction in the 
microarchitecture.
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Levels of detail in simulation

I t ti h d lInstruction schedulers:
Models availability of microarchitectural resources.
May not capture all interactions.

Cycle timers:
Models full microarchitecture.
Most accurate, requires exact model of the q
microarchitecture.
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SimpleScalarp
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Early approaches to power modelingy pp p g

Instruction macromodels:
ADD = 1 μw, JMP = 2 μw, etc.μ μ

Data-dependent models:
Based on data value statisticsBased on data value statistics.

Transition-based models.
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Power simulation

Model capacitance in the processor.

Keep track of activity in the processor.p y p
Requires full simulation.

Activity determines capacitiveActivity determines capacitive 
charge/discharge, which determines power 

ticonsumption.
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SimplePower simulatorp

Cycle-accurate simulator.
SimpleScalar-style cycle-accurate simulator.y y

Transition-based power analysis.
Estimates energy of data path memory andEstimates energy of data path, memory, and 
busses on every clock cycle.
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RTL power estimation interfacep

A power estimator is required for each 
functional unit modeled in the simulator.

Functional interface makes the simulator more 
modular.

Power estimator takes same arguments as 
the performance simulation modulethe performance simulation module.
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Switch capacitance tablesp

M d l f ti l it h ALU i t fil lti lModel functional units such as ALU, register files, multiplexers, 
etc.
Capture technology-dependent capacitance of the unit.
Two types of model:

Bit-independent: each bit is independent, model is one bit wide.
Bit dependent: bits interact (as in adder) model must be multipleBit-dependent: bits interact (as in adder), model must be multiple 
bits.

Analytical models used for memories.
Adder model is built from sub-model for adder slice.
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Wattch power simulatorp

Built on top of SimpleScalar.

Adds parameterized power models for the p p
functional units.
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Array modely

A l ti l d lAnalytical model:
Decoder.
Wordline drive.
Bitline discharge.
Sense amp output.

Register file word line capacitance:g p
Cdiff (word line driver) + Cgate(cell access)*nbit_lines 
+ Cmetal * Word_line_length
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Bus, function unit models,

Bus model based upon length of bus, 
capacitance of bus lines.

Models for ALUs, etc. based upon transition 
modelsmodels.
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Clock network power modelp

Clock is a major power sink in modern 
designs.

Major elements of the clock power model:
Global clock linesGlobal clock lines.

Global drivers.

Loads on the clock net orkLoads on the clock network.

Must handle gated clocks.
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Instruction Set Simulator (ISS)

Native code execution ISS
Target application code is compiledTarget application code is compiled 
for the host and executed on the host.
FastestFastest
Inaccurate  

Interpretive ISS int Reg[32];
ISS code

Interpretive ISS
Slow
Flexible and accurate

…

while(1) {

F t h()Fetch();

Decode();

Execute();…
original assembly code

Execute();

Interrupt handler();

}

add r1, r2, r3
sub r3, r4, r1
…

Interpretive
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Instruction Set Simulator (ISS)

Compiled ISS
(Binary translation) translated the(Binary translation) translated the 
target binary to the host binary
(C intermediate code) generate the C(C intermediate code) generate the C 
code from the target binary and 
compile it for the host
F tFast
Accurate

…
add r1, r2, r3

original assembly code …
Add(r1, r2, r3);
Sub(r3, r4, r1);, ,

sub r3, r4, r1
…

Compiled 
Sub(r3, r4, r1);
…
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Automated CPU designg

Customize aspects of CPU for application:
Instruction set.

Memory system.

Busses and I/O.

T l h l d i d i l t t CPUTools help design and implement custom CPUs.

FPGAs make it easier to implement custom CPUs.

Application-specific instruction processor (ASIP) has 
custom instruction set.

Configurable processor is generated by a tool set.
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Types of customizationyp

New instructions: operations, operands, 
remove unused instructions.

Specialized pipelines.

Specialized memory hierarchySpecialized memory hierarchy.

Busses and peripherals.
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Techniquesq

Architecture optimization tools help choose 
the instruction set and microarchitecture.

Configuration tools implement the 
microarchitecture (and perhaps compiler)microarchitecture (and perhaps compiler).

Early example: MIMOLA analyzed programs, 
created microarchitect re and instr ctionscreated microarchitecture and instructions, 
synthesized logic.
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CPU configuration processg p
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Configurable Processorsg

ARC

Tenslica Xtensa

ASIP Meister

T hib M PToshiba MeP core

High Performance Embedded Computing 43

Tensilica LX2 configuration options

High Performance Embedded Computing 44© 2004 Tensilica



High Performance Embedded Computing 45

Toshiba MePcore

Optimized for media p
processing and 
streaming 
applicationapplication

MeP core + 
Extension units

UCI unit (1 cycle)

DSP unit (multi-
cycle)cycle)

Co-processor 
(VLIW)

DMA controller for 
streaming
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LISA EDGE

A tool platform for embedded processor design fromA tool platform for embedded processor design from 
Coware

LISA 2 0 architecture description language (ADL)LISA 2.0 architecture description language (ADL)

Employs the CoSy system from ACE on compiler side.

CGD (code generator description) in CoSCGD (code generator description) in CoSy
A specification of target processor resources like registers 
and functional unitsand functional units

A description of mapping rules, specifying how C/C++ 
language constructs map to a block of assembly instructionsg g p y

A scheduler table that captures instruction latencies as well 
as instruction resource occupation on a cycle-by-cycle basis.
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LISATek EDGE
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CoSy y
Requires a CGD as well as some further information like 
function calling conventions or the C data type sizes andfunction calling conventions, or the C data type sizes and 
memory alignment.
LISA based C compiler generator can be coarsely viewedLISA based C compiler generator can be coarsely viewed 
as a LISA-to-CGD translator.
This translation is difficult because of the semantic gap
b h il ’ hi h l l d l f hbetween the compiler’s high-level model of the target 
machine and the detailed ADL model that captures cycle 
and bit-true behavior of the machine operation.and bit true behavior of the machine operation.
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LISATek EDGE
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LISA languageg g

[Hof01] © 2001 IEEE
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[Hof01] © 2001 IEEE

PEAS-III

Synthesis driven by:
1. Architectural parameters such as number of pipeline 

stages.
2 Declaration of function units2. Declaration of function units.
3. Instruction format definitions.
4. Interrupt conditions and timing.p g
5. Micro-operations for instructions and interrupts.
Generates both simulation and synthesis models in 
VHDLVHDL.

A single pipeline stage
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Instruction set synthesisy

Generate a set of 
candidate instructions
f li tifrom application 
program, other 
requirementsrequirements.

Sun et al. analyzed 
design space for simpledesign space for simple 
BYTESWAP() program.

[Sun04] © 2004 IEEE
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Holmer and Despainp

Vi i i t ti t d i ti i tiViewing instruction set design as an optimization 
problem
1% rule don’t add instruction unless it improves1% rule---don t add instruction unless it improves 
performance by 1%.
Objective function (C = # cycles I = # instructionObjective function (C = # cycles, I = # instruction 
types, S = # instructions in program):

100 ln C + I : optimizing execution timep g
100 ln C + 20 ln S + I : optimizing execution time and code 
size

Th d i d ti l ith t fi dThey used microcode compaction algorithms to find 
instructions.
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