Chapter 2-3: CPUs

Soo-lk Chae

High Performance Embedded Computing

Topics

Bus encoding.
Security-oriented architectures.
CPU simulation.

Configurable processors.

High Performance Embedded Computing

Bus encoding

Encode information on bus

to reduce toggles and

dynamic energy

consumption. encoded

. bus
o Count energy consumption
ﬁ
by toggle counts. B €NC | 9ec | I
Bus encoding is invisible to side
rest of architecture. information

Some schemes transmit
side information about
encoding.

High Performance Embedded Computing 3

Bus-invert coding

Stan and Burleson: take
advantage of correlation
between successive bus
values.

Choose sending true or
complement form of bus
values to minimize toggles.

Can break bus into fields
and apply bus-invert coding
to each field.

High Performance Embedded Computing 4

Working zone encoding

Mussoll et al.: working-zone encoding divides

address bus into working zones.

o Address in a working zone is sent as an offset from

the base in a one-hot code.

To reduce the energy in microprocessor

address bus

High Performance Embedded Computing

Working zone encoding

m
vector A
PREF 0 Address
space
vector B PREF 1 i
i
vector C - PREF 2 Rworking zone
S \ offsetI]
/__«/ B Y
¥

High Performance Embedded Computing

‘ Working zone encoding

TABLE |

ADDRESS BUS FIELDS FOR A HIT (W Z ForMmAT) AND A
Miss (NoN W Z FORMAT). [N PARENTHESIS, THE NUMBER OF BiTs

m-wire bus

Pref _miss ident word
(1) | (Dogy(H+MD) | (n)
Wz 0 W Z index offset or
format last bus value
Non WZ 1 don't care complete
format address

High Performance Embedded Computing

‘ Working zone encoding

Fig. 2. Values 1 to H (H 4+ 1to H 4+ M) in ident belong
to active (potential) working zones. The registers used for the
encoding are as follows:

« Pref; contains the last address to working zone j;

» prev_off, is the offset of the last reference to zone j;

» prev_sent is the previous value sent over the bus:

« prev_ident is the value of ident of the previous hit.
Similarly, the registers involved for decoding are as follows:
« prev.received is the previous value received from

word;

» prev_off; and Pref; (as in the encoding algorithm).

High Performance Embedded Computing

Working zone encoding

encoder decoder
for1=i=H+ Mdo A, = current - Pref; (1)
if 34, such that —n/2 = A, = n/2 — 1 then
offset = A,
Pref_miss = 0 if pref_miss = 0 then
ident = r xor = prev_received XOR word
if offset = prev_off, then if xor = 0 then
word = prev_sent current = Prefg.,, + prev_offisn,
else (leave prev_off,y, ., as before)
word = transition —signaling[one-hot(offset)] else
Pref, = current current = Prefy.,, + one-hot-retrieve(xor)
Prev_off, = offset prev_off,.q. = one-hot-retrieve(xor)
Prev_ident = r Pref g, = current
ifH+1=r=H+ Mthen if ident > H then
pref; = current (1= j = H) (2) Pref; = current, (1 = j = H) (2)
prev_off; = offset if xor = 0 then
else (leave prev_off; as before)
Pref_miss = 1 else
ident = prev_ident (3) prev_off; = one-hot-retrieve(xor)
word = current else
if M # 0 then current = word
Pref; = current (H + 1=j=H + M) (2) Pref; = current
else (leave prev_off; as before) (4)
Pref; = current (1 =j = H) (2) § | prev_received = word
(leave prev_off; as before) (4)
Prev_sent woré

(1) Active working zone search; in this work, fully associative
(2) Replacement algorithm; in this work, LRU

(3) ident is don't care; its previous value is sent

(4) prev_off is not modified since no previous offset is known

[Mus98] © 1998 IEEE

High Performance Embedded Computing 9

Security-oriented architectures

A variety of attacks:

o Typical desktop/server attacks, such as Trojan
horses and viruses.

o Physical access allows side channel attacks.

Cryptographic instruction sets have been
developed for several architectures.

Embedded systems architecture must add
protection for side effects, consider energy
consumption.

High Performance Embedded Computing 10

Side channel attack

Side channels

o Power dissipation

o EM radiation

o Operating times
Side channel attack

o Requires a statistical analysis of waveforms (e.g.
power traces)

High Performance Embedded Computing 11

Smart cards

Used to identify holder, carry money, etc.

Self-programmable one-chip microcomputer
(SPOM) architecture:

o Allows processor to change code or data.

o Memory is divided into two sections.

o Registers allow program in one section to modify
the other section without interfering with the
executing program.

High Performance Embedded Computing 12

Secure architectures

SmartMIPS (MIPS), SecurCore (ARM) offer
security extensions, including encryption
instructions, memory management, etc.

SAFE-OPS embeds a watermark (a verifiable
identifier) into code using register assignment.

o If each register is assigned a symbol, then the
sequence of register used in a section of code
represents the watermark for that code.

o FPGA accelerator checks the validity of the
watermark during execution.

High Performance Embedded Computing 13

CPU simulation

A CPU'’s simulator means any method of analyzing
the behavior of programs on the CPU.

Performance vs. energy/power simulation.
o Performance: less detailed but reasonably accurate
o Power/energy: more accurate

Temporal accuracy.
o More detailed -> more accurate timing, slow

Trace vs. execution.
Simulation vs. direct execution.

High Performance Embedded Computing 14

Embedded Speclm®
|||||

Engblom embedded vs. SPEC comparison

|
Embedded software has |
very different e
"
|

characteristics than the D tlererEy Cherers
SPECInt benchmark set. " ittt Do
Specint95 |-
o More dynamic data . P —

structure -l e |
o More 32-bit variables o |
Embedded programs " i otvtaio s, " piamtntopernorcaepries
o Mostly smaller data L
o More unsigned variables =/ , Different!
o More static and global ~ =| [Eng99b)]

variables p © 1999 ACM Press

High Performance Embedded Computing 15

Benchmarks for embedded applications

MediaBench
o JPEG, MPEGS, GSM speech encoding, G.721 voice
compression, PGP cryptography package, Ghostscript

EEMBC DenBench
o Embedded microprocessor benchmark consortium

o Denbench includes
MPEG EncodeMark
MPEG DecodeMark
CrytoMark
ImageMark

o The final score is the geometric mean of four minisuites.

High Performance Embedded Computing 16

Trace-based analysis

| Instrumentation-based

|
Instrumentation !
generates side |
|
|
|
|

{0

tool

information.

PC-sampling checks
PC value during Fo-------- !
execution. E

Can measure | Sampling based

o control flow, o
0 memory accesses.

UNIX prof, GNU gprof Analyss oo

Logic analyzer

High Performance Embedded Computing

|

|

I

|

|

. . . l
Code modification |
I

|

|

I

|

I

PC sampling - Execution

17

How to generate a trace

Hardware: logic analyzer

o Trace buffer is limited and need to store at execution
speed

o Cannot see internal memory references due to on-chip
cache

A processor emulator

o Able to observe internal behavior

o Too slow to generate long traces

Some CPU has hardware facilities for automatically
generating trace information

o A branch trace: source and/or target address of a branch.
We can reconstruct the instructions executed within the
basic blocks while greatly reducing the trace information.

High Performance Embedded Computing

18

How to generate a trace by software

PC sampling

Instrumentation instructions

o The program can be instrumented with additional code
that writes trace information to memory or a file.

Direct execution: emulating architecture

o Emulate the target machine on the host

o Used primarily for functional and cache simulation, not for
detailed timing.

o Very fast because much of the simulation runs as native
code on the host machine.

High Performance Embedded Computing 19

Microarchitecture-modeling simulators

Varying levels of detail:
o Instruction scheduler is not cycle-accurate.
o Cycle timers are cycle-accurate.

Can simulate for performance or
energy/power.

Typically written in general-purpose
programming language (C), not hardware
description language (VHDL, Verilog).

High Performance Embedded Computing 20

PC sampling

Example: Unix prof.

Interrupts are used to sample PC periodically.
o Must run on the platform.
o Doesn’t provide complete trace.

o Subject to sampling problems: undersampling,
periodicity problems.

High Performance Embedded Computing 21

Call graph report

Main 100%
f1

gl Cumulative execution time

f2 23%

High Performance Embedded Computing 22

| Cycle-accurate simulator

= Models the microarchitecture.

o Simulating one instruction
requires executing routines for
each pipeline stage.

= Models pipeline state.

o Microarchitectural registers are
exposed to the simulator.

= Somewhat slow

High Performance Embedded Computing 23

Trace-based vs. execution-based

= Trace-based: = EXxecution-based:
o Gather trace first, then o Simulator fully executes the
generate timing information. Instruction.

o Requires a more complex

o Basic timing information is)
simulator.

simpler to generate. . i
L _ o Requires explicit
o Full timing information may knowledge of the
require regenerating microarchitecture, not just

information from the instruction execution times.
original execution.

High Performance Embedded Computing 24

Sources of timing information

Data book tables: Microarchitecture:

o Time of individual o Depends from the
instructions. structure of machine.

o Penalties for various o Derived from execution
hazards. of the instruction in the

microarchitecture.

High Performance Embedded Computing 25

I.evels of detail in simulation

Instruction schedulers:

o Models availability of microarchitectural resources.
o May not capture all interactions.

Cycle timers:

o Models full microarchitecture.

o Most accurate, requires exact model of the
microarchitecture.

High Performance Embedded Computing 26

SimpleScalar

FORTRAN C Simulator source
benchmark source benchmark source (e.g., sim-outorder.c)
> .Si.mpleScalaI

‘_

SimpleScalar
assembly ¢

SimpleScalar .W —p RESULTS
GAS

o ¢ Object files 4%;
S5 libca S

)
GLD SimpleScalar L Precompiled S5

executables binaries (test, SPEC95)

Figure 1. SimpleScalar tool set overview

High Performance Embedded Computing 27

Early approaches to power modeling

Instruction macromodels:
a0 ADD =1 pw, JMP = 2 uw, etc.
Data-dependent models:
o Based on data value statistics.

Transition-based models.

High Performance Embedded Computing 28

Power sitmulation

Model capacitance in the processor.

Keep track of activity in the processor.
o Requires full simulation.

Activity determines capacitive
charge/discharge, which determines power
consumption.

High Performance Embedded Computing 29

SimplePower simulator

Cycle-accurate simulator.
o SimpleScalar-style cycle-accurate simulator.

Transition-based power analysis.

o Estimates energy of data path, memory, and
busses on every clock cycle.

High Performance Embedded Computing 30

RTL power estimation interface

A power estimator is required for each
functional unit modeled in the simulator.
o Functional interface makes the simulator more
modular.
Power estimator takes same arguments as
the performance simulation module.

High Performance Embedded Computing 31

Switch capacitance tables

Model functional units such as ALU, register files, multiplexers,

etc.

Capture technology-dependent capacitance of the unit.

Two types of model:
o Bit-independent: each bit is independent, model is one bit wide.
o Bit-dependent: bits interact (as in adder), model must be multiple

bits.
Analytical models used for memories.
Adder model is built from sub-model for adder slice.

High Performance Embedded Computing 32

Wattch power simulator

Built on top of SimpleScalar.

Adds parameterized power models for the
functional units.

High Performance Embedded Computing 33

Array model

Analytical model:

o Decoder.

o Wordline drive.

o Bitline discharge.
0 Sense amp output.

Register file word line capacitance:

a Cgi (word line driver) + C_ (cell access) N, jines
+ Cpreta ¥ Word_line_lengt

High Performance Embedded Computing 34

Bus, function unit models

Bus model based upon length of bus,
capacitance of bus lines.

Models for ALUs, etc. based upon transition
models.

High Performance Embedded Computing 35

Clock network power model

Clock is a major power sink in modern
designs.

Major elements of the clock power model:
o Global clock lines.

o Global drivers.

o Loads on the clock network.

Must handle gated clocks.

High Performance Embedded Computing 36

Instruction Set Simulator (ISS) *

Native code execution ISS

o Target application code is compiled
for the host and executed on the host.

o Fastest
o Inaccurate ISS code
Interpretive 1SS int Reg[32];
o Slow
o Flexible and accurate while(1) {
Fetch();
original assembly code Decode();
addrl, r2,r3 : > :En)::frlljjt;or;andler()'
subr3,r4,rl |nterpretive } ’
High Performance Embedded Computing 37

Instruction Set Simulator (ISS)

Compiled ISS

o (Binary translation) translated the
target binary to the host binary

o (C intermediate code) generate the C
code from the target binary and
compile it for the host

o Fast
o Accurate

original assembly code

Add(rl, r2, r3);
addrl,r2,r3 _ > Sub(r3, r4, rl);
subr3,r4,r1 Compiled

High Performance Embedded Computing 38

Automated CPU design

Customize aspects of CPU for application:
o Instruction set.

o Memory system.

o Busses and 1/O.

Tools help design and implement custom CPUSs.
FPGAs make it easier to implement custom CPUs.

Application-specific instruction processor (ASIP) has
custom instruction set.

Configurable processor is generated by a tool set.

High Performance Embedded Computing 39

Types of customization

New instructions: operations, operands,
remove unused instructions.

Specialized pipelines.
Specialized memory hierarchy.
Busses and peripherals.

High Performance Embedded Computing 40

Techniques

Architecture optimization tools help choose
the instruction set and microarchitecture.

Configuration tools implement the
microarchitecture (and perhaps compiler).

Early example: MIMOLA analyzed programs,

created microarchitecture and instructions,
synthesized logic.

High Performance Embedded Computing

41

CPU configuration process

aaaaa s

set specification and components

High Performance Embedded Computing

42

‘ Contigurable Processors

= ARC

= Tenslica Xtensa
= ASIP Meister
= Toshiba MeP core

High Performance Embedded Computing 43
l T .]_i LXZ f . .
Instruction m
Xtensa LX2 Cache m
System Bus
N-issue FLIX (VLIW) Base ISA la—»| SDRAM
(BPID) parallel pipelines Execution Pipeline
TE | — 1 _______
= aster 5
v 2 irface | [~ 2ee A
=
g
RIL, 6/32, B
MEM, | ey | = Device B
ceu
:
TIE Queue S -
Interface - -
m— 5
Lookup . Shared
Table User-defined foommne- > | Memory
TIE Lookup m Execution Units i
Interface 1
[intorup Con_ | e
[xcapion swppont || Timerso1015 | |
ception Suppol Timers 0 to 15 XLMI I e - cop
S mmd
. Base |SA Feature . Designer-Defined Extensions
. Configurable Functions External RTL & Peripherals
[| Optional Function B temories & Caches
. Optional & Configurable 44

Conventional CPU or DSP RTL Alternative
Configurability Configure your processor to fit your applica- Choose from a menu of common, pre-optimized
tion. Get the options you want and not the data path elements like multipliers and shifters

ones you don't want

Extensibility Add application-specific instructions to accel- Add multicycle execution units, registers, regis-
erate the hot spots in your application ter files, and SIMD units to create the same data

path you would in RTL

Designer-defined | Use TIE Ports (GP10s) and Queues (FIFO Interface to other RTL blocks and processors

YO interfaces interfaces) to avoid the bottlenecks of the using direct wires and FIFOs, as you would if
system bus you were using RTL

Lower power Use application-specific extensions to create a Fine grained clock gating is automatically gener-
higher performance processor without ated by the Xtensa Processor Generator. This
increasing frequency and power leads to higher power savings than with EDA-

generated clock gating of manually written RTL
because clock nets are automatically gated off
cycle-bycycle under program flow execution. No

risk of introducing bugs while adding clock gating

Lower Automatic pre-verified RTL generation, Only have to verify functional specification of
verification effort including control logic, by pass logic, and custom instructions and execution units.
data path elements Significantly lower verification effort than RTL
Flexibility Extending processor gives headroom to map Pr(:gram_ma_}_lilil_v of processor means that multi-
more tasks as requirements and standards ple applications can be mapped to the same SOC,
change, unlike fixed processors that rely on software can be updated as algorithms change,
increasing frequency (MHz) to increase and bugs can be fixed post-silicon

capability

- . Spend less time optimizing software or, on Lower verification effort and easy scalability by
::9;:‘:::9 the backend, trying to increase frequency adding more task-optimized processors.

and, instead, just accelerate the application

using designer-defined instructions
. Base processor configuration is less than 20K Create optimized task engines with little or no
Smaller core area gates. Also, 24-bit ISA with 16-bit narrow area overhead for the processor

and memory area X . 3
y encodings means higher code density than

conventional RISC and DSP cores and, thus,
smaller memory area.

High Performance Embedded Computing 45

Toshiba MePcore

u Opt|mlzed for media MeP core Extension units

gtr:)ecaerfllsrllgg and Interrupt Timer/ “"" Control bus

controller counter I
application

Debug Optional Y
instructions .
= MeP core + ‘_—I — | Hardware
Extension units Processor core engine

DSP unit
= UCl unit (1 cycle) ‘

i . Bus I cache D cache i
» DSP unit (mu|t|- interface | instruction | data
unit RAM RAM

cycle)
= Co-processor ‘ '
(VL IW) Local bus

= DMA controller for Global bus interface Jnatasueamer
Streaming =+ DMA controller

b

A
Y

High Performance Embedded Computing 46

1ISA EDGE

= A tool platform for embedded processor design from
Coware

= LISA 2.0 architecture description language (ADL)
= Employs the CoSy system from ACE on compiler side.

= CGD (code generator description) in CoSy

o A specification of target processor resources like registers
and functional units

o A description of mapping rules, specifying how C/C++
language constructs map to a block of assembly instructions

o A scheduler table that captures instruction latencies as well
as instruction resource occupation on a cycle-by-cycle basis.

High Performance Embedded Computing 47

1ISATek EDGE

<

LISA 2.0 Description
LISATek Generators

Exploration Implementation
e
Assembler
Simulater
Evaluation Results Evaluation Results
— Profiling Data, Chip Size, Clock Speed, [
Execution Speed Power Consumpticn
Figure 2. LISATek EDGE based ASIP design

flow

High Performance Embedded Computing 48

CoSy

Requires a CGD as well as some further information like
function calling conventions, or the C data type sizes and
memory alignment.

LISA based C compiler generator can be coarsely viewed
as a LISA-to-CGD translator.

This translation is difficult because of the semantic gap
between the compiler’s high-level model of the target
machine and the detailed ADL model that captures cycle
and bit-true behavior of the machine operation.

High Performance Embedded Computing 49

LISATek EDGE

C front=end
engine

optimizations

architecture
specific

backend engines
generated by CoSy
from CGD spec

Selector
Allocator

Scheduler

Figure 3. Generated CoSy compiler structure

High Performance Embedded Computing 50

LISA language

RESOURCE {
PROGRAM_COUNTER int PC;
REGISTER signed int R[0..7];
DATA_MEMORY signed int RAM[0..255];
PROGRAM_MEMORY unsigned int ROM[0..255];
PIPELINE ppu_pipe = {FI; ID; EX; WB};
PIPELINE_REGISTER IN ppu_pipe {

IE

bit[6] Opcode; short operandA; short operandB;

}

Memory model

RESOURCE {
REGISTER unsigned int R([0..7])6;
DATA_MEMORY signed int RAM([0..15]);

OPERATION NEG_RM {
BEHAVIOR USES (IN R[] OUT RAM[];) {
RAM[address] = (—1) * R[index];

}

Resource model

OPERATION COMPARE_IMM {
DECLARE { LABEL index; GROUP src1, dest = {register}; }
CODING {0b10011 index = 0Obx[5] srcl dest }
SYNTAX { "CMP" src1—"," index—"," dest }
SEMANTICS { CMP (dest,src1,index) }

}

OPERATION register {
DECLARE { LABEL index; }
CODING { index = Obx[4] }
EXPRESSION { R[index] }

}

Instruction set model

OPERATION ADD {
DECLARE { GROUP src1, src2, dest = {register}; }
CODING { 0b10010 src1 src2 dest }
BEHAVIOR { dest = src1 + src2; saturate(&dest); }
I

Behavioral model

[Hof01] © 2001 IEEE

High Performance Embedded Computing 51
Synthesis driven by:

1. Architectural parameters such as number of pipeline

stages.

2. Declaration of function units.

3. Instruction format definitions.

4. Interrupt conditions and timing.

5. Micro-operations for instructions and interrupts.
Generates both simulation and synthesis models in
VHDL.

| [1| |
Fu Fu [Crrl
A single pipeline stage
——) —
High Performance Embedded Computing 52

Instruction set synthesis

Generate a set of
candidate instructions
from application
program, other
reguirements.

Sun et al. analyzed
design space for simple
BYTESWAP() program.

1 1 L 1 L 1 L 1 L
0 50 100 150 200 250 300 350 400 450 500
Candidate custom instruction

[Sun04] © 2004 IEEE

High Performance Embedded Computing 53

Holmer and Despain

Viewing instruction set design as an optimization
problem

1% rule---don’t add instruction unless it improves
performance by 1%.

Objective function (C = # cycles, | = # instruction

types, S = # instructions in program):

o 100 In C + | : optimizing execution time

o0 100InC +201In S + | : optimizing execution time and code
Slze

They used microcode compaction algorithms to find

instructions.

High Performance Embedded Computing 54

