Chapter 3-1: Programs

Soo-lk Chae

High Performance Embedded Computing

Topics

Code generation and back-end compilation.
Memory-oriented software optimizations.

High Performance Embedded Computing

Embedded vs. general-purpose compilers

General-purpose compilers must generate
code for a wide range of programs:

o No real-time requirements.

o Often no explicit low-power requirements.

o Generally want fast compilation times.

Embedded compilers must meet real-time,
low-power requirements.

o May be willing to wait longer for compilation
results.

High Performance Embedded Computing

What is a compiler?

Target
Program

Source
Program

Error
Message

What is an interpreter?

o A program that reads an executable program
and produces the results of executing that
program

High Performance Embedded Computing

Traditional Two-pass Compiler

Machine

Source
code

= Use an intermediate representation (IR)
= Front end maps source code into IR
= Back end maps IR into target machine code

High Performance Embedded Computing

Intermediate code generation

= It represents a program for an abstract machine.

= An intermediate representation of the source code
program is generated after semantic analysis.

= Three-address code representation is common, in which
all memory locations are treated as registers.

High Performance Embedded Computing

‘ The Back End

ERECIRECIREET

Translate IR into target machine code

Machine
code

Select instructions to implement each IR operation

a
a
o Decide which values are kept in registers
Q

Automation is less successful in the back end

High Performance Embedded Computing

Code generation steps

= Instruction selection chooses
opcodes, modes.
o To minimize code size and execution time
o A pattern matching problem

= Register allocation binds values to
registers.

o Performed strictly after instruction
selection in a general-register machine.

o Many DSPs and ASIPs have irregular
register sets.

o Optimal allocation is NP-complete

Abstract
instructions

Instruction
selection

Y

Register
allocation

v

Address
generation

1

Instruction

scheduling

Assembly
code

High Performance Embedded Computing

Code generation steps

Address generation selects

addressing mode, registers, etc. instucton
o Post- or pre-increment addressing for 7

stacks Register
Instruction scheduling is important for ”+
pipelining and parallelism. Address
o Avoid hardware stalls and interlock g+t
o Use all functional units maximally nstruction
o Optimal scheduling is NP-complete i
o Filling branch delay slots
o VLIW instruction packet =

High Performance Embedded Computing 9

twig model for instruction selection

twig models instructions,
programs as graphs.

Covers program graph Date o
with template matching generation Instruction

of instruction graph. selection

o Covering can be driven

Data flow
graph
by costs.
. Instruction Template Cost
o Use of annotations, such templates matching objectives
as execution time or Y

energy consumption
code

High Performance Embedded Computing 10

twig instruction models

Rewriting rule:

o Replacement <- template {cost} = action
Dynamic programming can be used to cover
program with instructions for tree-structured
instructions.

o Must use heuristics for more general instructions.

reg; __‘_ reg; 4—
INC reg; ADD reg; reg;
High Performance Embedded Computing 11

Register lifetimes

Variable liveness

V1 and v3 can be
assigned to the same
registers; similarly, v2
and v4 can be assigned
to the same register.

They are never live at =

v <=vl + 1;
H v3 <=v2 —i2;
the same time.
Code Variable-to-register
mapping

High Performance Embedded Computing 12

‘ Register lifetimes

X1 X2 X3 x4 x5 x6 a7

1<
¥2 =
%3 <
x4 <m x1 + d;
x5 == x3 + x2;

o,

Control steps Variable lifetime c| hart

High Performance Embedded Computing 13

Conflict oraph and Clique covering

= Cliques in graph
describe registers. °

o Clique: every pair of
vertices is connected by °

an edge.
= Cliques should be
maximal.

= Clique covering
performed by graph
coloring heuristics.

High Performance Embedded Computing 14

Code placement

.. . @ relative addresses
Place code to minimize cache code
conflicts. Y

Code
2 Two memory blocks can be placement
mapped into a cache line.

Possible cache conflicts may
be determined using absolute code
Linker

absolute addresses

addresses

May require blank (unused)
areas in program. v

High Performance Embedded Computing 15

Linker and Loader

The linker put together several independently compiled
parts into a complete program.

The loader takes relocatable machine code and alter the
addresses, putting the instructions and data in a
particular location in memory.

High Performance Embedded Computing 16

Hwu and Chang

Analyzed traces to find relative execution times.

Inline expanded frequently used subroutines to eliminate
function call overhead.

Placed frequently-used traces in the program image by
using greedy algorithm.

High Performance Embedded Computing 17

McFarling procedure inlining

Estimated number of cache
misses in a loop:

u]

Q

a

Q

s, = effective loop body size.
S, = basic block size.

f = average instruction
execution frequency of block.

M, = number of misses per loop
instance.

| = average number of loop
iterations.

S = cache size.

Estimated new cache miss rate
for inlining;

Used greedy algorithm to
select functions to inline.

-
~
|

= Zsbmin(l,f) ,

M; = max(0, /- 1)max(0, s;—-S),

High Performance Embedded Computing 18

Pettis and Hansen

Profiled programs using gprof.

Put caller and callee close together in the program,
increasing the chance they would be on the same

page.

Ordered procedures using call graph, weighted by
number of invocations, merging highly-weighted

edges.

Rearranged if-then-else code to take advantage of
the processor’s branch prediction mechanism.

Identified basic blocks that were not executed by
given input data; moved to separate processes to
Improve cache behavior.

High Performance Embedded Computing

19

FlexWare ASIP programming environment

N
SystemC
functional
models Hardware
software

cosimulation

FlexPerl
performance
analysis

|

SystemC -t
cycle-based
models

Verilog/VHDL
RTL models

i

(a)

o
:

v FlexCF? Processor
e N\ compiler targeting
| Object codeJIf- Assembler files
Y debugger
Functional
processor model
- J
| lexSi Instruction
Compare ¥ FlexSim Description
HDL RTL model Language
processor model generator

(b)

(c)

[Pau02] © 2002 IEEE

High Performance Embedded Computing

20

Memory-oriented optimizations *

Memory is a key bottleneck in many embedded systems.
o Performance

o Energy

Memory usage can be optimized at any level of the
memory hierarchy.

o Various techniques have been developed

o Recently, optimization for scratch pad memory is developed
Optimization can target data or instructions.

Global flow analysis can be particularly useful.
o Most of embedded systems are composed of many subsystems.
o Buffers between the subsystems must be carefully sized.

High Performance Embedded Computing 21

Loop transtformations

Some optimization are applied early during

compilation without detailed knowledge of the

target hardware.

o Try to expose parallelism that can be used by later
stages.

Loop-carried dependency

for (i=0; i<N; i+ +) for (i=1; i<N; i++)
c[i] = a[i] + b[i]; c[i] = a[i] + c[i—1];
Fully parallelizable Loop-carried dependencies

High Performance Embedded Computing 22

Loop transformations

A loop nest has loops enclosed by other loops.
A perfect loop nest has no conditional statements.

An imperfect loop nest has conditional that cause
some statements in the nest to not be executed in
some cases.

for (i=0; i<N; i+ +)

for (i=0; i<N; i++) for (j=0; j<M; j++)
for (j=0; j<M; j++) if (i !=7)
for (k=0; k<L; k++) for (k=0; k<L; k++)
c[k] = a[i][i] * b[k]; c[k]=a[i][i] * b[k];
Perfect loop nest Imperfect loop nest
High Performance Embedded Computing 23

Types of loop transtormations

Loop permutation changes order of loops.
Index rewriting changes the form of the loop indexes.
Loop unrolling copies the loop body.

Loop splitting creates separate loops for operations
In the loop body.

Loop merging combines loop bodies.

Loop tiling splits a loop into a nest of loops, with
each inner loop working on a small block of data

Loop padding adds data elements to change cache
characteristics.

High Performance Embedded Computing 24

Polytope model

Commonly used to represent and manipulate the data
dependencies in loop nests.

Loop transformations can be modeled as matrix

operations:

for (i=0; i<N; i++)
for (j=0; j<i; j++)
c[i]G+1] = c[i][] * b[L:

Loop nest

]

Loop nest matrix

High Performance

1

~ Data
dependency
~ Polytope
Data — » @
element

Embedded Computing 25

Loop permutation

for (j=0; j<M; j++)
for (i=0; i<N; i++)
x[i]1G] = a[ilG] * bOI:
Original loop nest

for (i=0; i<N; i+ +)
x[i] = a[i] * b[i];

for (i=0; i<N; i++)
y[i] =ali] * c[i];

Original loops

High Performance

and fusion

for (i=0; i<N; i++)
for (j=0; j<M; j++)
x[1](] = ali](3] * b{;

After loop permutation

for (i=0; i<N; i++)
for (j=0; j<M)j+ +)
x[i10] = ali](] * b[];
After loop fusion

Embedded Computing 26

Loop tusion

fori=0, N
Ali,0]=C[i-2.1];
Ali,1]=C[i-2.2];
B[i,0]=A[i,0]+A[i,1]+C[i-1,0]:

for i=0, N .
for j=0 -
for j=0,M or Ji[', ‘E]%C[' 2.4+3]
Alij]=C[i-2,j+1]; DL TS
endf.!.l;ﬂ 2l Bli,j+1]=A[Lj+2]+A[Lj+1]+C[i-1.j+1];
for j=0, M CLj=BLjl+A[Lj+1]+A[ij+2]:
B[i,j]=A[Lj+1]+A[Lj]+Cli-Lj]: endfor
;‘;lldlfg:] . B[i,M]=A[i,M]+A[i,M+1]+C[i~1,M]:
ol e AT s . C[i,M—1]=B[i, M—1]+A[i,M]+A[i,M+1];
C[ij]=B[iL.j]+A[L,j+2]+A[Lj+1]: AT AL A T At A
endfor C[i,M]=B[L,M]+A[i,M+1]+A[i.M+2];
endfor endfor
(a) The original loop with fusion- (b) The fused loop after transforma-
prevention dependencies. tion.

High Performance Embedded Computing

27

Kandemir et al. loop energy experiments
ABSTRACT

High-level compiler optimizations havebeen widely used
to achiev e speedups on arrg-based codes. Suc h optimiza-
tions are becoming increasingly important in embedded sig-
nal processing and multimedia systems. The focus of these
optimizations has traditionally been on improving perfor-
mance. Ho w everenergy constraints are of critical impor-
tance in battery-operated embedded devices. In this paper,
w e presen t an experimental evaluation of several state-of-
the-art compiler optimizations on cnergy consumption, con-
sidering both the processor core (datapath) and memory
system. This is in contrast to many of the previous works
that ha ve considered them in isolation.

[Program | Array Sizes | Miss Rate | Optimizations |
adi 100%100%2 0.0979 | linear transforms, tiling
hydro2d/fct 52%52 0.0962 | loop fusion

nasa7/btrix 100*100*100*5 0.2063 | loop fusion
nasa’7/cholesky 52%52 0.1109 | loop fission

tomcatv 100*100 0.2403 | scalar expansion

Table 1: Programs used in the experiments.

High Performance Embedded Computing

28

Kandemir et al. loop energy experiments

A C source benchmark is compiled by the SimpleScalar ver-
sion of gcc, which generates SimpleScalar assembly codes.
The SimpleScalar assembler gas and loader/linker gld pro-
duce SimplePower executables that can then be loaded into
SimplePower main memory and executed by SimplePower
core. In our study, we enhanced a source-to-source optimizer
[4] to perform the various code transformation investigated.
The simulator can be configured using the command line to
set the caches parameters, output the pipeline trace cycle-
by-cycle, and dump the memory image. SimplePower pro-
vides the register file final status, total number of cycles in
execution, number of transitions in on-chip buses, switch
capacitance statistics for each pipeline stage, switch capac-
itance statistics for different functional units, and the total
switch capacitance.

High Performance Embedded Computing

29

Kandemir et al. loop energy experiments

In adi, the linear loop optimizations interchanged the or-
der of two loops in the main nest in an attempt to obtain
stride-one accesses in the innermost loop, thereby improv-
ing spatial locality. (The original version is denoted by orig
and the tiled version is denoted by tile). When we enable
tiling, the compiler tiled thP innermost 1002 and hoisted the
tile loop (i.e. ' iles) to the outer-
most position. I\o’re th'lf in order to run this code stand-
Med a two-deep initialization nest (i.e., a nest
that contains two nested loops). The linear transformation
permuted this nest whereas tiling did not modify it due to
its relatively small contribution to the overall performance.

High Performance Embedded Computing

30

Kandemir et al. loop energy experiments

Core Memory Energy
Energy (J)
(J) b 1-way 2-way 4-way B-way

1K | 0.1604 | 0.0915 | 0.0794 | 0.0772
2K | 0.1159 | 0.0789 | 0.0756 | 0.0757

orig 0.0043 4K | 0.1000 | 0.0763 | 0.0759 | 0.0760
8K | 0.0730 | 0.0681 | 0.0742 [0.0766

1K | 0.1418 | 0.0630 | 0.0526 | 0.0468
2K | 0.0844 | 0.0493 | 0.0435 | 0.0436
loop 0.0054 4K | 0.0609 | 0.0441 | 0.0439 | 0.0440
8K | 0.0378 | 0.0283 | 0.0231 [0.0251

1K | 0.1404 | 0.0731 | 0.0728 | 0.0688

2K 0.0942 0.0646 | 0.0674 0.0689
tile 0.0052 4K 0.0550 0.0426 1 0.0465 0.0457

8K | 0.0345 | 0.0228 | 0.0220 | 0.0221

Table 2: Energy consumption in adi.

High Performance Embedded Computing 31

Kandemir et al. loop energy experiments

In the adi code, the number of memory accesses per com-
putation is very high. This is because the it accesses three-
dimensional arrays using two-deep loop nests. Consequently,
as shown in Table 2, the core power is very low compared to
memory power for all cache configurations. An optimizing

COATYITY I‘ID‘I"" O T l"‘lﬂ TrOTr "'Iﬁ'ﬁ"l"ﬂ C.‘1 T Iﬂ paTh a't 1 ‘.I‘I"'II’T nnton +1""|1 ﬂﬂ+l=
\.\.JJ.ut.’l.J.\.L LoCLLL RN \'\.J..J' bﬁl\. '?I.'.l].\\. Liy (J.-l.’l.fJ.J 1116 t.’\.ll\.ALUJ(.I_I. \.JlJlL

mizations such as tiling, if it can detect that the number
of memory references per computation is very high. How-
ever, we note that applying tiling increases the core energy
consumption.

High Performance Embedded Computing 32

Kandemir et al. loop energy experiments

In nasa7/btrix, in order to isolate the impact of loop fusion,
we disabled other loop optimizations, and experimented with
only original (orig) and fused (fuss) versions. When fusion
is activated, the compiler fused two large one-dimensional
(one-deep) loop nests into a very large loop. This example
gives us the opportunity for observing the impact of loop
fusion (in its extreme, when the resulting loop body gets
very large and the chances for intra- and inter-array conflict
misses in the data cache increase greatly) on power dissi-
pation. In hydro2d/fct, we again measured the impact of
fusion on power consumption using the original (orig) and
the fused (fuss) versions. This time the compiler fused both
initialization nests (three of them) as well as two main loop
nests (each two-deep). In comparison to nasa7/btrix, the
resulting loop bodies are not very large.

High Performance Embedded Computing

33

Kandemir et al. loop energy experiments

Core Memory Energy
Energy (J)
(J) + | l-way | Z2-way | 4-way [B-way

1K | 8.4840 | 3.9372 [2.8179 | 2.9734
2K | 3.3221 | 2.3311 | 1.3897 | 1.2614
orig 0.1565 4K | 1.6816 | 1.3939 | 1.1123 | 1.1155
3K 1.3291 0.9573 0.5942 0.8752

1K | 9.4086 | 4.4788 [3.1901 | 3.2580
2K | 3.9100 | 2.5048 | 1.44689——=2732
fuss 0.1748 4K | 1.8087 | 1.4712 [1.1003 | 1.1033
8K | 1.3887 | 0.9480 NO.8852 | 0.8652

Table 3: Energy consumption in nasa7/btrix.

High Performance Embedded Computing

34

Kandemir et al. loop energy experiments

Clore Memory Energy
Energy (1)
(J) 47| L-way | 2-way | 4-way | 8-way

1K | 0.0290 | 0.0117 | 0.0079 | 0.0079
2K | 0.0130 | 0.0069 | 0.0060 | 0.0054
orig 0.0008 4K | 0.0086 | 0.0055 | 0.0054 | 0.0054
8K | 0.0066 | 0.0055 | 0.0055 | 0.0053

1K | 0.0277 | 0.0102 | 0.0073 | 0.0068
2K | 0.0095 | 0.0074 | 0.0061 | 0.0063
fuss 0.0006 4K | 0.0069 | 0.0050 | 0.0050 | 0.0050
8K | 0.0057 | 0.0050 | 0.0050 | 0.0050

Table 4: Energy consumption in hydro2d/fct.

High Performance Embedded Computing

Kandemir et al. loop energy experiments

In the next two examples, we evaluated the impact of loop
fusion on core and memory system energy consumption. In
nasa7/btrix, the loop fusion interferes with loop schedul-
ing as the loop body becomes very large. This increases
the core power (by 12%) as well as memory power (due to
poor scheduling of memory operations) as shown in Table 3.
Unfortunately, scalar replacement could not eliminate the
large number of memory references. On the other hand, if
the cache size is large or the associativity is high, scheduling
memory operations becomes less critical (unless the cache is
direct-mapped, in which case poor scheduling induces more
conflict misses). For example, for a 4K, 4-way set associative
cache, the fused version is marginally better than the origi-
nal. In the hydro2d/fct case, the same optimization is more
successful from the energy point of view (see Table 4). It
nnnnnnnn

by as much as 25%. The reduction in the memory power
comes from reductions in the number of memory references
rather than from hit/miss rate variations. Overall, we be-
lieve that, if applied judiciously, the loop fusion can reduce
both the core and memory system power.

High Performance Embedded Computing

Catthoor et al. methodology

It is for streaming systems such as multi-media

a

Memory-oriented data flow analysis and model extraction,
which analyzes loops to identify memory requirements.

Global data flow transformations to improve memory
utilization.

Global loop and control flow optimizations to eliminate
system-level buffers and improve data locality

Data reuse decisions for memory hierarchy exploits caches
to reduce energy consumption and improve performance

Memory organization designs the memory systems and its
ports

In-place optimization use low-level techniques to reduce
storage requirements

High Performance Embedded Computing 37

Buffers

Buffers mediate between subsystems
Producers: subsystems that generate data
Consumers: subsystems that consume data

Buffers make sure that all data are delivered form the
producer to the consumer

The buffers must be sized properly

High Performance Embedded Computing 38

Butter management

Excessive dynamic memory Before:
management wastes cycles, for (i=0; i<N; ++i)
energy with no functional for (j=0; j<N-L; ++j)
improvements. b[il[i] 0
IMEC: analyze code to for (i=0; i<N: +-+i)
understand data transfer for (j’:o' j1<N-L' ++j)

requirements, balance

concerns across program. for (k=0; k<L; ++k)

Panda et al.: loop biji] = afilii+k];
transformations can After:
improve buffer utilization. for (i=0; i<N; ++i)
o Reuse b more easily for (j=0; j<N-L; ++))
o Easier for pre-fetching b[i](] = O;
k=0; k<L; ++k)

closer b[il[] = a[i]i+k];

High Performance Embedded Computing

39

Cache optimizations

Strategies:

o (Improve hit rate) rearrange data to reduce the
number of conflicts.

0 rearrange data to take advantage of prefetching.

Need:

o Load map.
o Information on access frequencies.

High Performance Embedded Computing

40

' Cache data placement

= Panda & Dutt: rearrange data to reduce cache
conflicts. It is for scalar variables.

1. Build a closeness graph for accesses by using the
access patterns of the variables.

2. Cluster variables into cache-line sized units.
3. Build a cluster interference graph.
4. Use interference graph to optimize placement.

High Performance Embedded Computing 41

Problem Description

N N N

afif bli] cfi] int a[N], b[N], c[N]
for i =0 to N-1
all|bl|c C o[i] = ali] + bl
end for
Data Cache
On-Chip
Process Instruction

Synthesize On-Chip D.ata Memory
d Scratch-Pad
HW Memory

High Performance Embedded Computing 42

Memory Data Organization of Scalar Variables

Assumption
o scheduling and register allocation already performed
o sequence of accesses to variables is fixed

Steps

o Build Closeness Graph

Group the variables into clusters of L words (L: cache line size)
Build a Cluster Interference Graph (CIG)

Assign memory locations to clusters

O O O

High Performance Embedded Computing 43

Memory Organization of Scalar Variables

Generate an Access Sequence

loop bound

distance(u, v) = number of distinct variable nodes encountered on a path
fromuto v, or v to u (including u and v)

High Performance Embedded Computing 44

Memory Organization of Scalar Variables

= Construct a Closeness Graph of the variables

Closeness Graph for loop bound = 3

High Performance Embedded Computing 45

Grouping of Variables into Clusters

Procedure PeformClustering

Input: CG(V, E) - Closeness Graph; L - Cache Line Size
Output: Set F - Set of clusters of size L
for each vertexuin V

Find the sum of incident edge weights S(u) = 2" ,,_,, e(u,v)
end for

Let X = vertex set V.
while (X # ¢) do
Let u = vertex v e X with maximum S(v)
Create new cluster C = {u}
while (size of cluster C= L) and (X = ¢) do
Let x be the variable € X with maximum value for T,
where T =2, _¢ ycxc €(u,v) --i.e., xis the variable with maximum sum

C=Cu{x}y X=X-{x} -- of edge weights with nodes already in C
end while
Sete(u,v)=0 V(ueC)or(veC)
-- i.e., delete all edges connecting to vertices in cluster C just formed
Update S(v) ' (ve X)
end while
end Procedure

High Performance Embedded Computing 46

Cluster Interterence Graph (CIG)

= Procedure for generating the CIG

Procedure BuildCIG

Input: A - Variable Access Sequence; F - Set of Clusters
Output: CIG - Cluster Interference Graph

Convert the Variable Access Sequence A into a Cluster Access Sequence
by renaming each node u in the sequence by the cluster C, where ue C.

Create a node in CIG for each cluster in F.

Assign edge weight e(u,v) between nodes u and v = the number of times
the access to cluster u and v alternate along the execution path.

end Procedure

High Performance Embedded Computing 47

Cluster Interference Graph (CIG)

Variable
Access
Sequence

Cluster

Access W@
Sequence

\ Cluster Interference

Graph

1

High Performance Embedded Computing 48

Memory Location Assignment

The cost of a memory assignment :
MemAssignCost(CIG) = Ze(x,y) xP(x,y)

x,yel(CIG)

where e(Xx,y) is the edge weight, and

P(x,y) = 1 if memory locations for x and y map into the same cache line
0 otherwise

In order to minimize conflict misses, we need to

solve the following Cluster Assignment problem:

o Find an assignment of clusters in a CIG to memory locations,
such that MemAssignCost (CIG) is minimized.

High Performance Embedded Computing 49

Memory Location Assignhment

0 a
1 b
2 C
3 d
C 4 e
5 f
1\1 3 6 Cache
f 7
e
4 Memory
(a) CIG (b) Memory Assignment
Conflicting
Pairs Cost
a, e 1
b, f 3

Total Cost=1+3=4
(c) Cost Assignment

High Performance Embedded Computing 50

Memory Location Assignment

0 f
1 c
2 e
3 b
C 4 d
1 > 2
1 3 6 Cache
7
s 4 f Memory
(@) CIG (b) Memory Assignment

S(f) = 15, S(c) = 9, S(e) = 9, S(b) = 8,S(d) = 5, S(a) =5

High Performance Embedded Computing

51

Memory Location Assighment

L (b
1/ 3\ 2 0 f
1 1 C
3
1 1 % 4 d
5 a
e f 6 Cache
4 7
(a) CIG
Memory
Conflicting _
Pairs Cost (b) Memory Assignment
];’ i i cost(a,0) =2 cost(d,0) =1
’ cost(a,1) =1 cost(d,1) =1
Total Cost=1+1=2 cost(a,2) =1 cost(d,2) =1
cost(a,3) =1 cost(d,3) =1

(c) Cost Assignment

High Performance Embedded Computing

52

Memory Location Assighment

- Procedure for assigning clusters to memory locations

Procedure AssignClusters
Input: CIG(V,E) - Cluster Interference Graph
Output: Assignment of Clusters to Memory Locations

-- S(u) is the sum of edge weights incident on vertex u
Let X be this sorted list of vertices
while (X = ¢) do
Create new page P in memory
while (size of page P <k) and (X = ¢) do
u = head of list X
Assign u to line i of page P, where cost(u, i) is minimum

over i=0 ... k-1
Delete u from X
end while
end while

end Procedure

High Performance Embedded Computing

53

Memory Organization for Array Variables

Objective
o Minimizing data cache conflict misses

o The problem of clustering of variables to avoid compulsory
misses is not relevant.

Steps
o Constructing the Interference Graph
o Memory Assignment to Array Variables

High Performance Embedded Computing

54

Constructing the Interference Graph

If two arrays A and B are accessed repeatedly within a
loop, then there is a possibility that accesses to A and B
might cause conflict misses in the data cache.

Procedure for building Interference Graph for arrays

Procedure BuildArraylG
Input: Code with array accesses
Output: Interference Graph IG of arrays

Create a node u for every array u in the code
Initialize edge weights e(u,v) = 0 for all u, v
for all (innermost) loops | in the code do
Let L be the loop bound of loop |
Let X = set of all arrays accessed in |
Update e(u, v) =e(u,v) + Lforallu,v € X
end for
end Procedure

High Performance Embedded Computing 55

Memory Assignment to Array Variables

Interference Graph: edge weights contributed by loop

bounds
______ , 8+16
int a[16], b[16], C[L6] .=~ . L .
f :Ot 7 24
> Ia[i] 2 b[i+3] +.3" I 5

Two memory locations X and Y will map into the same cache line in a direct-
mapped cache with k lines (L words per line), if

&%J{%D modk=0 ie., (nk-1)< XEY <(nk+1) (4.1)

High Performance Embedded Computing 56

Memory Assignment to Array Variables

A B
int A[16], B[16]; i i
for i:Q to 12_ _ i+1 i+1
Ali] = Ali+2] + A[i+3] i+2 i+2
+Bi+1] + Bli+2l: 43 3
| A I 1 conflict
0 16
I A [- | conflict
0 17
I A [R | conflict
0 18
I A I T | No Conflict
0 22
B A
k1) < XY c(nk +1) (4 -1) <22+ +411)‘(' *3) (an +1)
k=4,L=4 Worst case
High Performance Embedded Computing 57

Memory Assignment to Array Variables
A B

int A[16], B[16]; i i

for i=0 to 12 i+1 i+1
Ali] = Ali+2] + Afi+3] i+2 i+2
+ B[i+1] + B[i+2]; i+3 i+3
A R | No Conflict
0 22
A [T] B
el < > < > < >
0 0 1 2
[1] B
—— G— < > < > < >
N
Al G—l < > ¢ > < >
<T><T> > < 2 > <

High Performance Embedded Computing 58

Memory Assignment to Array Variables
= Cost function for expected number of conflicts

Function AssignmentCost

Input: u - array under test; A - proposed start address; Access Sequence;
Array assignment already completed; IG - Interference Graph

Returns: Expected number of cache conflicts for this assignment

Initialize cost =0
for all v, | e(v, ,u) # 0, v, already assigned
-- i.e., all assigned arrays that have an edge with u in IG
for each loop (bound L) in which accesses to v, and u occur
w = no. of times control alternates between elements of v, and u
that map into the same cache line, using Condition (4.1)
cost=cost+w*L --w = 0 if there is no conflict
end for
end for
return cost
end Function

High Performance Embedded Computing 59

Memory Assignment to Array Variables

= Procedure for assigning addresses to arrays

Procedure AssignArrayAddresses

Input: IG - Interference Graph; k - number of cache lines

Output: Assignment of addresses to all arrays (nodes in IG)
AddressA=0
Sort nodes in IG in decreasing order of S(u) (sum of incident edge weights)
Let the list of nodes be: v, ...v,;

fori=0..n-1
Initialize cost ¢ = «
min =0 -- keeps track of cache line with minimum mapping cost
forj=0...k-1

if AssignmentCost(v; , A+j) < c then
¢ = AssignmentCost(v;, A+j)

min = j
end if
end for
Assign address (A+min) to first element of v;
A=A+ min + arraysize(v,) -- updating A for next iteration
end for

end Procedure

High Performance Embedded Computing 60

Memory Assignment to Array Variables

= This cost is equal to the expected number of cache

conflicts with all arrays that have already been
assigned.

= If the conflict condition does not resolve to a constant,
then we conclude that the two arrays do not conflict.

High Performance Embedded Computing 61

Scratch Pad Memory

(b}

Figure 1. (a) Block Diagram of Embedded Processor
Configuration (b) Division of Data Address Space be-
tween SRAM and DRAM

High Performance Embedded Computing 62

Scratch Pad Memory

The accesses to Hist are data-dependent

char BrightnessLevel [512][512];
int Hist [256]; /* Elements initialized to 0 */

for G =02 < Nii+ +)
for (=05 <Nij++)
/* For each pixel (1, j) in image */
level = BrightnessLevel [i][j];
Hist [level] = Hist [level] + 1;

High Performance Embedded Computing

63

