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Topicsp

Code generation and back-end compilation.

Memory-oriented software optimizations.y p
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Embedded vs. general-purpose compilersg p p p

General-purpose compilers must generate 
code for a wide range of programs:

No real-time requirements.

Often no explicit low-power requirements.Often no explicit low power requirements.

Generally want fast compilation times.

Embedded compilers must meet real timeEmbedded compilers must meet real-time, 
low-power requirements.

May be willing to wait longer for compilation 
results.
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What is a compiler?p

Compiler
Source
Program

Target
Program

ErrorError
Message

What is an interpreter?        
A program that reads an executable programA program that reads an executable program 
and produces the results of executing that 
program
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Traditional Two-pass Compilerp p

Machine
Source
code Front

End

Machine
code

Back
End

IR

Use an intermediate representation (IR)Use an intermediate representation (IR)

Front end maps source code into IRFront end maps source code into IR

Back end maps IR into target machine codeBack end maps IR into target machine code
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Intermediate code generationg

It represents a program for an abstract machineIt represents a program for an abstract machine.

An intermediate representation of the source codeAn intermediate representation of the source code 
program is generated after semantic analysis.

Three-address code representation is common, in which 
all memory locations are treated as registers.
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The Back End

IR RegisterInstruction

Machine
codeInstructiong

AllocationSelection Scheduling

Translate IR into target machine code

Select instructions to implement each IR operation

Decide which values are kept in registers

Automation is less successful in the back end
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Code generation stepsg p

Instruction selection chooses 
opcodes, modes.

To minimize code size and execution time

A pattern matching problem

Register allocation binds values to 
i tregisters.

Performed strictly after instruction 
l ti i l i t hiselection in a general-register machine.

Many DSPs and ASIPs have irregular 
register setsregister sets.

Optimal allocation is NP-complete
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Code generation stepsg p

Address generation selects 
addressing mode, registers, etc.

Post- or pre-increment addressing for 
stacks

Instruction scheduling is important forInstruction scheduling is important for 
pipelining and parallelism.

Avoid hardware stalls and interlockAvoid hardware stalls and interlock

Use all functional units maximally

Optimal scheduling is NP-completeOptimal scheduling is NP complete

Filling branch delay slots

VLIW instruction packet
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p

twig model for instruction selectiong

twig models instructions, 
programs as graphs.

Covers program graph 
with template matching 

f i t ti h
Instruction 
selectionof instruction graph.

Covering can be driven 
by costs

selection

by costs.

Use of annotations, such 
as execution time or 
energy consumption
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twig instruction modelsg

R iti lRewriting rule:
Replacement <- template {cost} = action

D i i b d tDynamic programming can be used to cover 
program with instructions for tree-structured 
instructionsinstructions.

Must use heuristics for more general instructions.
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Register lifetimesg

Variable liveness

V1 and v3 can be 
assigned to the same 
registers; similarly, v2 

d 4 b i dand v4 can be assigned 
to the same register.

Th li tThey are never live at 
the same time.
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Register lifetimesg
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Conflict graph and Clique coveringg p q g

Cliques in graph 
describe registers.

Clique: every pair of 
vertices is connected by 
an edge.an edge.

Cliques should be 
maximal.maximal.

Clique covering 
performed by graphperformed by graph 
coloring heuristics.
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Code placementp

relative addresses

Place code to minimize cache 
conflicts.

relative addresses

Two memory blocks can be 
mapped into a cache line.

Possible cache conflicts mayPossible cache conflicts may 
be determined using absolute 
addresses

absolute addresses

addresses

May require blank (unused) 
areas in programareas in program.
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Linker and Loader 

The linker put together several independently compiled 
parts into a complete program.

The loader takes relocatable machine code and alter the 
addresses, putting the instructions and data in a 
particular location in memoryparticular location in memory.
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Hwu and Changg

Analyzed traces to find relative execution times.

Inline expanded frequently used subroutines to eliminate 
f ti ll h dfunction call overhead.

Placed frequently-used traces in the program image by 
using greedy algorithmusing greedy algorithm.

High Performance Embedded Computing 17

McFarling procedure inliningg p g

E ti t d b f hEstimated number of cache 
misses in a loop:

sl = effective loop body size.
sb = basic block size.
f = average instruction 
execution frequency of block.
Ml = number of misses per loop 
instance.
l = average number of loop 
iterationsiterations.
S = cache size.

Estimated new cache miss rate 
f i li ifor inlining; 
Used greedy algorithm to 
select functions to inline.
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Pettis and Hansen

Profiled programs sing gprofProfiled programs using gprof.
Put caller and callee close together in the program, 
increasing the chance they would be on the sameincreasing the chance they would be on the same 
page.
Ordered procedures using call graph, weighted by 

b f i ti i hi hl i ht dnumber of invocations, merging highly-weighted 
edges.
Rearranged if-then-else code to take advantage ofRearranged if then else code to take advantage of 
the processor’s branch prediction mechanism.
Identified basic blocks that were not executed by 

i i d dgiven input data; moved to separate processes to 
improve cache behavior.
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FlexWare ASIP programming environmentp g g

[Pau02] © 2002 IEEE
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Memory-oriented optimizationsy p

Memory is a key bottleneck in many embedded systems.
Performance

EnergyEnergy 

Memory usage can be optimized at any level of the 
memory hierarchymemory hierarchy.

Various techniques have been developed

Recently, optimization for scratch pad memory is developed

Optimization can target data or instructions.

Global flow analysis can be particularly useful.y p y
Most of embedded systems are composed of many subsystems.

Buffers between the subsystems must be carefully sized.
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Loop transformationsp

Some optimization are applied early during 
compilation without detailed knowledge of the 
t t h dtarget hardware.

Try to expose parallelism that can be used by later 
stagesstages.

Loop-carried dependency
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Loop transformationsp

A l t h l l d b th lA loop nest has loops enclosed by other loops.
A perfect loop nest has no conditional statements.
A i f t l t h diti l th tAn imperfect loop nest has conditional that cause 
some statements in the nest to not be executed in 
some casessome cases.
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Types of loop transformationsyp p

L t ti h d f lLoop permutation changes order of loops.
Index rewriting changes the form of the loop indexes.
L lli i th l b dLoop unrolling copies the loop body.
Loop splitting creates separate loops for operations 
in the loop bodyin the loop body.
Loop merging combines loop bodies.
L tili lit l i t t f l ithLoop tiling splits a loop into a nest of loops, with 
each  inner loop working on a small block of data
Loop padding adds data elements to change cacheLoop padding adds data elements to change cache 
characteristics.
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Polytope modely p

Commonly used to represent and manipulate the data 
d d i i ldependencies in loop nests.
Loop transformations can be modeled as matrix 
operations:operations:

jj

i
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Loop permutation and fusionp p

?
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Loop fusionp

M-2M 2
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Kandemir et al. loop energy experimentsp gy p
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Kandemir et al. loop energy experimentsp gy p
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Kandemir et al. loop energy experimentsp gy p
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Kandemir et al. loop energy experimentsp gy p
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Kandemir et al. loop energy experimentsp gy p

High Performance Embedded Computing 32



Kandemir et al. loop energy experimentsp gy p

High Performance Embedded Computing 33

Kandemir et al. loop energy experimentsp gy p
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Kandemir et al. loop energy experimentsp gy p
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Kandemir et al. loop energy experiments
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Catthoor et al. methodologygy

It is for streaming systems such as multi-media
Memory-oriented data flow analysis and model extraction, 
which analyzes loops to identify memory requirements.

Gl b l d t fl t f ti t iGlobal data flow transformations to improve memory 
utilization.

Global loop and control flow optimizations to eliminateGlobal loop and control flow optimizations to eliminate 
system-level buffers and improve data locality

Data reuse decisions for memory hierarchy exploits caches 
to reduce energy consumption and improve performance

Memory organization designs the memory systems and its 
portsports

In-place optimization use low-level techniques to reduce 
storage requirements
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storage requirements

Buffers

Buffers mediate between subsystemsBuffers mediate between subsystems
Producers: subsystems that generate data
Consumers: subsystems that consume dataConsumers: subsystems that consume data
Buffers make sure that all data are delivered form the 
producer to the consumer
Th b ff t b i d lThe buffers must be sized properly
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Buffer managementg

Excessive dynamic memory Before:Excessive dynamic memory 
management wastes cycles, 
energy with no functional 
improvements

Before:
for (i=0; i<N; ++i)

for (j=0; j<N-L; ++j)
improvements.
IMEC: analyze code to 
understand data transfer 
requirements balance

b[i][j] = 0;
for (i=0; i<N; ++i)

for (j=0; j<N-L; ++j)requirements, balance 
concerns across program.
Panda et al.: loop 
transformations can

(j j j)
for (k=0; k<L; ++k)

b[i][j] = a[i][j+k];
After:transformations can 

improve buffer utilization.
Reuse b more easily
E i f f t hi

After:
for (i=0; i<N; ++i)

for (j=0; j<N-L; ++j)
b[i][j] = 0;Easier for pre-fetching b[i][j] = 0;
for (k=0; k<L; ++k)

b[i][j] = a[i][j+k];closer
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Cache optimizationsp

Strategies:
(Improve hit rate) rearrange data to reduce the ( ) g
number of conflicts.

rearrange data to take advantage of prefetching.g g p g

Need:
Load mapLoad map.

Information on access frequencies.
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Cache data placementp

Panda & Dutt: rearrange data to reduce cache 
conflicts. It is for scalar variables.

1. Build a closeness graph for accesses by using the 
access patterns of the variables.

2. Cluster variables into cache-line sized units.

3. Build a cluster interference graph.

4. Use interference graph to optimize placement.g p p p
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Problem Description

int a[N], b[N], c[N]a[i] b[i] c[i]

N N N

...
for i = 0 to N-1

c[i] = a[i] + b[i]
end for

a b c C

end for
Memory Data Cache

On-Chip
Instruction
Memory

Process
Core

Off ChiMemoryCore

Synthesize On-Chip Data Memory

Off-Chip
Memory

Synthesize
d

HW
DCache Scratch-Pad

Memory

On Chip Data Memory
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Memory Data Organization of Scalar Variablesy g

Assumption 
scheduling and register allocation already performed

sequence of accesses to variables is fixed

Steps
B ild Cl G hBuild Closeness Graph

Group the variables into clusters of L words (L: cache line size)

Build a Cluster Interference Graph (CIG)Build a Cluster Interference Graph (CIG)

Assign memory locations to clusters
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Memory Organization of Scalar Variables

Generate an Access Sequence

loop bound

x y a b c d e f g

3

x y a b c d e f g

distance(u v) = number of distinct variable nodes encountered on a pathdistance(u, v) = number of distinct variable nodes encountered on a path
from u to v, or v to u (including u and v)
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Memory Organization of Scalar Variables

Construct a Closeness Graph of the variables Co st uct a C ose ess G ap o t e a ab es

2 1

g
e a x1

2 1

11
2

3

f
y

1 1
3

3

3

2

3

d
b1

3

1

3

3
3

c
3 3

Closeness Graph for loop bound = 3
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Grouping of Variables into Clusters 
Procedure PeformClustering
Input: CG(V, E) - Closeness Graph;   L - Cache Line Size
Output: Set F - Set of clusters of size LOutput: Set F Set of clusters of size L

for each vertex u in V
Find the sum of incident edge weights S(u) = Σ v∈ V e(u,v)

end for
L t X t t VLet X = vertex set V.
while (X ≠ φ ) do

Let u = vertex v ∈ X with maximum S(v)
Create new cluster C = {u}Create new cluster C  {u}
while (size of cluster C≠ L) and (X ≠ φ ) do

Let x be the variable ∈ X with maximum value for T,
where T = Σ u∈ C ,v∈ X-C  e(u,v)  -- i.e., x is the variable with maximum sum,

C = C ∪ {x};   X = X - {x}          -- of edge weights with nodes already in C
end while
Set e(u, v) = 0   ∀ (u∈ C) or (v∈ C)

-- i.e., delete all edges connecting to vertices in cluster C just formed
Update S(v) ∀ (v∈ X) 

end while
end Procedure
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end Procedure



Cluster Interference Graph (CIG)p ( )
Procedure for generating the CIG

Procedure BuildCIG

I A V i bl A S F S f ClInput: A - Variable Access Sequence;  F - Set of Clusters
Output: CIG - Cluster Interference Graph

Convert the Variable Access Sequence A into a Cluster Access Sequence
by renaming each node u in the sequence by the cluster C, where u∈ C.

Create a node in CIG for each cluster in F.
Assign edge weight e(u v) between nodes u and v = the number of timesAssign edge weight e(u,v) between nodes u and v = the number of times

the access to cluster u and v alternate along the execution path.

end Procedureend Procedure
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Cluster Interference Graph (CIG)p ( )

Cluster x Cluster y Cluster z
Variable

a b c d e

Access
Sequence

Cluster
x y y x z

Cluster
Access
Sequence

Cl t I t f

x y2

Cluster Interference 
Graph

x y

z

1
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Memory Location Assignmenty g

The cost of a memory assignment :The cost of a memory assignment :

∑
∈

×=
V(CIG)yx,

P(x,y)e(x,y)ost(CIG)MemAssignC
( )y,

where e(x,y) is the edge weight, and

P(x,y) = 1   if memory locations for x and y map into the same cache line
0   otherwise

In order to minimize conflict misses, we need toIn order to minimize conflict misses, we need to 

solve the following Cluster Assignment problem:
Find an assignment of clusters in a CIG to memory locations, g y ,
such that MemAssignCost (CIG) is minimized.
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Memory Location Assignment
a b1
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(c) Cost Assignment



Memory Location Assignment

1 f0
a b1

1 21
1

1
3

c
e
b

1

3
2

d c

1 3

2
1

1
1

d
a5

4

6 Cache

e f

3
2

4

7

Memory

(a) CIG (b) Memory Assignment

S(f) = 15 S(c) = 9 S(e) = 9 S(b) = 8 S(d) = 5 S(a) =5S(f) = 15, S(c) = 9, S(e) = 9, S(b) = 8 ,S(d) = 5, S(a) =5
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Memory Location Assignment
a b1

1 21
1

1
3 f0
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cost(a,0) = 2 cost(d,0) = 1c, a 1

Total Cost = 1 + 1 = 2

(c) Cost Assignment

( , )
cost(a,1) = 1
cost(a,2) = 1
cost(a,3) = 1

( , )
cost(d,1) = 1
cost(d,2) = 1
cost(d,3) = 1
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Memory Location Assignment

Procedure AssignClusters

- Procedure for assigning clusters to memory locations

Procedure AssignClusters
Input: CIG(V,E) - Cluster Interference Graph
Output: Assignment of Clusters to Memory Locations

S t th ti f CIG i d di d f S( )Sort the vertices of CIG in descending order of S(u)
-- S(u) is the sum of edge weights incident on vertex u

Let X be this sorted list of vertices
while (X ≠ φ ) dowhile (X ≠ φ ) do

Create new page P in memory
while (size of page P < k) and (X ≠ φ ) do

u = head of list X
A i t li i f P h t( i) i i iAssign u to line i of page P, where cost(u, i) is minimum 

over i=0 ... k-1
Delete u from X

end whileend while
end while

end Procedure
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Memory Organization for Array Variables

Objective
Minimizing data cache conflict missesg

The problem of clustering of variables to avoid compulsory 
misses is not relevant.

SSteps
Constructing the Interference Graph

Memory Assignment to Array VariablesMemory Assignment to Array Variables
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Constructing the Interference Graph

If two arrays A and B are accessed repeatedly within a 
loop then there is a possibility that accesses to A and Bloop, then there is a possibility that accesses to A and B 
might cause conflict misses in the data cache.

Procedure for building Interference Graph for arraysProcedure for building Interference Graph for arrays

Procedure BuildArrayIG
Input: Code with array accessesInput: Code with array accesses
Output: Interference Graph IG of arrays

Create a node u for every array u in the code
I iti li d i ht ( ) 0 f llInitialize edge weights e(u,v) = 0 for all u, v
for all (innermost) loops l in the code do

Let L be the loop bound of loop l
Let X = set of all arrays accessed in lLet X  set of all arrays accessed in l
Update e(u, v) = e(u, v) + L for all u,v ∈ X

end for
end Procedure
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Memory Assignment to Array Variables

Interference Graph: edge weights contributed by loop 
b dbounds

int a[16] b[16] c[16]
8 + 16

int a[16], b[16], c[16]

for i=0 to 7
a[i] = b[i+3] + 3

f 0 1

a b
24

for i=0 to 15
a[i] = b[i] * c[i]

c

16 16

Two memory locations X and Y will map into the same cache line in a direct-
mapped cache with k lines (L words per line) ifmapped cache with k lines (L words per line), if 

0kmod
L

Y

L

X
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢ 1)(nk

L

YX
1)(nk +<

−
<−i.e., (4.1)
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Memory Assignment to Array Variables

int A[16], B[16];
for i=0 to 12

i
i+1

i
i+1

A B

for i=0 to 12
A[i] = A[i+2] + A[i+3]

+ B[i+1] + B[i+2];

i+1
i+2
i+3

i+1
i+2
i+3

A B

A B
0 16

Conflict

ConflictA B

A B
0

0

17

18

Conflict

Conflict

A B
0

0

18

22
No Conflict

B A

1)(nk
L

YX
1)(nk +<

−
<− 1)(4n

4
1)(4n +<

+−++
<−

)3()122( ii

k = 4 L = 4

B A

Worst case
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k = 4, L = 4 Worst case

Memory Assignment to Array Variables
A B

int A[16], B[16];
for i=0 to 12

i
i+1

i
i+1

A B

A[i] = A[i+2] + A[i+3]
+ B[i+1] + B[i+2];

i+2
i+3

i+2
i+3

A B

0 22
No Conflict

A BB

BB
0 1 20

BB

BB

B

0 1 2
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Memory Assignment to Array Variablesy g y

Cost function for expected number of conflicts

Function AssignmentCost
Input: u - array under test;  A - proposed start address;  Access Sequence;

Array assignment already completed; IG - Interference GraphArray assignment already completed;  IG - Interference Graph
Returns: Expected number of cache conflicts for this assignment

Initialize cost = 0
for all vl | e(vl ,u) ≠ 0, vl already assigned

-- i.e., all assigned arrays that have an edge with u in IG
for each loop (bound L) in which accesses to vl and u occur

w = no of times control alternates between elements of v and uw = no. of times control alternates between elements of vl  and u
that map into the same cache line, using Condition (4.1)
cost = cost + w * L       -- w = 0 if there is no conflict

end for
end for
return cost

end Function
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Memory Assignment to Array Variablesy g y
Procedure for assigning addresses to arrays

Procedure AssignArrayAddresses
I t IG I t f G h k b f h liInput: IG - Interference Graph;  k - number of cache lines
Output: Assignment of addresses to all arrays (nodes in IG)

Address A = 0
Sort nodes in IG in decreasing order of S(u) (sum of incident edge weights)Sort nodes in IG in decreasing order of S(u) (sum of incident edge weights)
Let the list of nodes be: v0 ...vn-1
for i = 0 ... n-1

Initialize cost c = ∞
fmin = 0          -- keeps track of cache line with minimum mapping cost

for j = 0 ... k-1
if AssignmentCost(vi , A+j) < c then

c = AssignmentCost(vi A+j)c = AssignmentCost(vi , A+j)
min = j

end if
end for
Assign address (A+min) to first element of vi
A = A + min + arraysize(vi) -- updating A for next iteration

end for
end Procedure
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Memory Assignment to Array Variablesy g y

This cost is equal to the expected number of cacheThis cost is equal to the expected number of cache 
conflicts with all arrays that have already been 
assigned.assigned. 

If the conflict condition does not resolve to a constant, 
then we conclude that the two arrays do not conflict.y
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Scratch Pad Memoryy
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Scratch Pad Memoryy

The accesses to Hist are data-dependentThe accesses to Hist are data-dependent
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